首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The repair of DNA double-stranded breaks (DSBs) is essential for cell viability and genome stability. Aberrant repair of DSBs has been linked with cancer predisposition and aging. During the repair of DSBs by non-homologous end joining (NHEJ), DNA ends are brought together, processed and then joined. In eukaryotes, this repair pathway is initiated by the binding of the ring-shaped Ku heterodimer and completed by DNA ligase IV. The DNA ligase IV complex, DNA ligase IV/XRRC4 in humans and Dnl4/Lif1 in yeast, is recruited to DNA ends in vitro and in vivo by an interaction with Ku and, in yeast, Dnl4/Lif1 stabilizes the binding of yKu to in vivo DSBs. Here we have analyzed the interactions of these functionally conserved eukaryotic NHEJ factors with DNA by electron microscopy. As expected, the ring-shaped Ku complex bound stably and specifically to DNA ends at physiological salt concentrations. At a ratio of 1 Ku molecule per DNA end, the majority of DNA ends were occupied by a single Ku complex with no significant formation of linear DNA multimers or circular loops. Both Dnl4/Lif1 and DNA ligase IV/XRCC4 formed complexes with Ku-bound DNA ends, resulting in intra- and intermolecular DNA end bridging, even with non-ligatable DNA ends. Together, these studies, which provide the first visualization of the conserved complex formed by Ku and DNA ligase IV at juxtaposed DNA ends by electron microscopy, suggest that the DNA ligase IV complex mediates end-bridging by engaging two Ku-bound DNA ends.  相似文献   

2.
Type I restriction enzymes cleave DNA at non-specific sites far from their recognition sequence as a consequence of ATP-dependent DNA translocation past the enzyme. During this reaction, the enzyme remains bound to the recognition sequence and translocates DNA towards itself simultaneously from both directions, generating DNA loops, which appear to be supercoiled when visualised by electron microscopy. To further investigate the mechanism of DNA translocation by type I restriction enzymes, we have probed the reaction intermediates with DNA topoisomerases. A DNA cleavage-deficient mutant of EcoAI, which has normal DNA translocation and ATPase activities, was used in these DNA supercoiling assays. In the presence of eubacterial DNA topoisomerase I, which specifically removes negative supercoils, the EcoAI mutant introduced positive supercoils into relaxed plasmid DNA substrate in a reaction dependent on ATP hydrolysis. The same DNA supercoiling activity followed by DNA cleavage was observed with the wild-type EcoAI endonuclease. Positive supercoils were not seen when eubacterial DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I, which removes both positive and negative supercoils. Furthermore, addition of eukaryotic DNA topoisomerase I to the product of the supercoiling reaction resulted in its rapid relaxation. These results are consistent with a model in which EcoAI translocation along the helical path of closed circular DNA duplex simultaneously generates positive supercoils ahead and negative supercoils behind the moving complex in the contracting and expanding DNA loops, respectively. In addition, we show that the highly positively supercoiled DNA generated by the EcoAI mutant is cleaved by EcoAI wild-type endonuclease much more slowly than relaxed DNA. This suggests that the topological changes in the DNA substrate associated with DNA translocation by type I restriction enzymes do not appear to be the trigger for DNA cleavage.  相似文献   

3.
A Saitoh  S Tada  T Katada    T Enomoto 《Nucleic acids research》1995,23(11):2014-2018
Many prokaryotic and viral DNA helicases involved in DNA replication stimulate their cognate DNA primase activity. To assess the stimulation of DNA primase activity by mammalian DNA helicases, we analyzed the synthesis of oligoribonucleotides by mouse DNA polymerase alpha-primase complex on single-stranded circular M13 DNA in the presence of mouse DNA helicase B. DNA helicase B was purified by sequential chromatography through eight columns. When the purified DNA helicase B was applied to a Mono Q column, the stimulatory activity for DNA primase-catalyzed oligoribonucleotide synthesis and DNA helicase and DNA-dependent ATPase activities of DNA helicase B were co-eluted from the column. The synthesis of oligoribonucleotides 5-10 nt in length was markedly stimulated by DNA helicase B. The synthesis of longer species of oligoribonucleotides, which were synthesized at a low level in the absence of DNA helicase B, was inhibited by DNA helicase B. The stimulatory effect of DNA helicase B was marked at low template concentrations and little or no effect was observed at high concentrations. The mouse single-stranded DNA binding protein, replication protein A (RP-A), inhibited the primase activity of the DNA polymerase alpha-primase complex and DNA helicase B partially reversed the inhibition caused by RP-A.  相似文献   

