首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim In recent decades there has been a marked decline in the numbers of African lions (Panthera leo), especially in West Africa where the species is regionally endangered. Based on the climatological history of western Africa, we hypothesize that West and Central African lions have a unique evolutionary history, which is reflected by their genetic makeup. Location Sub‐Saharan Africa and India, with special focus on West and Central Africa. Method In this study 126 samples, throughout the lion’s complete geographic range, were subjected to phylogenetic analyses. DNA sequences of a mitochondrial region, containing cytochrome b, tRNAPro, tRNAThr and the left part of the control region, were analysed. Results Bayesian, maximum likelihood and maximum parsimony analyses consistently showed a distinction between lions from West and Central Africa and lions from southern and East Africa. West and Central African lions are more closely related to Asiatic lions than to the southern and East African lions. This can be explained by a Pleistocene extinction and subsequent recolonization of West Africa from refugia in the Middle East. This is further supported by the fact that the West and Central African clade shows relatively little genetic diversity and is therefore thought to be an evolutionarily young clade. Main conclusions The taxonomic division between an African and an Asian subspecies does not fully reflect the overall genetic diversity within lions. In order to conserve genetic diversity within the species, genetically distinct lineages should be prioritized. Understanding the geographic pattern of genetic diversity is key to developing conservation strategies, both for in situ management and for breeding of captive stocks.  相似文献   

2.
Africa presents the most complex genetic picture of any continent, with a time depth for mitochondrial DNA (mtDNA) lineages >100,000 years. The most recent widespread demographic shift within the continent was most probably the Bantu dispersals, which archaeological and linguistic evidence suggest originated in West Africa 3,000-4,000 years ago, spreading both east and south. Here, we have carried out a thorough phylogeographic analysis of mtDNA variation in a total of 2,847 samples from throughout the continent, including 307 new sequences from southeast African Bantu speakers. The results suggest that the southeast Bantu speakers have a composite origin on the maternal line of descent, with approximately 44% of lineages deriving from West Africa, approximately 21% from either West or Central Africa, approximately 30% from East Africa, and approximately 5% from southern African Khoisan-speaking groups. The ages of the major founder types of both West and East African origin are consistent with the likely timing of Bantu dispersals, with those from the west somewhat predating those from the east. Despite this composite picture, the southeastern African Bantu groups are indistinguishable from each other with respect to their mtDNA, suggesting that they either had a common origin at the point of entry into southeastern Africa or have undergone very extensive gene flow since.  相似文献   

3.
The Egyptian Western Desert lies on an important geographic intersection between Africa and Asia. Genetic diversity of this region has been shaped, in part, by climatic changes in the Late Pleistocene and Holocene epochs marked by oscillating humid and arid periods. We present here a whole genome analysis of mitochondrial DNA (mtDNA) and high‐resolution molecular analysis of nonrecombining Y‐chromosomal (NRY) gene pools of a demographically small but autochthonous population from the Egyptian Western Desert oasis el‐Hayez. Notwithstanding signs of expected genetic drift, we still found clear genetic evidence of a strong Near Eastern input that can be dated into the Neolithic. This is revealed by high frequencies and high internal variability of several mtDNA lineages from haplogroup T. The whole genome sequencing strategy and molecular dating allowed us to detect the accumulation of local mtDNA diversity to 5,138 ± 3,633 YBP. Similarly, theY‐chromosome gene pool reveals high frequencies of the Near Eastern J1 and the North African E1b1b1b lineages, both generally known to have expanded within North Africa during the Neolithic. These results provide another piece of evidence of the relatively young population history of North Africa. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Rodents of the Praomys daltoni complex are typical inhabitants of the Sudanian savanna ecosystem in western Africa and represent a suitable model for testing the effects of Quaternary climatic oscillations on extant genetic variation patterns. Phylogeographical analyses of mitochondrial DNA sequences (cytochrome b) across the distribution range of the complex revealed several well‐defined clades that do not support the division of the clade into the two species currently recognized on the basis of morphology, i.e. P. daltoni (Thomas, 1892) and Praomys derooi ( Van der Straeten & Verheyen 1978 ). The observed genetic structure fits the refuge hypothesis, suggesting that only a small number of populations repeatedly survived in distinct forest‐savanna mosaic blocks during the arid phases of the Pleistocene, and then expanded again during moister periods. West African rivers may also have contributed to genetic differentiation, especially by forming barriers after secondary contact of expanding populations. The combination of three types of genetic markers (mtDNA sequences, microsatellite loci, cytogenetic data) provides evidence for the presence of up to three lineages, which most probably represent distinct biological species. Furthermore, incongruence between nuclear and mtDNA markers in some individuals unambiguously points towards a past introgression event. Our results highlight the importance of combining different molecular markers for an accurate interpretation of genetic data.  相似文献   

