首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were carried out using an isolated rat liver system to define: the contribution of exogenous phosphatidylcholine (PC) to biliary phospholipid secretion; and its hepatic metabolism during perfusion of the livers with conjugated bile salts with different hydrophilic/hydrophobic properties. A tracer dose of sn-1-palmitoyl-sn-2-[14C]linoleoylPC was injected as a bolus into the recirculating liver perfusate, under constant infusion of 0.75 mumol/min of tauroursodeoxycholate or taurodeoxycholate. The effects on bile flow, biliary lipid secretion, 14C disappearance from the perfusate and its appearance in bile, as well as hepatic and biliary biotransformation were determined. With both the bile salts, about 40% of the [14C]PC was taken up by the liver from the perfusate over 100 min. During the same period less than 2% of the given radioactivity was secreted into bile. More than 95% of the 14C recovered in bile was located within the identical injected PC molecular species. The biliary secretion of labeled as well as unlabeled PC, however, was significantly higher in livers perfused with taurodeoxycholate than tauroursodeoxycholate, while the reverse was observed with respect to bile flow and total bile salt secretion. The exogenous PC underwent extensive hepatic metabolization which appeared to be influenced by the type of bile salt perfusing the liver. After 2 h perfusion, the liver radioactivity was found, in decreasing order, in PC, triacylglycerol, phosphatidylethanolamine and diacylglycerol. In addition, the specific activity of triacylglycerol was significantly higher in tauroursodeoxycholate than in taurodeoxycholate-perfused livers (P less than 0.025), while the reverse was true for the specific activity of hepatic PC (P less than 0.01). Because taurodeoxycholate and tauroursodeoxycholate showed opposite effects on both biliary lipid secretion and hepatic PC biotransformations, we conclude that the hepatic metabolism of glycerolipids is influenced by the physiochemical properties of bile salts.  相似文献   

2.
Biliary cholesterol secretion is ordinarily tightly coupled to phosphatidylcholine (PC) secretion. Bile PCs are distinct in composition and predominantly composed of molecular species with 16:0 in the sn-1 position and 18:2 and 18:1 in the sn-2 position. In an attempt to acutely change the composition of biliary PCs and to assess the effect of a change in PCs on biliary cholesterol secretion, isolated livers were perfused with a variety of single free fatty acids. Rat livers with bile duct cannulas were perfused with a recirculating medium, taurocholate (40 mumol/h), and albumin-bound 16:1, 17:1, 18:1, 20:1, 18:2, 20:4, or 20:5 fatty acids (90 mumol/h) for 2 h. Biliary lipid secretion was measured and bile and liver PC compositions were compared at the start and end of perfusion. Results showed 1) greater utilization of shorter chain than longer chain fatty acids for bile PC formation (16:1 greater than 17:1 greater than 18:2 or 18:1 greater than 20:5, 20:4 or 20:1); 2) no similar pattern of FA utilization for liver PC formation; 3) preferentially greater incorporation of fatty acids into bile PCs compared to liver PCs when perfused fatty acids were used for esterification at both sn-1 and sn-2 positions of PC (to form diunsaturated PCs); and 4) increased biliary secretion of cholesterol relative to PC only when the population of PCs that was newly formed included more hydrophilic molecular species of PC than are present in native bile (that was observed only with perfusion of 16:1). Changes in biliary PC secretion or cholesterol/PC secretion occurred independently of any change in bile salt secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Nonalcoholic fatty liver disease (NAFLD) occurs frequently in a setting of obesity, dyslipidemia and insulin resistance, but the etiology of the disease, particularly the events favoring progression to nonalcoholic steatohepatitis (NASH) as opposed to simple steatosis (SS), are not fully understood. Based on known zonation patterns in protein, glucose and lipid metabolism, coupled with evidence that phosphatidylcholine may play a role in NASH pathogenesis, we hypothesized that phospholipid zonation exists in liver and that specific phospholipid abundance and distribution may be associated with histologic disease. A survey of normal hepatic protein expression profiles in the Human Protein Atlas revealed pronounced zonation of enzymes involved in lipid utilization and storage, particularly those facilitating phosphatidylcholine (PC) metabolism. Immunohistochemistry of obese normal, SS and NASH liver specimens with anti-phosphatidylethanomine N-methyltransferase (PEMT) antibodies showed a progressive decrease in the zonal distribution of this PC biosynthetic enzyme. Phospholipid quantitation by liquid chromatography mass spectrometry (LC-MS) in hepatic extracts of Class III obese patients with increasing NAFLD severity revealed that most PC species with 32, 34 and 36 carbons as well as total PC abundance was decreased with SS and NASH. Matrix assisted laser desorption ionization - imaging mass spectrometry (MALDI-IMS) imaging revealed strong zonal distributions for 32, 34 and 36 carbon PCs in controls (minimal histologic findings) and SS that was lost in NASH specimens. Specific lipid species such as PC 34∶1 and PC 36∶2 best illustrated this phenomenon. These findings suggest that phospholipid zonation may be associated with the presence of an intrahepatic proinflammatory phenotype and thus have broad implications in the etiopathogenesis of NASH.  相似文献   