4.
DNA molecules are constantly damaged during mitosis and by oxygen-free radicals produced by either cellular metabolism or by external factors. Populations at risk include patients with cancer-prone disease, patients under enhanced oxidative stress, and those treated with immunosuppressive/cytotoxic therapy. The DNA repair process is crucial in maintaining the genomal DNA integrity. The aim of this study was to evaluate spontaneous DNA repair capacity of peripheral blood mononuclear cells (PBMC) from normal blood donors. PBMC DNA repair ability represents DNA repair by other tissues as well. It is shown in the present study that in vitro incorporation of [3H]thymidine in non-stimulated PBMC expresses the ability of the cells to repair DNA damage. This method was validated by double-stranded DNA measurements. Both catalase and Fe2+ increased DNA repair, the former by preventing re-breakage of newly repaired DNA and the latter by introducing additional DNA damage, which enhanced DNA repair. Better understanding of DNA repair processes will enable to minimize DNA damage induced by oxidative stress.  相似文献   

5.
The covalent linkage of oncornavirus-specific DNA to chicken DNA was investigated in normal chicken embryo fibroblasts (CEF) and in virus-producing leukemic cells transformed by avian myeloblastosis virus (AMV). The virus-specific sequences present in cellular DNA fractionated by different methods were detected by DNA-RNA hybridization by using 70S AMV RNA as a probe. In CEF and in leukemic cells, the viral DNA appeared to be present only in the nucleus. After cesium chloride-ethidium bromide density equilibrium sedimentation, the viral DNA was present as linear, double-stranded molecules not separable from linear chicken DNA. After extraction by the Hirt procedure, the viral DNA precipitated with the high-molecular-weight DNA. After alkaline sucrose velocity sedimentation, the viral DNA cosedimented with the high-molecular-weight cellular DNA. The results indicate that in both types of cells studied, the oncornavirus-specific DNA sequences were linked by alkali stable bonds to nuclear cellular DNA of high molecular weight and did not appear to be present in free form of any size.  相似文献   

6.
Chen JH  Ozanne SE  Hales CN 《DNA Repair》2005,4(10):1140-1148
The development of cellular senescence both by replication and by oxidative stress is not homogenous in cultured primary human fibroblasts. To investigate whether this is due to the heterogeneity in the susceptibility of DNA in different phases of the cell cycle, we subjected synchronised cells to oxidative stress and examined the extent of DNA damage and its long-term effects on the induction of cellular senescence. Here, we first show marked heterogeneity in DNA damage as detected by markers of double strand breaks caused by oxidative stress in an asynchronous human fibroblast culture. Cell cycle synchronization followed by oxidative stress demonstrated that DNA in S-phase is most susceptible to oxidative stress whereas DNA in the quiescent phase is most resistant. DNA repair is an ongoing process after sensing DNA damage; reparable DNA damage is repaired even in cells that contain persistent DNA damage. The extent of persistent DNA damage is tightly correlated with permanent cessation of DNA replication and SA-beta-gal activity. Oxidative stress encountered by cells in S-phase resulted in more persistent DNA damage, more permanent cell cycle arrest and the induction of premature senescence.  相似文献   