5.
A phylogeographic study was conducted on the Nile grass rat, Arvicanthis niloticus, a rodent species that is tightly associated with open grasslands from the Sudano-Sahelian regions. Using one mitochondrial (cytochrome b) and one nuclear (intron 7 of Beta Fibrinogen) gene, robust patterns were retrieved that clearly show that (i) the species originated in East Africa concomitantly with expanding grasslands some 2 Ma, and (ii) four parapatric and genetically well-defined lineages differentiated essentially from East to West following Pleistocene bioclimatic cycles. This strongly points towards allopatric genetic divergence within savannah refuges during humid episodes, then dispersal during arid ones; secondary contact zones would have then stabilized around geographic barriers, namely, Niger River and Lake Chad basins. Our results pertinently add to those obtained for several other African rodent as well as non-rodent species that inhabit forests, humid zones, savannahs and deserts, all studies that now allow one to depict a more comprehensive picture of the Pleistocene history of the continent south of the Sahara. In particular, although their precise location remains to be determined, at least three Pleistocene refuges are identified within the West and Central African savannah biome.  相似文献   

6.
Three highly heterogeneous haemoglobin phenotypes, each composed of 22 different haemoglobin components, were identified among 17 West African populations of Sarotherodon melanotheron . Natural populations from (1) Senegal, (2) Ivory Coast/Ghana/Togo/Benin, and (3) Congo were distinguished. The heterogeneity and specificity of these respiratory pigments was based on genetic variations at the globin chain coding loci. In total, five different α-chains and four different β-chains were detected by acidic urea polyacrylamide gel electrophoresis (PAGE). Combinations of α-chains were characteristic for populations in (1) Senegal, (2) Ivory Coast, (3) Ghana/Togo/Benin, and (4) Congo. Pronounced variations at the β-globin chain cluster were found by acidic urea triton PAGE. Cladistic analyses of the globin chain characteristics confirmed the validity of the following taxonomic units previously ranked as sub-species: (1) populations from Ivory Coast, Ghana, Togo and Benin belong to the sub-species S. m. melanotheron ; (2) populations from Senegal form genetically a separate cluster representing the sub-species S. m. heudelotii ; (3) the Congo population, morphologically considered to represent the sub-species S. m. nigripinnis , forms another distinct unit; but there was no evidence of S. m. paludinosus within the samples from Senegal.  相似文献   

7.
Africa is the homeland of humankind and it is known to harbour the highest levels of human genetic diversity. However, many continental regions, especially in the sub-Saharan side, still remain largely uncharacterized (i.e. southwest and central Africa). Here, we examine the mitochondrial DNA (mtDNA) variation in a sample from Angola. The two mtDNA hypervariable segments as well as the 9-bp tandem repeat on the COII/tRNAlys intergenic region have allowed us to allocate mtDNAs to common African haplogroups. Angola lies in the southern end of the putative western branch of the Bantu expansion, where it met the local Khoisan populations. Angolan mtDNA lineages show basically a Bantu substrate with no traces of Khoisan lineages. Roughly, more than half of the southwestern mtDNA pool can be assigned to west Africa, ~25% to central Africa and a significant 16% to east Africa, which points to the western gene pool having contributed most to the mtDNA lineages in Angola. We have also detected signals of extensive gene flow from southeast Africa. Our results suggest that eastern and western Bantu expansion routes were not independent from each other, and were connected south of the rainforest and along the southern African savannah. In agreement with historical documentation, the analysis also showed that the Angola mtDNA genetic pool shows affinities with the African lineages from Brazil, the main American destination of the slaves from Angola, although not all lineages in Brazil can be accounted for by the Angolan mtDNA pool.  相似文献   