4.
Rat serum VLDL, unlike human, contains significant proportions of triacylglycerols with polyunsaturated C20 and C22 fatty acids. Hypothyroidism in this species is characterized by low levels of serum VLDL, the accumulation of LDL, elevated levels of lipoprotein lipase and depressed hepatic lipase activity. The hypothyroid rat thus represents an interesting model in which to study hepatic VLDL metabolism and the substrate specificity of lipoprotein lipase. This report shows that serum IDL and LDL in both euthyroid and hypothyroid rats contain progressively enhanced proportions of triacylglycerols with polyunsaturated C20 and C22 fatty acids when compared to VLDL. Hypothyroidism resulted in a decrease in the proportion of 22:6 fatty acid within the serum VLDL triacylglycerols when compared to euthyroid VLDL. Lipolysis of VLDL from euthyroid rats in vitro using the perfused rat heart system resulted in increases or sequestration of triacylglycerols containing long-chain polyunsaturated fatty acids within the IDL fraction similar to those seen in vivo. It is concluded that lipoprotein lipase-mediated hydrolysis of VLDL triacylglycerols and the conversion of VLDL to IDL and LDL in the rat results in a progressive sequestration of the longer-chain polyunsaturated triacylglycerol molecular species with the IDL and LDL.  相似文献   

5.
Mice that lack phosphatidylethanolamine-N-methyltransferase (PEMT) and are fed a choline-deficient (CD) diet suffer severe liver damage and do not survive. Since phosphatidyldimethylethanolamine (PDME) has physical properties similar to those of phosphatidylcholine (PC), we hypothesized that dimethylethanolamine (DME) would be converted into PDME that might substitute for PC, and therefore abrogate the liver damage in the Pemt -/- mice fed a CD diet. We fed Pemt -/- mice either a CD diet, a CD diet supplemented with choline, or a CD diet supplemented with DME (CD + DME). Pemt -/- mice fed the CD diet developed severe liver failure by 4 days while CD + DME-fed mice developed severe liver failure by 5 days. The hepatic PC level in choline-supplemented (CS) mice was 67 +/- 4 nmol/mg protein, whereas the PC content was reduced in CD- and CD + DME-fed mice (49 +/- 3 and 30 +/- 3 nmol/mg protein, respectively). Upon supplementation of the CD diet with DME the amount of hepatic PDME was 81 +/- 9 nmol/mg protein so that the hepatic content of PC + PDME combined was 111 nmol/mg protein. Moreover, plasma apolipoprotein B100 and Al levels were markedly lower in mice fed the CD + DME diet compared to mice fed the CS diet, as was the plasma content of PC. Thus, despite replacement of the deficit in hepatic PC with PDME in Pemt -/- mice fed a CD diet, normal liver function was not restored. We conclude that although PC and PDME exhibit similar physical properties, the three methyl groups of choline are required for hepatic function in mice.  相似文献   