7.
The involvement of DNA polymerases alpha, beta, and delta in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase alpha) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors on MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [3H]thymidine incorporated into repaired DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 micrograms of aphidicolin/mL, 6% by 10 microM BuPdGTP, 13% by anti-(DNA polymerase alpha) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 micrograms of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase alpha) antibodies into HF nuclei. These results indicate that both DNA polymerases delta and beta are involved in repairing DNA damage caused by MNNG.  相似文献   

8.
Negative supercoiling of substrate DNA dramatically alters the in vitro sequence specificity of mammalian DNA methyltransferase (DNA MeTase). This result suggests that in vivo site selection by DNA MeTase could be regulated by conformational information in the form of alternative secondary structures induced in DNA by local supercoiling or by the binding of specific nuclear proteins. DNA in the left-handed Z-form is shown not to be a substrate for mammalian DNA MeTase. The sensitivity of DNA MeTase to DNA structure may also make it useful as a probe for sequences which undergo supercoiling-dependent structural transitions in vitro.  相似文献   

9.
Rolf Menzel  Martin Gellert 《Cell》1983,34(1):105-113
DNA gyrase is the bacterial enzyme responsible for converting circular DNA to a negatively supercoiled form. We show that the synthesis of DNA gyrase is itself controlled by DNA supercoiling; synthesis is highest when the DNA template is relaxed. The rates of synthesis in vivo of both the A and B subunits of DNA gyase are increased up to 10-fold by treatments that block DNA gyrase activity and decrease the supercoiling of intracellular DNA. Similarly, efficient synthesis of both gyrase subunits in a cell-free S-30 extract depends on keeping the closed circular DNA template in a relaxed conformation. The results suggest that DNA supercoiling in E. coli is controlled by a homeostatic mechanism. Synthesis of the RecA protein and several other proteins is also increased by treatments that relax intracellular DNA.  相似文献   

10.
Eukaryotic DNA replication. Enzymes and proteins acting at the fork   总被引:7,自引:0,他引:7  
A complex network of interacting proteins and enzymes is required for DNA replication. Much of our present understanding is derived from studies of the bacterium Escherichia coli and its bacteriophages T4 and T7. These results served as a guideline for the search and the purification of analogous proteins in eukaryotes. model systems for replication, such as the simian virus 40 DNA, lead the way. Generally, DNA replication follows a multistep enzymatic pathway. Separation of the double-helical DNA is performed by DNA helicases. Synthesis of the two daughter strands is conducted by two different DNA polymerases: the leading strand is replicated continuously by DNA polymerase delta and the lagging strand discontinuously in small pieces by DNA polymerase alpha. The latter is complexed to DNA primase, an enzyme in charge of frequent RNA primer syntheses on the lagging strand. Both DNA polymerases require several auxiliary proteins. They appear to make the DNA polymerases processive and to coordinate their functional tasks at the replication fork. 3'----5'-exonuclease, mostly part of the DNA polymerase delta polypeptide, can perform proof-reading by excising incorrectly base-paired nucleotides. The short DNA pieces of the lagging strand, called Okazaki fragments, are processed to a long DNA chain by the combined action of RNase H and 5'----3'-exonuclease, removing the RNA primers, DNA polymerase alpha or beta, filling the gap, and DNA ligase, sealing DNA pieces by phosphodiester bond formation. Torsional stress during DNA replication is released by DNA topoisomerases. In contrast to prokaryotes, DNA replication in eukaryotes not only has to create two identical daughter strands but also must conserve higher-order structures like chromatin.  相似文献   

