首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering.  相似文献   

2.

Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide range of clinical diseases such as bacteremia and urinary tract infections. The increase of multidrug resistant ExPEC strains is becoming a major concern for the treatment of these infections and E. coli has been identified as a critical priority pathogen by the WHO. Therefore, the development of vaccines has become increasingly important, with the surface lipopolysaccharide constituting a promising vaccine target. This study presents genetic and structural analysis of clinical urine isolates from Switzerland belonging to the serotype O25. Approximately 75% of these isolates were shown to correspond to the substructure O25B only recently described in an emerging clone of E. coli sequence type 131. To address the high occurrence of O25B in clinical isolates, an O25B glycoconjugate vaccine was prepared using an E. coli glycosylation system. The O antigen cluster was integrated into the genome of E. coli W3110, thereby generating an E. coli strain able to synthesize the O25B polysaccharide on a carrier lipid. The polysaccharide was enzymatically conjugated to specific asparagine side chains of the carrier protein exotoxin A (EPA) of Pseudomonas aeruginosa by the PglB oligosaccharyltransferase from Campylobacter jejuni. Detailed characterization of the O25B-EPA conjugate by use of physicochemical methods including NMR and GC-MS confirmed the O25B polysaccharide structure in the conjugate, opening up the possibility to develop a multivalent E. coli conjugate vaccine containing O25B-EPA.

  相似文献   

3.
Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.  相似文献   

4.
Vi capsular polysaccharide (Vi antigen) was first identified as the virulence antigen of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. The presence of Vi antigen differentiates S. Typhi from other serovars of Salmonella. Vi antigen is a linear polymer consisting of α-1,4-linked-N-acetyl-galactosaminuronate, whose expression is controlled by three chromosomal loci, namely viaA, viaB and ompB. Both viaA and viaB region are present on Salmonella Pathogenicity Island-7, a large, mosaic, genetic island. The viaA region encodes a positive regulator and the viaB locus is composed of 11 genes designated tviA-tviE (for Vi biosyhthesis), vexA-vexE (for Vi antigen export) and ORF 11. Vi polysaccharide is synthesized from UDP-N-acetyl glucosamine in a series of steps requiring TviB, TviC, and TviE, and regulation of Vi polysaccharide synthesis is controlled by two regulatory systems, rscB-rscC (viaA locus) and ompR-envZ (ompB locus), which respond to changes in osmolarity. This antigen is highly immunogenic and has been used for the formulation of one of the currently available vaccines against typhoid. Despite advancement in the area of vaccinology, its pace of progress needs to be accelerated and effective control programmes will be needed for proper disease management.  相似文献   

5.
The Vi capsular polysaccharide (CPS) of Salmonella enterica serovar Typhi, the cause of human typhoid, is important for infectivity and virulence. The Vi biosynthetic machinery is encoded within the viaB locus composed of 10 genes involved in regulation of expression (tviA), polymer synthesis (tviB-tviE), and cell surface localization of the CPS (vexA-vexE). We cloned the viaB locus from S. Typhi and transposon insertion mutants of individual viaB genes were characterized in Escherichia coli DH5α. Phenotype analysis of viaB mutants revealed that tviB, tviC, tviD and tviE are involved in Vi polymer synthesis. Furthermore, expression of tviB-tviE in E. coli DH5α directed the synthesis of cytoplasmic Vi antigen. Mutants of the ABC transporter genes vexBC and the polysaccharide copolymerase gene vexD accumulated the Vi polymer within the cytoplasm and productivity in these mutants was greatly reduced. In contrast, de novo synthesis of Vi polymer in the export deficient vexA mutant was comparable to wild-type cells, with drastic effects on cell stability. VexE mutant cells exported the Vi, but the CPS was not retained at the cell surface. The secreted polymer of a vexE mutant had different physical characteristics compared to the wild-type Vi.  相似文献   

6.

Background  

Conjugate vaccines in which polysaccharide antigens are covalently linked to carrier proteins belong to the most effective and safest vaccines against bacterial pathogens. State-of-the art production of conjugate vaccines using chemical methods is a laborious, multi-step process. In vivo enzymatic coupling using the general glycosylation pathway of Campylobacter jejuni in recombinant Escherichia coli has been suggested as a simpler method for producing conjugate vaccines. In this study we describe the in vivo biosynthesis of two novel conjugate vaccine candidates against Shigella dysenteriae type 1, an important bacterial pathogen causing severe gastro-intestinal disease states mainly in developing countries.  相似文献   

7.
Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l−1 of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines.  相似文献   