6.
Phosphatidylcholines (PCs) with platelet-activating factor (PAF)-like biological activities are known to be generated by fragmentation of the sn-2-esterified polyunsaturated fatty acyl group. The reaction is free radical-mediated and triggered by oxidants such as metal ions, oxyhemoglobin, and organic hydroperoxides. In this study, we characterized the PAF-like phospholipids produced on reaction of PC having a linoleate group with lipoxygenase enzymes at low oxygen concentrations. When the oxidized PCs were analyzed by gas chromatography-mass spectrometry, two types of oxidatively fragmented PC were detected. One PC had an sn-2-short chain saturated or unsaturated acyl group (C(8)-C(13)) with an aldehydic terminal; the abundant species were PCs with C(9) and C(13). The other PC had a short chain saturated acyl group (C(6)-C(9)) with a methyl terminal, and the most predominant species was PC with C(8). When the extracts of oxidation products were subjected to catalytic hydrogenation, PCs having saturated acyl groups (C(6)-C(14)) were detected; the most abundant was C(12) species. The less regiospecific formation of PAF-like lipids suggests that they were generated by oxidative fragmentation of PC hydroperoxides formed by non-stereoselective oxygenation of the alkyl radical of esterified linoleate that escaped from the active centers of lipoxygenases. One of the PAF-like PC with an aldehydic terminal was found to be bioactive; it inhibited the production of nitric oxide induced by lipopolysaccharide and interferon-gamma in vascular smooth muscle cells from rat aorta.  相似文献   

7.
Significant amounts of phospholipid N-methyltransferase activity in murine thymocytes were found to be distributed on the plasma membrane. The enzyme activity had an optimum pH of 9. The presence of divalent cations, Mg2+ (10 mM) or Ca2+ (1 mM), and EGTA separately in the assay had only a small effect on the enzyme activity. However, addition of both 10 mM Mg2+ and 1 mM Ca2+ increased the enzyme activity. The presence of two enzymes for each conversion of phosphatidylethanolamine (PE) to phosphatidylmonomethylethanolamine (PME) and PME to phosphatidylcholine (PC) was suggested by the result of the determination of the incorporated radioactivity into PME, phosphatidyldimethylethanolamine (PDE) and PC; the apparent Km values for S-adenosyl-L-methionine were 20 and 400-500 microM for the conversion of PE to PME and for the conversion of PME to PC they were 5 microM and 40 microM. S-Adenosyl-L-homocysteine (AdoHcy), a known inhibitor of enzymatic methylation, competitively inhibited [14C]methyl incorporation into total lipid. The apparent Ki value for AdoHcy was 44.7 microM. Two phospholipid N-methyltransferases were partially purified by extraction with sodium deoxycholate, gel filtration on Sephadex G-75, and affinity column chromatography on AdoHcy-Sepharose. One enzyme, mainly catalyzing the formation of PME, was purified approximately 1548-fold and the other catalyzing the formation of PDE and PC, was purified approximately 629- to 703-fold. However, the former still contained a little activity for PDE and PC formation and the latter contained a little activity for PME formation. In these partially purified phospholipid N-methyltransferase preparations, little contaminating protein O-carboxylmethyltransferase activity was observed; however, significant PC-phospholipase A2 activity was detected. This result may suggest that phospholipid N-methyltransferases associate with phospholipase A2 in the thymocyte plasma membrane.  相似文献   

8.
About one-fourth the phosphatidylcholines (PC) from retina photoreceptor rod outer segment (ROS) membranes contain docosahexaenoic acid (22:6n-3) at sn-2 and a very long chain polyunsaturated fatty acid (VLCPUFA) (C24 to C36) at the sn-1 position of the glycerol backbone. In order to study the thermotropic behavior of these PCs, subfractions and molecular species of PC (16:0/22:6, 18:0/22:6, 22:6/22:6, 32:5/22:6, 32:6/22:6, 34:5/22:6), were isolated from bovine ROS, and liposomes containing different proportions of these PCs and dimyristoyl-PC (DMPC) or dipalmitoyl PC (DPPC) were compared using the fluorescence probes Laurdan and 1,6-diphenyl-1,3,5-hexatriene (DPH). With both probes, the 22:6n-3 containing PCs from ROS, in all proportions tested, decreased the transition temperature (Tt) of both DMPC and DPPC. Below the transition temperature, coexistence of phases was evidenced in all cases. Liposomes formed with 100% of any of these PCs did not show phase transitions in the temperature range studied (8 degrees C to 50 degrees C). At physiological temperatures, as it is likely to be the case in ROS membranes, all of these PC species were in the liquid-crystalline state. With Laurdan, all dipolyunsaturated PCs seemed to behave similarly: despite the large number of double bonds per molecule, all of them decreased the Tt of DPPC less than did the hexaenoic PCs. With DPH, an ample difference was detected between the dipolyunsaturates, 22:6/22:6-PC and VLCPUFA/22:6-PCs, and between the latter and hexaenoic PCs throughout the temperature range studied. This difference is consistent with the interpretation that the largest "disorder" produced by PCs containing a VLCPUFA like 32:6n-3 at the sn-1 position occurs toward the center of the membrane.  相似文献   