8.
Knowledge on faunal diversification in African rainforests remains scarce. We used phylogeography to assess (i) the role of Pleistocene climatic oscillations in the diversification of the African common pangolin (Manis tricuspis) and (ii) the utility of our multilocus approach for taxonomic delineation and trade tracing of this heavily poached species. We sequenced 101 individuals for two mitochondrial DNA (mtDNA), two nuclear DNA and one Y‐borne gene fragments (totalizing 2602 bp). We used a time‐calibrated, Bayesian inference phylogenetic framework and conducted character‐based, genetic and phylogenetic delineation of species hypotheses within African common pangolins. We identified six geographic lineages partitioned into western Africa, Ghana, the Dahomey Gap, western central Africa, Gabon and central Africa, all diverging during the Middle to Late Pleistocene. MtDNA (cytochrome b + control region) was the sole locus to provide diagnostic characters for each of the six lineages. Tree‐based Bayesian delimitation methods using single‐ and multilocus approaches gave high support for ‘species’ level recognition of the six African common pangolin lineages. Although the diversification of African common pangolins occurred during Pleistocene cyclical glaciations, causative correlation with traditional rainforest refugia and riverine barriers in Africa was not straightforward. We conclude on the existence of six cryptic lineages within African common pangolins, which might be of major relevance for future conservation strategies. The high discriminative power of the mtDNA markers used in this study should allow an efficient molecular tracing of the regional origin of African common pangolin seizures.  相似文献   

9.
The savannah biome of sub-Saharan Africa harbours the highest diversity of ungulates (hoofed mammals) on Earth. In this review, we compile population genetic data from 19 codistributed ungulate taxa of the savannah biome and find striking concordance in the phylogeographic structuring of species. Data from across taxa reveal distinct regional lineages, which reflect the survival and divergence of populations in isolated savannah refugia during the climatic oscillations of the Pleistocene. Data from taxa across trophic levels suggest distinct savannah refugia were present in West, East, Southern and South-West Africa. Furthermore, differing Pleistocene evolutionary biogeographic scenarios are proposed for East and Southern Africa, supported by palaeoclimatic data and the fossil record. Environmental instability in East Africa facilitated several spatial and temporal refugia and is reflected in the high inter- and intraspecific diversity of the region. In contrast, phylogeographic data suggest a stable, long-standing savannah refuge in the south.  相似文献   

10.
The past processes that have shaped geographic patterns of genetic diversity may be difficult to infer from current patterns. However, in species with sex differences in dispersal, differing phylogeographic patterns between mitochondrial (mt) and nuclear (nu) DNA may provide contrasting insights into past events. Forest elephants (Loxodonta cyclotis) were impacted by climate and habitat change during the Pleistocene, which likely shaped phylogeographic patterns in mitochondrial (mt) DNA that have persisted due to limited female dispersal. By contrast, the nuclear (nu) DNA phylogeography of forest elephants in Central Africa has not been determined. We therefore examined the population structure of Central African forest elephants by genotyping 94 individuals from six localities at 21 microsatellite loci. Between forest elephants in western and eastern Congolian forests, there was only modest genetic differentiation, a pattern highly discordant with that of mtDNA. Nuclear genetic patterns are consistent with isolation by distance. Alternatively, male‐mediated gene flow may have reduced the previous regional differentiation in Central Africa suggested by mtDNA patterns, which likely reflect forest fragmentation during the Pleistocene. In species like elephants, male‐mediated gene flow erases the nuclear genetic signatures of past climate and habitat changes, but these continue to persist as patterns in mtDNA because females do not disperse. Conservation implications of these results are discussed.  相似文献   