8.
Salmonella enterica serovar Typhi causes typhoid fever. It possesses a Vi antigen capsular polysaccharide coat that is important for virulence and is the basis of a current glycoconjugate vaccine. Vi antigen is also produced by environmental Bordetella isolates, while mammal-adapted Bordetella species (such as Bordetella bronchiseptica) produce a capsule of undetermined structure that cross-reacts with antibodies recognizing Vi antigen. The Vi antigen backbone is composed of poly-α-(1→4)-linked N-acetylgalactosaminuronic acid, modified with O-acetyl residues that are necessary for vaccine efficacy. Despite its biological and biotechnological importance, some central aspects of Vi antigen production are poorly understood. Here we demonstrate that TviE and TviD, two proteins encoded in the viaB (Vi antigen production) locus, interact and are the Vi antigen polymerase and O-acetyltransferase, respectively. Structural modeling and site-directed mutagenesis reveal that TviE is a GT4-family glycosyltransferase. While TviD has no identifiable homologs beyond Vi antigen systems in other bacteria, structural modeling suggests that it belongs to the large SGNH hydrolase family, which contains other O-acetyltransferases. Although TviD possesses an atypical catalytic triad, its O-acetyltransferase function was verified by antibody reactivity and 13C NMR data for tviD-mutant polysaccharide. The B. bronchiseptica genetic locus predicts a mode of synthesis distinct from classical S. enterica Vi antigen production, but which still involves TviD and TviE homologs that are both active in a reconstituted S. Typhi system. These findings provide new insight into Vi antigen production and foundational information for the glycoengineering of Vi antigen production in heterologous bacteria.  相似文献   

9.
Autoinducer molecules are utilized by gram-negative and gram-positive bacteria to regulate density-dependent gene expression by a mechanism known as quorum sensing. PCR and DNA sequencing results showed that Campylobacter jejuni and Campylobacter coli possessed luxS, which is responsible for autoinducer-2 (AI-2) production. Using a Vibrio harveyi luminescence assay, the production of AI-2 was observed in milk, chicken broth, and brucella broth by C. coli, C. jejuni, Salmonella enterica serovar Typhimurium, and Escherichia coli O157:H7 under different conditions.  相似文献   

10.
Non-typhoidal Salmonella (NTS) serovars Typhimurium and Enteritidis are major causes of invasive bacterial infections in children under 5 years old in sub-Saharan Africa, with case fatality rates of ~20%. There are no licensed NTS vaccines for humans. Vaccines that induce antibodies against a Salmonella Typhi surface antigen, Vi polysaccharide, significantly protect humans against typhoid fever, establishing that immune responses to Salmonella surface antigens can be protective. Flagella proteins, abundant surface antigens in Salmonella serovars that cause human disease, are also powerful immunogens, but the functional capacity of elicited anti-flagellar antibodies and their role in facilitating bacterial clearance has been unclear. We examined the ability of anti-flagellar antibodies to mediate microbial killing by immune system components in-vitro and assessed their role in protecting mice against invasive Salmonella infection. Polyclonal (hyperimmune sera) and monoclonal antibodies raised against phase 1 flagellin proteins of S. Enteritidis and S. Typhimurium facilitated bacterial uptake and killing of the homologous serovar pathogen by phagocytes. Polyclonal anti-flagellar antibodies accompanied by complement also achieved direct bacterial killing. Serum bactericidal activity was restricted to Salmonella serovars expressing the same flagellin used as immunogen. Notably, individual anti-flagellin monoclonal antibodies with complement were not bactericidal, but this biological activity was restored when different monoclonal anti-flagellin antibodies were combined. Passive transfer immunization with a monoclonal IgG antibody specific for phase 1 flagellin from S. Typhimurium protected mice against lethal challenge with a representative African invasive S. Typhimurium strain. These findings have relevance for the use of flagellin proteins in NTS vaccines, and confirm the role of anti-flagellin antibodies as mediators of protective immunity.  相似文献   

11.
Enteric fevers remain a common and serious disease, affecting mainly children and adolescents in developing countries. Salmonella enterica serovar Typhi was believed to cause most enteric fever episodes, but several recent reports have shown an increasing incidence of S. Paratyphi A, encouraging the development of a bivalent vaccine to protect against both serovars, especially considering that at present there is no vaccine against S. Paratyphi A. The O-specific polysaccharide (O:2) of S. Paratyphi A is a protective antigen and clinical data have previously demonstrated the potential of using O:2 conjugate vaccines. Here we describe a new conjugation chemistry to link O:2 and the carrier protein CRM197, using the terminus 3-deoxy-D-manno-octulosonic acid (KDO), thus leaving the O:2 chain unmodified. The new conjugates were tested in mice and compared with other O:2-antigen conjugates, synthesized adopting previously described methods that use CRM197 as carrier protein. The newly developed conjugation chemistry yielded immunogenic conjugates with strong serum bactericidal activity against S. Paratyphi A.  相似文献   