9.
P. McGraw  S. A. Henry 《Genetics》1989,122(2):317-330
We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.  相似文献   

10.
《Insect Biochemistry》1991,21(7):809-814
The fatty acid compositions were determined for total lipids, triacylglycerols, phospholipids and four phospholipid fractions, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine/phosphatidylinositol (PS/PI) and cardiolipin (CA) obtained from hemocytes and cell-free serum from second day, fifth instar larvae of the tobacco hornworm Manduca sexta and the standard Manduca rearing medium. The hemocyte fatty acid profiles were considerably different from the profiles of the medium the insects were reared on and from the profiles of the cell-free serum. Hemocyte neutral lipids had lower proportions of polyunsaturated fatty acids than phospholipids. The fatty acid profiles of PC, PE, PS/PI and CA differ from each other and from the total lipid profiles, indicating selective fatty acid incorporation into hemocyte phospholipid species. Studies with radioactive arachidonic acid similarly indicated selective incorporation of polyunsaturated fatty acids into hemocyte lipids. Under our in vitro conditions, >40% of the total radioactivity was incorporated into hemocyte lipids. About 93% of the incorporated radioactivity was found in phospholipids. Within phospholipids. most of the radioactivity was associated with PC (46%), and less with PE (28%) and PS/PI (21%). Very little radioactivity was recovered in CA (0.9%).  相似文献   

11.
The increased prevalence of obesity and diabetes in human populations can induce the deposition of fat (triacylglycerol) in the liver (steatosis). The current view is that most hepatic triacylglycerols are derived from fatty acids released from adipose tissue. In this study, we show that phosphatidylcholine (PC), an important structural component of cell membranes and plasma lipoproteins, can be a precursor of ~65% of the triacylglycerols in liver. Mice were injected with [(3)H]PC-labeled high density lipoproteins (HDLs). Hepatic uptake of HDL-PC was ~10 μmol/day, similar to the rate of hepatic de novo PC synthesis. Consistent with this finding, measurement of the specific radioactivity of PC in plasma and liver indicated that 50% of hepatic PC is derived from the circulation. Moreover, one-third of HDL-derived PC was converted into triacylglycerols. Importantly, ~65% of the total hepatic pool of triacylglycerol appears to be derived from hepatic PC, half of which is derived from HDL. Thus, lipoprotein-associated PC should be considered a quantitatively significant source of triacylglycerol for the etiology of hepatic steatosis.  相似文献   

12.
Fetal rat brain aggregating cell cultures were exposed to varying concentrations of [3H]monomethylethanolamine (MME) and [3H] dimethylethanolamine (DME). The rate of labeling of water-soluble compounds was more rapid and the amount of radioactivity present was greater than in the lipids. After a 72 hour incubation in the presence of millimolar concentrations of these nitrogenous bases, the major water-soluble products were the phosphorylated form of the bases. Little label was associated with the free bases or their cytidyl derivate. In the phospholipids, 97% of the radioactivity was recovered in phosphatidylmonomethylethanolamine (PMME) and 3% in phosphatidyldimethylethanolamine (PDME) or 95% in PDME and 5% in phosphatidylcholine (PC) after growth in presence of [3H]MME and [3H]DME respectively. The rate of formation of the radioactive products increased as function of the concentration of the nitrogenous base added up to 4 mM, the highest concentration employed. There was no significant difference in the pattern of labeling with cells grown in media devoid of methionine or choline. The turnover of the water-soluble metabolites was more rapid than in the phospholipids where an apparent half-life of 24 hours was calculated.Abbreviations PMT phospholipid-N-methyltransferase - AdoMet S-adenosyl-L-methionine - EA ethanolamine - MME N-monomethylethanolamine - DME N,N-dimethylethanolamine - CH choline - PE phosphatidylethanolamine - PMME phosphatidylmonomethylethanolamine - PDME phosphatidyldimethylethanolamine - PC phosphatidylcholine - PS phosphatidylserine - CAPS cyclohexylaminopropane sulfonic acid  相似文献   