11.
Replication protein A (RP-A) is a heterotrimeric single-stranded DNA binding protein with important functions in DNA replication, DNA repair and DNA recombination. We have found that RP-A from calf thymus can unwind DNA in the absence of ATP and MgCl2, two essential cofactors for bona fide DNA helicases (Georgaki, A., Strack, B., Podust, V. and Hübscher, U. FEBS Lett. 308, 240-244, 1992). DNA unwinding by RP-A was found to be sensitive to MgCl2, ATP, heating and freezing/thawing. Escherichia coli single stranded DNA binding protein at concentrations that coat the single stranded regions had no influence on DNA unwinding by RP-A suggesting that RP-A binds fast and tightly to single-stranded DNA. DNA unwinding by RP-A did not show directionality. Experiments with monoclonal antibodies strongly suggested that the 70kDa subunit is responsible for DNA unwinding. Phosphorylation of the 32kDa subunit of RP-A by chicken cdc2 kinase facilitated DNA unwinding indicating that this posttranslational modification might be important for modulating this activity of RP-A. Finally, DNA unwinding of a primer recognition complex for DNA polymerase delta which is composed of proliferating cell nuclear antigen, replication factor C and ATP bound to a singly-primed M13DNA slightly inhibited DNA unwinding. An important role for DNA unwinding by RP-A in processes such as initiation of DNA replication, fork propagation, DNA repair and DNA recombination is discussed.  相似文献   

12.
DNA polymerases are required for DNA replication and DNA repair in all of the living organisms. Different DNA polymerases are responsible different stages of DNA metabolism, and many of them are multifunctional enzymes. It was generally assumed that the different reactions are catalyzed by the same enzyme molecule. In addition to 1:1 DNA polymerase.DNA complex reported by crystallization studies, 2:1 and higher order DNA polymerase.DNA complexes have been identified in solution studies by various biochemical and biophysical approaches. Further, abundant evidences for the DNA polymerase-DNA interactions in several DNA polymerases suggested that the 2:1 complex represents the more active form. This review describes the current status of this emerging subject and explores their potential in vitro and in vivo functional significance, particularly for the 2:1 complexes of mammalian DNA polymerase beta (Pol beta), the Klenow fragment of E. coli DNA polymerase I (KF), and T4 DNA polymerase.  相似文献   

13.
J G Williams  A A Szalay 《Gene》1983,24(1):37-51
The blue-green alga, Synechococcus R2, is transformed to antibiotic resistance by chimeric DNA molecules consisting of Synechococcus R2 chromosomal DNA linked to antibiotic-resistance genes from Escherichia coli. Chimeric DNA integrates into the Synechococcus R2 chromosome by homologous recombination. The efficiency of transformation, as well as the stability of integrated foreign DNA, depends on the position of the foreign genes relative to Synechococcus R2 DNA in the chimeric molecule. When the Synechococcus R2 DNA fragment is interrupted by foreign DNA, integration occurs through replacement of chromosomal DNA by homologous chimeric DNA containing the foreign insert; transformation is efficient and the foreign gene is stable. Mutagenesis in some cases attends integration, depending on the site of insertion. Foreign DNA linked to the ends of Synechococcus R2 DNA in a circular molecule, however, integrates less efficiently. Integration results in duplicate copies of Synechococcus R2 DNA flanking the foreign gene and the foreign DNA is unstable. Transformation in Synechococcus R2 can be exploited to modify precisely and extensively the genome of this photosynthetic microorganism.  相似文献   

14.
Single-stranded phage DNAs containing thymine glycols were prepared by oxidation with osmium tetroxide (OsO4) and were used as templates for DNA synthesis by E. coli DNA polymerase I. The induction of thymine glycol lesions in DNA, as measured by immunoassay, quantitatively accounted for an inhibition of in vitro DNA synthesis on modified templates. Analysis of termination sites for synthesis by DNA polymerase I (Klenow fragment) showed that DNA synthesis terminated at most template thymine sites in OsO4-treated DNA, indicating that incorporation occurred opposite putative thymine glycols in DNA. Nucleotides 5' and 3' to putative thymine glycol sites affect the reaction, however, since termination was not observed at thymines in the sequence 5'-CTPur-3'. Conversion of thymine glycols to urea residues in DNA by alkali treatment caused termination of DNA synthesis one nucleotide 3' to template thymine sites, including thymines in the 5'-CTPur-3' sequence, showing that the effect of surrounding sequence is on the elongation reaction by DNA polymerase rather than differential damage induction by OsO4.  相似文献   