12.
The Escherichia coli O104 polysaccharide is an important antigen, which contains sialic acid and is often associated with EHEC clones. Sialic acid is a component of many animal tissues, and its presence in bacterial polysaccharides may contribute to bacterial pathogenicity. We sequenced the genes responsible for O104 antigen synthesis and have found genes which from their sequences are identified as an O antigen polymerase gene, an O antigen flippase gene, three CMP-sialic acid synthesis genes, and three potential glycosyl transferase genes. The E. coli K9 group IB capsular antigen has the same structure as the O104 O antigen, and we find using gene by gene PCR that the K9 gene cluster is essentially the same as that for O104. It appears that the distinction between presence as group IB capsule or O antigen for this structure does not involve any difference in genes present in the O antigen gene cluster. By PCR testing against representative strains for the 166 E. coli O antigens and some randomly selected Gram-negative bacteria, we identified three O antigen genes which are highly specific to O104/K9. This work provides the basis for a sensitive test for rapid detection of O104 E. coli. This is important both for decisions on patient care as early treatment may reduce the risk of life-threatening complications and for a faster response in control of food borne outbreaks.  相似文献   

13.
Salmonella enterica and Escherichia coli O157:H7 are major food-borne pathogens causing serious illness. Phage SFP10, which revealed effective infection of both S. enterica and E. coli O157:H7, was isolated and characterized. SFP10 contains a 158-kb double-stranded DNA genome belonging to the Vi01 phage-like family Myoviridae. In vitro adsorption assays showed that the adsorption constant rates to both Salmonella enterica serovar Typhimurium and E. coli O157:H7 were 2.50 × 10−8 ml/min and 1.91 × 10−8 ml/min, respectively. One-step growth analysis revealed that SFP10 has a shorter latent period (25 min) and a larger burst size (>200 PFU) than ordinary Myoviridae phages, suggesting effective host infection and lytic activity. However, differential development of resistance to SFP10 in S. Typhimurium and E. coli O157:H7 was observed; bacteriophage-insensitive mutant (BIM) frequencies of 1.19 × 10−2 CFU/ml for S. Typhimurium and 4.58 × 10−5 CFU/ml for E. coli O157:H7 were found, indicating that SFP10 should be active and stable for control of E. coli O157:H7 with minimal emergence of SFP10-resistant pathogens but may not be for S. Typhimurium. Specific mutation of rfaL in S. Typhimurium and E. coli O157:H7 revealed the O antigen as an SFP10 receptor for both bacteria. Genome sequence analysis of SFP10 and its comparative analysis with homologous Salmonella Vi01 and Shigella phiSboM-AG3 phages revealed that their tail fiber and tail spike genes share low sequence identity, implying that the genes are major host specificity determinants. This is the first report identifying specific infection and inhibition of Salmonella Typhimurium and E. coli O157:H7 by a single bacteriophage.  相似文献   

14.
Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, PglB, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous PglB proteins. PglB was overexpressed in Escherichia coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified PglB was verified using a chemically synthesized sugar donor: N-acetylgalactosamine-diphospho-undecaprenyl (GalNAc-PP-Und) and a synthesized peptide acceptor. The result confirms that PglB is solely responsible for the oligosaccharyltransferase activity and complements the finding that PglB exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of PglB using the PhoA/LacZ fusion method. The topological model shows that PglB possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common Ncyt-Cperi topology with 11 transmembrane segments for the STT3 family proteins.  相似文献   

15.
Salmonella Typhi, first isolated in 1884, results in infection of the intestines and can end in death and disability. Due to serious adverse events post vaccination, whole cell killed vaccines have been replaced with new generation vaccines. The efficacy of Vi polysaccharide (ViPS) vaccine, a new generation, single-dose intramuscular typhoid vaccine was assessed in Nepal in 1987. However, despite the availability of ViPS vaccine for more than 25 years, Nepal has one of the highest incidence of typhoid fever. Therefore we collected information from hospitals in the Kathmandu Valley from over the past five years. There were 9901 enteric fever cases between January 2008 and July 2012. 1,881 of these were confirmed typhoid cases from five hospitals in the Kathmandu district. Approximately 70% of the cases involved children under 15 years old. 1281 cases were confirmed as S. Paratyphi. Vaccines should be prioritized for control of typhoid in conjunction with improved water and sanitation conditions in Nepal and in endemic countries of Asia and Africa.  相似文献   

16.