13.
The remodeling of the fatty acyl moieties of phosphatidylcholine (PC) has been studied in choline-deficient and choline-supplemented hepatocytes prepared from a choline-deficient rat. Choline-deficient hepatocytes were prelabeled with [Me-3H]choline for 30 min and subsequently incubated for up to 12 h in the presence or absence of choline. Analysis of the molecular species of PC from choline-deficient cells showed that, at the end of the pulse, approx. 75% of the label was incorporated into palmitate-containing species and only approx. 16% of the labeled species contained stearate. During the chase period there was a redistribution of label and after 12 h approx. 56% of the total radioactivity was associated with palmitate containing species and 37% was recovered in stearate-containing species. A similar distribution of radioactivity was observed in choline-supplemented cells. Measurement of the specific radioactivity of the major molecular species of PC was consistent with a precursor-product relationship between palmitate-containing species and stearate-containing species with arachidonate or linoleate on the sn-2 position. A model is presented which takes into account remodeling of both the sn-1 and sn-2 positions of PC.  相似文献   

14.
M I Avelda?o 《Biochemistry》1988,27(4):1229-1239
About one-fourth the phosphatidylcholines (PCs) from bovine disk photoreceptor membranes contain very long chain (24-36 carbons) polyunsaturated (4, 5, and 6 double bonds) fatty acids of the n-3 and n-6 series (VLCPUFA). Such fatty acids, exclusively occurring in dipolyunsaturated species, are esterified to the sn-1 position of their glycerol backbone, docosahexaenoate being the major fatty acid at sn-2. Chromatographically, such PCs display a weakly polar character relative to other species, ascribable to their exceedingly large number of carbons. After hexane extraction of lyophilized disks, PC is the major component of the fraction of lipids that remains associated with rhodopsin, followed by phosphatidylserine, while a large proportion of the phosphatidylethanolamine is removed. The fatty acid composition of the hexane-removable and protein-bound lipid fractions markedly differs, the latter being enriched in lipid species containing long-chain and very long chain polyenes. This is observed for all lipid classes except free fatty acids. VLCPUFA-containing PCs are the most highly concentrated species in the rhodopsin-associated lipid fraction. The very long chain polyenes these PCs have at sn-1 may account for their resistance to being separated from the protein. It is hypothesized that their unusually long polyenoic fatty acids could be well suited to partially surround alpha-helical segments of rhodopsin.  相似文献   

15.
The positional specificity of purified human lecithin-cholesterol acyltransferase (LCAT) was studied by analyzing the labeled cholesteryl ester (CE) species formed in the presence of proteoliposome substrates containing mixed chain phosphatidylcholine (PC) species, labeled cholesterol and apoprotein A-I. Whereas over 90% of the acyl groups used for CE synthesis were derived from the sn-2 position of most of the naturally occurring PC substrates, about 75% of the CE species formed in the presence of sn-1-myristoyl 2-arachidonoyl PC, sn-1-palmitoyl-2-arachidonoyl (PAPC) and sn-1-palmitoyl 2-docosahexaenoyl PC were derived from the sn-1-position. On the other hand, rat LCAT utilized mostly sn-2-acyl group from either PAPC or from sn-1-palmitoyl 2-linoleoyl PC. The positional specificity of the human enzyme was not affected by the alteration in the matrix fluidity, type of the apoprotein activator used, or by the free cholesterol/PC ratio in the substrate. These results show that the positional specificity of human plasma LCAT is altered in the presence of sn-2-arachidonoyl PC, or sn-2-docosahexaenoyl PC, probably due to steric restrictions at the active site, and this may account for the formation of disproportionately high concentrations of saturated CE, and low concentrations of long-chain polyunsaturated CE in human plasma, relative to the composition of sn-2-acyl groups in plasma PC.  相似文献   