11.
The recent discovery of a lineage of gray wolf in North-East Africa suggests the presence of a cryptic canid on the continent, the African wolf Canis lupus lupaster. We analyzed the mtDNA diversity (cytochrome b and control region) of a series of African Canis including wolf-like animals from North and West Africa. Our objectives were to assess the actual range of C. l. lupaster, to further estimate the genetic characteristics and demographic history of its lineage, and to question its taxonomic delineation from the golden jackal C. aureus, with which it has been considered synonymous. We confirmed the existence of four distinct lineages within the gray wolf, including C. lupus/familiaris (Holarctic wolves and dogs), C. l. pallipes, C. l. chanco and C. l. lupaster. Taxonomic assignment procedures identified wolf-like individuals from Algeria, Mali and Senegal, as belonging to C. l. lupaster, expanding its known distribution c. 6,000 km to the west. We estimated that the African wolf lineage (i) had the highest level of genetic diversity within C. lupus, (ii) coalesced during the Late Pleistocene, contemporaneously with Holarctic wolves and dogs, and (iii) had an effective population size of c. 80,000 females. Our results suggest that the African wolf is a relatively ancient gray wolf lineage with a fairly large, past effective population size, as also suggested by the Pleistocene fossil record. Unique field observations in Senegal allowed us to provide a morphological and behavioral diagnosis of the African wolf that clearly distinguished it from the sympatric golden jackal. However, the detection of C. l. lupaster mtDNA haplotypes in C. aureus from Senegal brings the delineation between the African wolf and the golden jackal into question. In terms of conservation, it appears urgent to further characterize the status of the African wolf with regard to the African golden jackal.  相似文献   

12.
Among elephants, the phylogeographic patterns of mitochondrial (mt) and nuclear markers are often incongruent. One hypothesis attributes this to sex differences in dispersal and in the variance of reproductive success. We tested this hypothesis by examining the coalescent dates of genetic markers within elephantid lineages, predicting that lower dispersal and lower variance in reproductive success among females would have increased mtDNA relative to nuclear coalescent dates. We sequenced the mitochondrial genomes of two forest elephants, aligning them to mitogenomes of African savanna and Asian elephants, and of woolly mammoths, including the most divergent mitogenomes within each lineage. Using fossil calibrations, the divergence between African elephant F and S clade mitochondrial genomes (originating in forest and savanna elephant lineages, respectively) was estimated as 5.5 Ma. We estimated that the (African) ancestor of the mammoth and Asian elephant lineages diverged 6.0 Ma, indicating that four elephantid lineages had differentiated in Africa by the Miocene–Pliocene transition, concurrent with drier climates. The coalescent date for forest elephant mtDNAs was c. 2.4 Ma, suggesting that the decrease in tropical forest cover during the Pleistocene isolated distinct African forest elephant lineages. For all elephantid lineages, the ratio of mtDNA to nuclear coalescent dates was much greater than 0.25. This is consistent with the expectation that sex differences in dispersal and in variance of reproductive success would have increased the effective population size of mtDNA relative to nuclear markers in elephantids, contributing to the persistence of incongruent mtDNA phylogeographic patterns.  相似文献   

13.
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large‐bodied taxa. We exploited the broad southern African distribution of a savanna–woodland‐adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270–0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional ‘megadroughts’. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065–0.035 mya, a time that coincides with savanna–woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.  相似文献   