Background

The two typhoid vaccines, the parenteral Vi capsular polysaccharide and the oral live whole-cell Salmonella Typhi Ty21a vaccine, provide similar levels of protection in field trials. Sharing no antigens, they are thought to confer protection by different mechanisms. This is the first head-to-head study to compare the humoral immune responses to these two vaccines.

Methods

50 age- and gender-matched volunteers were immunized, 25 with the Vi and 25 with the Ty21a vaccine. Circulating plasmablasts reactive with whole-cell Salmonella Typhi or one of the typhoidal antigenic structures, Vi, O-9,12, and H-d antigens, were identified as antibody-secreting cells (ASC) with ELISPOT. Homing receptor (HR) expressions were determined. These results were compared with ASC in four patients with typhoid fever. Antibodies to S. Typhi lipopolysaccharides were assessed in cultures of ALS (antibodies in lymphocyte supernatants) and in serum with ELISA.

Results

In 49 out of 50 vaccinees, no typhoid-specific plasmablasts were seen before vaccination. On day 7, response to Vi antigen was mounted in 24/25 volunteers in the Vi, and none in the Ty21a group; response to S. Typhi and O-9,12 was mounted in 49/50 vaccinees; and to H-d in 3/50. The numbers of typhoid-specific plasmablasts (total of ASC to Vi, O-9,12 and H-d antigens) proved equal in the vaccination groups. The HR expressions indicated a mainly systemic homing in the Vi and intestinal in the Ty21a group, the latter resembling that in natural infection. Plasmablasts proved more sensitive than serum and ALS in assessing the immune response.

Conclusions

The typhoid-specific humoral responses to Vi and Ty21a vaccines are similar in magnitude, but differ in expected localization and antigen-specificity. The unforeseen O antigen-specific response in the Vi group is probably due to lipopolysaccharide contaminating the vaccine preparation. Only the response to Ty21a vaccine was found to imitate that in natural infection.

Trial Registration

Current Controlled Trials Ltd. c/o BioMed Central ISRCTN68125331 http://www.controlled-trials.com/ISRCTN68125331/  相似文献   

17.
A rapid and sensitive gold-nanobioprobe based immunoassay format has been presented for the detection of capsular Vi polysaccharide of Salmonella enterica serovar Typhi (surface antigen) using anti-Vi antibodies. The Vi antigen was extracted from serovar Typhi cells, under the optimised growth conditions for its over-expression. Anti-Vi antibodies were produced and conjugated with gold nanoparticles (GNPs) of definite size (~30 nm), which served as the nano-bioprobe in the detection system. A sandwich immunoassay was developed using nitrocellulose dot blot comb (8/12 wells) membranes immobilized with anti-Salmonella antibodies at the optimal concentration (43 ng spot(-1)). The Vi antigen in the clinical isolates, spiked samples and also in the standard strain (serovar Typhi Ty2) was detected by measuring the colour intensity of GNPs and correlating it with the concentration of serovar Typhi in samples. Using this developed immunoassay technique Vi positive serovar Typhi strains could be detected with a sensitivity of up to 10(2) cells mL(-1) in the clinical isolates as well as in the spiked samples. The developed immunoassay technique could be useful for the detection of typhoid fever and may be important from an epidemiological point of view.  相似文献   

18.
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.  相似文献   

19.
Monoclonal antibody (MAb) 12F5 reacted with 35 Escherichia coli O26 isolates and cross-reacted with 1 of 365 non-E. coli O26 isolates. MAb 15C4 reacted with 30 E. coli O111 strains and 8 Salmonella O35 strains (possessing identical O antigen) but not with 362 other bacterial strains. Lipopolysaccharide immunoblots confirmed MAb O-antigen specificity.  相似文献   

20.
Immunisation with capsular Vi polysaccharide (Vi PS) of Salmonella enterica serovar Typhi (S. typhi) protects against typhoid. This protection depends on the presence of O-acetyl groups on the Vi PS, which form an immunodominant epitope. An antiserum raised against conjugated Vi PS was used as the basis for an indirect Enzyme Immunoassay (EIA). The antiserum did not react with lipopolysaccharide of five gram negative bacteria including S. typhi. Vi PS from three different sources was tested, and all but one of 18 native Vi PS preparations had EIA values comparable to a standard Vi PS preparation. The sensitivity of the EIA for the detection of O-acetyl groups on Vi PS was compared to an NMR spectroscopy assay (Biologicals 28 (2000) 17-24). The EIA distinguished between O-acetylated and de-O-acetylated Vi PS preparations. However, significantly lower EIA reactivity was observed only for samples which had O-acetylation levels of 25% or less. This assay should facilitate batch control of Vi vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号