16.
The hepatic uptake, transport and utilization of plasma lysophosphatidylcholine (lysoPC) and its contribution to biliary lipid secretion have been investigated in bile-fistula rats. The animals were given a single intravenous dose of sn-1-[1-14C]palmitoyl-lysoPC, under constant intravenous sodium taurocholate infusion (1 mumol/min), and the fate of the label was followed in blood, bile and liver for up to 3 h. The livers were excised at given time points, extracted and/or homogenized to determine the lipid distribution and subcellular location of radioactivity. LysoPC was rapidly cleared from plasma, though a consistent fraction of the label persisted in plasma over the experimental time-period in the form of either lysoPC or PC. Recovery of radioactivity in the liver varied from 15.6% after 5 min to 19.5% after 3 h. Hepatic lysoPC underwent rapid microsomal acylation to form specific PC molecular species (mainly 16:0-20:4 and, to a lesser extent, 16:0-18:2 and 16:0-16:1). Ultrafiltration, dialysis and gel-chromatographic analyses of cytosolic fractions (post 105,000 X g supernatants) indicated that lysoPC is transported to the site of acylation mostly as a macromolecular aggregate with an approx. Mr of 14,400. Small amounts of radioactivity were secreted into bile over 3 h (20% in the form of lysoPC and the remainder as 16:0-18:2 and 16:0-20:4 PC species). Plasma lysoPC, taken up by the liver, is mostly transported by a cytosolic carrier with a molecular weight close to fatty-acid-binding proteins; it then enters a distinct acylation pathway, selective for some polyunsaturated-PC species and does not contribute significantly to biliary secretion, either directly, or through its products.  相似文献   

17.
Phosphatidylethanolamine N-methyltransferase (PEMT)is involved in a secondary pathway for production of phosphatidylcholine (PC) in liver. We fed Pemt-/-mice a high fat/high cholesterol diet for 3 weeks to determine whether or not PC derived from PEMT is required for very low density lipoprotein secretion. Lipid analyses of plasma and liver indicated that male Pemt-/- mice accumulated triacylglycerols in their livers and were unable to secrete the same amount of triacylglycerols from the liver as did Pemt+/+ mice. Plasma levels of triacylglycerol and both apolipoproteins B100 and B48 were significantly decreased only in male Pemt-/- mice. Experiments in which mice were injected with Triton WR1339 showed that, whereas hepatic apoB100 secretion was decreased in male Pemt-/- mice, the decrease in plasma apoB48 in male Pemt-/- mice was not due to reduced secretion. Moreover, female and, to a lesser extent, male Pemt-/- mice showed a striking 40% decrease in plasma PC and cholesterol in high density lipoproteins. These results suggest that, even though the content of hepatic PC was normal in PEMT-deficient mice, plasma lipoprotein levels were profoundly altered in a gender-specific manner.  相似文献   