14.
Despite its key location for population movements out of and back into Africa, Yemen has not yet been sampled on a regional level for an investigation of sub-Saharan, West Eurasian, and South Asian genetic contributions. In this study, we present mitochondrial DNA (mtDNA) data for regionally distinct Yemeni populations that reveal different distributions of mtDNA lineages. An extensive database of mtDNA sequences from North and East African, Middle Eastern and Indian populations was analyzed to provide a context for the regional Yemeni mtDNA datasets. The groups of western Yemen appear to be most closely related to Middle Eastern and North African populations, while the eastern Yemeni population from Hadramawt is most closely related to East Africa. Furthermore, haplotype matches with Africa are almost exclusively confined to West Eurasian R0a haplogroup in southwestern Yemen, although more sub-Saharan L-type matches appear in more northern Yemeni populations. In fact, Yemeni populations have the highest frequency of R0a haplotypes detected to date, thus Yemen or southern Arabia may be the site of the initial expansion of this haplogroup. Whereas two variants of the sub-Saharan haplogroup M1 were detected only in southwestern Yemen close to the Bab el-Mandeb Strait, different non-African M haplotypes were detected at low frequencies (approximately 2%) in western parts of the country and at a higher frequency (7.5%) in the Hadramawt. We conclude that the Yemeni gene pool is highly stratified both regionally and temporally and that it has received West Eurasian, Northeast African, and South Asian gene flow.  相似文献   

15.
Studies of human mitochondrial (mt) DNA genomes demonstrate that the root of the human phylogenetic tree occurs in Africa. Although 2 mtDNA lineages with an African origin (haplogroups M and N) were the progenitors of all non-African haplogroups, macrohaplogroup L (including haplogroups L0-L6) is limited to sub-Saharan Africa. Several L haplogroup lineages occur most frequently in eastern Africa (e.g., L0a, L0f, L5, and L3g), but some are specific to certain ethnic groups, such as haplogroup lineages L0d and L0k that previously have been found nearly exclusively among southern African "click" speakers. Few studies have included multiple mtDNA genome samples belonging to haplogroups that occur in eastern and southern Africa but are rare or absent elsewhere. This lack of sampling in eastern Africa makes it difficult to infer relationships among mtDNA haplogroups or to examine events that occurred early in human history. We sequenced 62 complete mtDNA genomes of ethnically diverse Tanzanians, southern African Khoisan speakers, and Bakola Pygmies and compared them with a global pool of 226 mtDNA genomes. From these, we infer phylogenetic relationships amongst mtDNA haplogroups and estimate the time to most recent common ancestor (TMRCA) for haplogroup lineages. These data suggest that Tanzanians have high genetic diversity and possess ancient mtDNA haplogroups, some of which are either rare (L0d and L5) or absent (L0f) in other regions of Africa. We propose that a large and diverse human population has persisted in eastern Africa and that eastern Africa may have been an ancient source of dispersion of modern humans both within and outside of Africa.  相似文献   

16.
A Myxobolus heterospora (Baker, 1963) infection was found in 2 euryhaline tilapia species, Sarotherodon melanotheron melanotheron (Rüppel, 1853) and Tilapia zillii (Gervais, 1852), from a brackish water lake, Lake Nokoué (Benin, West Africa). The histology and ultrastructure of different levels of infection in intestinal connective tissues and wall tissues is described. A total of 391 S. melanotheron melanotheron and 222 T. zillii were examined from October 1987 to October 1989. M. heterospora was found throughout the study period, with a total prevalence of 42.19 and 26.57% for S. melanotheron melanotheron and T. zillii respectively. There was a statistically significant difference in occurrence as a function of season in S. melanotheron melanotheron but not in T. zilli, and there was a significant difference for size and sex in the former and for sex in the latter. M. heterospora induces total destruction of the intestine structure and probably leads to osmoregulatory disturbance. Further investigations of this myxosporean infection are necessary to determine its real effect on the host, since host survival and osmoregulatory rate have not yet been assessed.  相似文献   