15.
Phage phi W-14 DNA (in which one-half of the thymine residues are replaced by alpha-putrescinyl thymine) was taken up by competent Bacillus subtilis cells at a rate threefold higher than the rate of homologous DNA uptake. In contrast to other types of heterologous DNA, the amount of phi W-14 DNA taken up in 15 min exceeded the amount of homologous DNA taken up by a factor of two to three, as measured in terms of acid-precipitable material. The amount of phi W-14 DNA taken up was even greater than this analysis indicated if allowance was made for the fact that phi W-14 DNA was degraded more rapidly after uptake than homologous DNA. Competition experiments showed that the affinity of phi W-14 DNA for homologous DNA receptors was lower than the affinity of homologous DNA and was similar to the affinities of other types of heterologous DNA. The more rapid and more extensive uptake of phi W-14 DNA appeared to occur via receptors other than the receptors for homologous DNA, and these receptors (like those for homologous DNA) were an intrinsic property of competent cells. Uptake of phi W-14 DNA was affected by temperature, azide, EDTA, and chloramphenicol, as was uptake of homologous DNA. This was consistent with entry of both DNAs by means of active transport. After uptake, undegraded phi W-14 [3H]DNA was found in the cells in a single-stranded form, whereas a portion of the label was associated with recipient DNA, presumably as a result of incorporation of monomers resulting from degradation. Acetylation of the amino groups of the putrescine side chains in phi W-14 DNA decreased the affinity of this DNA for its receptors without affecting its ability to compete with homologous DNA.  相似文献   

16.
The DNA chain elongation mechanisms of mouse DNA polymerases alpha and beta have been analyzed by using denatured DNA with a (dT)n block at the 3'-end as a template in combination with RNA ((rA)12-20)primer. The (rA)12-20-primed DNA product synthesized by DNA polymerase alpha was 3-5 s in size even after prolonged reaction; instead of a size increase, the number of 3-5 s molecules increased with the reaction time. The size of products was not affected by differences in 3H-labeled substrate (dATP or dTTP), enzyme amount, KCl concentration, or the length of 3'-(dT)n blocks. On the other hand, DNA polymerase beta synthesized long DNA products by a highly distributive reaction mechanism. 3-5 sDNA pieces synthesized by DNA polymerase alpha were not elongated any further by DNA polymerase alpha, but were converted into long DNA chains by DNA polymerase beta. The results imply that DNA polymerase alpha recognizes the size of the product DNA, and shuts off further elongation.  相似文献   

17.
Integration of Rous sarcoma virus DNA during transfection   总被引:3,自引:0,他引:3  
We have investigated the organization and integration sites of Rous sarcoma virus (RSV) DNA in NIH 3T3 mouse cells transformed by transfection with unintegrated and integrated donor RSV DNAs. RSV DNAs of different cell lines transformed by unintegrated donor DNA were flanked by different cellular DNA sequences, indicating that RSV DNA integrates at multiple sites during transfection. The RSV genomes of cells transformed by transfection were colinear with unintegrated RSV DNA, except that deletions within the terminal repeat units of RSV DNA were detected in some cell lines. These results suggested that the terminal repeat sequences of RSV DNA did not necessarily provide a specific integration site for viral DNA during transfection. In addition, cell lines transformed by integrated RSV DNAs contained both the RSV genomes and flanking cellular sequences of the parental cell lines, indicating that integration of integrated viral DNA during transfection occurred by recombinational events within flanking cellular DNA sequences rather than at the terminal of viral DNA. Integration of RSV DNA during transfection thus appears to differ from integration of RSV DNA in virus-infected cells, where the terminal repeat units of viral DNA provide a highly specific integration site. Integration of donor DNA during transfection of NIH 3T3 cells instead appears to proceed by a pathway which is nonspecific for both donor and recipient DNA sequences.  相似文献   