18.
Phosphatidylcholines (PCs) with stearoyl (18:0) sn-1 chains and variable-length, saturated sn-2 acyl chains were synthesized and investigated using a Langmuir-type film balance. Surface pressure was monitored as a function of lipid molecular area at various constant temperatures between 10 degrees C and 30 degrees C. Over this temperature range, 18:0-10:0 PC displayed only liquid-expanded behavior. In contrast, di-14:0 PC displayed liquid-expanded behavior at 24 degrees C and 30 degrees C, but two-dimensional phase transitions were evident at 20 degrees C, 15 degrees C, and 10 degrees C. The average molecular area of 18:0-10:0 PC was larger than that of liquid-expanded di-14:0 PC at equivalent surface pressures, and the shapes of their liquid expanded isotherms were somewhat dissimilar. Analysis of the elastic moduli of area compressibility (Cs(-1)) as a function of molecular area revealed shallower slopes in the semilog plots of 18:0-10:0 PC compared to di-14:0 PC. At membrane-like surface pressures (e.g., 30 mN/m), 18:0-10:0 PC was 20-25% more elastic (in an in-plane sense) than di-14:0 PC. Other PCs with varying degrees of chain-length asymmetry (18:0-8:0 PC, 18:0-12:0 PC, 18:0-14:0 PC, 18:0-16:0 PC) were also investigated to determine whether the higher in-plane elasticity of fluid-phase 18:0-10:0 PC is a common feature of PCs with asymmetrical chain lengths. Two-dimensional phase transitions in 18:0-14:0 PC and 18:0-16:0 PC prevented meaningful comparison with other fluid-phase PCs at 30 mN/m. However, the Cs(-1) values for fluid-phase 18:0-8:0 PC and 18:0-12:0 PC were similar to that of 18:0-10:0 PC (85-90 mN/m). These values showed chain-length asymmetrical PCs to have 20-25% greater in-plane elasticity than fluid-phase PCs with mono- or diunsaturated acyl chains.  相似文献   

19.
1-Palmitoyl-2-linoleoyl phosphatidylcholine (PLPC) labeled in either the choline, glycerol, palmitate, or linoleate component in reconstituted rat high density lipoprotein (rHDL), was administered by vein to rats with bile fistula and taurocholate infusion. PLPC disappeared from plasma in a monoexponential fashion with a half-life of 50 min. A small fraction, about 14%, of PLPC disappearance was due to removal of linoleate from the sn-2 ester bond to form plasma cholesterol esters, presumably by lecithin-cholesterol acyltransferase. Otherwise, nearly all of the PLPC components that disappeared from blood in 1 h were recovered in the liver. The choline, glycerol, and linoleate components appeared predominantly in hepatic phosphatidylcholine (PC). These three components remained together in the liver with similar fractions of each in individual PC molecular species, most notably 1-stearoyl-2-linoleoyl-PC and dilinoleoyl-PC as well as PLPC. However, the palmitate component was spread among hepatic triglyceride, free fatty acid, other phospholipids, and all palmitate-containing molecular species of PC. Less than 2% of any administered PLPC component appeared in 1-stearoyl-2-arachidonyl-PC, the major species by mass in the liver. The palmitate component from plasma PLPC appeared in biliary PC at a more rapid rate than glycerol and linoleate components; the latter components appeared in bile in identical fashion. The results show that about two-thirds of plasma PLPC disappearance is due to phospholipase A1 hydrolysis, probably hepatic lipase. The putative produce, 2-linoleoyl-lysoPC, is efficiently reacylated with a saturated fatty acid in the liver, conserving PC.  相似文献   

20.
The molecular species composition of membrane phospholipids influences the activities of integral proteins and cell signalling pathways. We determined the effect of increasing gestational age on fetal guinea pig liver phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and plasma PC molecular species composition. The livers were collected from fetuses (n = 5/time point) at 5 day intervals between 40 and 65 days of gestation, and at term (68 days). Hepatic PC and PE molecular species composition was determined by electrospray ionisation mass spectrometry. An increasing gestational age was accompanied by selective changes in individual molecular species. The proportion of the sn-1 18:0 species increased relative to the sn-1 16:0 species in liver PC, but not PE, with an increasing gestational age. 1-O-alkyl-2-acyl PC species concentrations decreased significantly between 40 and 45 days of gestation (40%), and 65 and 68 days (54%). Total 1-O-alkenyl-2-acyl PE species concentration increased between days 60 and 65, due to a rise in 1-O-16:0 alkyl/20:4 content, and then decreased until term. Between day 40 and term, PC and PE sn-2 18:2n-6 species concentrations increased 3-fold. PC16:0/18:2 increased gradually throughout gestation, while PC18:0/18:2 content only increased after day 65. The overall increase in PE18:2n-6 content was due to PE18:0/18:2 alone. The composition of plasma PC essentially reflected hepatic PC. Overall, these data suggest differential regulation of hepatic PC and PE molecular species composition during development which is essentially independent of the maternal fatty acid supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号