17.
Aim Natural processes of colonization and human‐mediated introductions have shaped current patterns of biodiversity in the Mediterranean Basin. We use a comparative phylogeographic approach to investigate the genetic structure of Herpestes ichneumon and Genetta genetta (Carnivora) across the Strait of Gibraltar, and test for their supposedly contemporaneous introduction into Iberia. Location Mediterranean Basin and Africa. Methods We sequenced two mitochondrial fragments (cytochrome b and control region) of 91 (H. ichneumon) and 185 (G. genetta) individuals, including the sole archaeological record of G. genetta in Iberia, dating from the Muslim occupation. We used phylogenetic and tokogenetic methods, summary statistics, neutrality tests, geographic–genetic pairwise comparisons and coalescent estimates to explore the history of the two species in the Mediterranean Basin. Results In North Africa, an autochthonous (Clade I) and a western African mtDNA clade, coalescing in the Middle to Late Pleistocene, co‐occurred in both species. Only Clade I was present in Europe. In H. ichneumon, the European pool showed deep coalescence (median = 335 kyr) and high genetic differentiation and diversity compared with its North African counterpart, suggesting long‐term stability of female effective population size. In sharp contrast, G. genetta in Europe exhibited lower genetic diversity, weak differentiation with North Africa and recent demographic expansion; however, Andalusia and Catalonia (Spain) showed distinctly higher genetic diversity, and the archaeological specimen had the predominant European haplotype. Main conclusions The co‐occurrence of autochthonous and sub‐Saharan lineages in North Africa (1) supports a new, emerging biogeographic scenario in North Africa, and (2) suggests a connection through the Sahara, possibly from the Middle Pleistocene onwards. Our results refute the idea that H. ichneumon was introduced into Europe contemporaneously with G. genetta. Instead, they support a scenario of sweepstake dispersal during Late Pleistocene sea‐level fluctuations, followed by long‐term in situ evolution throughout the last glaciation cycles. Genetta genetta appears to have undergone a recent spread from at least two independent introduction ‘hotspots’ in Catalonia and Andalusia, possibly following antique trade routes and/or Muslim invasions. Despite their contrasting histories, the European gene pools of both species represent unusual cases leading to the preservation of autochthonous, North African lineages.  相似文献   

18.
In contrast to mammals, little is known about the phylogeographic structuring of widely distributed African reptile species. With the present study, we contribute data for the leopard tortoise (Stigmochelys pardalis). It ranges from the Horn of Africa southward to South Africa and westwards to southern Angola. However, its natural occurrence is disputed for some southern regions. To clarify the situation, we used mtDNA sequences and 14 microsatellite loci from 204 individuals mainly from southern Africa. Our results retrieved five mitochondrial clades; one in the south and two in the north‐west and north‐east of southern Africa, respectively, plus two distributed further north. Using microsatellites, the southern clade matched with a well‐defined southern nuclear cluster, whilst the two northern clades from southern Africa corresponded to another nuclear cluster with three subclusters. One subcluster had a western and central distribution, another occurred mostly in the north‐east, and the third in a small eastern region (Maputaland), which forms part of a biodiversity hotspot. Genetic diversity was low in the south and high in the north of our study region, particularly in the north‐east. Our results refuted that translocations influenced the genetic structure of leopard tortoises substantially. We propose that Pleistocene climatic fluctuations caused leopard tortoises to retract to distinct refugia in southern and northern regions and ascribe the high genetic diversity in the north of southern Africa to genetic structuring caused by the survival in three refuges and subsequent admixture, whereas tortoises in the south seem to have survived in only one continuous coastal refuge.  相似文献   

19.
The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.  相似文献   

20.
Recent genetic results support the recognition of two African elephant species: Loxodonta africana, the savannah elephant, and Loxodonta cyclotis, the forest elephant. The study, however, did not include the populations of West Africa, where the taxonomic affinities of elephants have been much debated. We examined mitochondrial cytochrome b control region sequences and four microsatellite loci to investigate the genetic differences between the forest and savannah elephants of West and Central Africa. We then combined our data with published control region sequences from across Africa to examine patterns at the continental level. Our analysis reveals several deeply divergent lineages that do not correspond with the currently recognized taxonomy: (i) the forest elephants of Central Africa; the forest and savannah elephants of West Africa; and (iii) the savannah elephants of eastern, southern and Central Africa. We propose that the complex phylogeographic patterns we detect in African elephants result from repeated continental-scale climatic changes over their five-to-six million year evolutionary history. Until there is consensus on the taxonomy, we suggest that the genetic and ecological distinctness of these lineages should be an important factor in conservation management planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号