18.
Exposure of MiaPaCa cells to 1-beta-D-arabinosylcytosine (ara-C) resulted in an increase in DNA ligase levels up to threefold compared to that in the untreated control cells, despite significant growth inhibition. Increased levels of DNA ligase I protein appear to correlate with the appearance of increased mRNA levels. The [(3)H]thymidine incorporation experiment and the biochemical assay of total polymerase activity revealed that an increase in DNA ligase I levels after treatment with ara-C was not accompanied by an increase of DNA synthesis or an increased presence of DNA polymerase activity inside cells. When cells resumed DNA synthesis after drug treatment, DNA ligase I levels began to drop, indicating that increased DNA ligase I is not required for DNA synthesis. An increase in DNA ligase I was also observed in cells treated with aphidicolin, another inhibitor of DNA synthesis that inhibits DNA polymerases without incorporating itself into DNA, indicating that an increase in DNA ligase I levels could be caused by the arrest of DNA replication by these agents. Interestingly, caffeine, which is a well-known inhibitor of DNA damage checkpoint kinases, abrogated the increase in DNA ligase I in MiaPaCa cells treated with ara-C and aphidicolin, suggesting that caffeine-sensitive kinases might be important mediators in the pathway leading to the increase in DNA ligase I levels in response to anticancer drugs, including ara-C and aphidicolin. We propose that ara-C and aphidicolin induce damage to the DNA strand by arresting DNA replication forks and subsequently increase DNA ligase I levels to facilitate repair of DNA damage.  相似文献   

19.
The integrity of the genome is constantly challenged by intrinsic and extrinsic genotoxic stresses that damage DNA. The cellular responses to DNA damage are orchestrated by DNA damage signaling pathways, also known as DNA damage checkpoints. These signaling pathways play crucial roles in detecting DNA damage, regulating DNA repair and coordinating DNA repair with other cellular processes. In vertebrates, the ATM- and Rad3-related (ATR) kinase plays a key role in the response to a broad spectrum of DNA damage and DNA replication stress. Here, we will discuss the recent findings on how ATR is activated by DNA damage and how it protects the genome against interference with DNA replication.  相似文献   

20.
Interactions of APE1 (human apurinic/apyrimidinic endonuclease 1) and DNA polymerase beta with various DNA structures imitating intermediates of DNA repair and replication were investigated by gel retardation and photoaffinity labeling. Photoaffinity labeling of APE1 and DNA polymerase beta was accomplished by DNA containing photoreactive group at the 3 -end in mouse embryonic fibroblast (MEF) cell extract or for purified proteins. On the whole, modification efficiency was the same for MEF-extract proteins and for purified APE1 and DNA polymerase beta depending on the nature of the 5 -group of a nick/gap in the DNA substrate. Some of DNA duplexes used in this work can be considered as short-patch (DNA with the 5 -phosphate group in the nick/gap) or long-patch (DNA containing 5 -sugar phosphate or 5 -flap) base excision repair (BER) intermediates. Other DNA duplexes (3 -recessed DNA and DNA with the 5 -hydroxyl group in the nick/gap) have no relation to intermediates forming in the course of BER. As shown by both methods, APE1 binds with the highest efficiency to DNA substrate containing 5 -sugar phosphate group in the nick/gap, whereas DNA polymerase beta binds to DNA duplex with a mononucleotide gap flanked by the 5 -p group. When APE1 and DNA polymerase beta are both present, a ternary complex APE1-DNA polymerase beta-DNA is formed with the highest efficiency with DNA product of APE1 endonuclease activity and with DNA containing 5 -flap or mononucleotide-gapped DNA with 5 -p group. It was found that APE1 stimulates DNA synthesis catalyzed by DNA polymerase beta, and a human X-ray repair cross-complementing group 1 protein (XRCC1) stimulates APE1 3 -5 exonuclease activity on 3 -recessed DNA duplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号