首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaderless mRNAs are translated in the absence of upstream signals that normally contribute to ribosome binding and translation efficiency. In order to identify ribosomal components that interact with leaderless mRNA, a fragment of leaderless cI mRNA from bacteriophage λ, with a 4-thiouridine (4S-U) substituted at the +2 position of the AUG start codon, was used to form cross-links to Escherichia coli ribosomes during binary (mRNA+ribosome) and ternary (mRNA+ribosome+initiator tRNA) complex formation. Ribosome binding assays (i.e., toeprints) demonstrated tRNA-dependent binding of leaderless mRNA to ribosomes; however, cross-links between the start codon and 30S subunit rRNA and r-proteins formed independent of initiator tRNA. Toeprints revealed that a leaderless mRNA's 5′-AUG is required for stable binding. Furthermore, the addition of a 5′-terminal AUG triplet to a random RNA fragment can make it both competent and competitive for ribosome binding, suggesting that a leaderless mRNA's start codon is a major feature for ribosome interaction. Cross-linking assays indicate that a subset of 30S subunit r-proteins, located at either end of the mRNA tunnel, contribute to tRNA-independent contacts and/or interactions with a leaderless mRNA's start codon. The interaction of leaderless mRNA with ribosomes may reveal features of mRNA binding and AUG recognition that are distinct from known signals but are important for translation initiation of all mRNAs.  相似文献   

2.
Footprinting mRNA-ribosome complexes with chemical probes.   总被引:11,自引:3,他引:8       下载免费PDF全文
We footprinted the interaction of model mRNAs with 30S ribosomal subunits in the presence or absence of tRNA(fMet) or tRNA(Phe) using chemical probes directed at the sugar-phosphate backbone or bases of the mRNAs. When bound to the 30S subunits in the presence of tRNA(fMet), the sugar-phosphate backbones of gene 32 mRNA and 022 mRNA are protected from hydroxyl radical attack within a region of about 54 nucleotides bounded by positions -35 (+/- 2) and +19, extending to position +22 when tRNA(Phe) is used. In 70S ribosomes, protection is extended in the 5' direction to about position -39 (+/- 2). In the absence of tRNA, the 30S subunit protects only nucleotides -35 (+/- 2) to +5. Introduction of a stable tetraloop hairpin between positions +10 and +11 of gene 32 mRNA does not interfere with tRNA(fMet)-dependent binding of the mRNA to 30S subunits, but results in loss of protection of the sugar-phosphate backbone of the mRNA downstream of position +5. Using base-specific probes, we find that the Shine-Dalgarno sequence (A-12, A-11, G-10 and G-9) and the initiation codon (A+1, U+2 and G+3) of gene 32 mRNA are strongly protected by 30S subunits in the presence of initiator tRNA. In the presence of tRNA(Phe), the same Shine-Dalgarno bases are protected, as are U+4, U+5 and U+6 of the phenylalanine codon. Interestingly, A-1, immediately preceding the initiation codon, is protected in the complex with 30S subunits and initiator tRNA, while U+2 and G+3 are protected in the complex with tRNA(Phe) in the absence of initiator tRNA. Additionally, specific bases upstream from the Shine-Dalgarno region (U-33, G-32 and U-22) as well as 3' to the initiation codon (G+11) are protected by 30S subunits in the presence of either tRNA. These results imply that the mRNA binding site of the 30S subunit covers about 54-57 nucleotides and are consistent with the possibility that the ribosome interacts with mRNA along its sugar-phosphate backbone.  相似文献   

3.
Studer SM  Joseph S 《Molecular cell》2006,22(1):105-115
Translation initiation is a key step for regulating the level of numerous proteins within the cell. In bacteria, the 30S initiation complex directly binds to the translation initiation region (TIR) of the mRNA. How the ribosomal 30S subunit assembles on highly structured TIR is not known. Using fluorescence-based experiments, we assayed 12 different mRNAs that form secondary structures with various stabilities and contain Shine-Dalgarno (SD) sequences of different strengths. A strong correlation was observed between the stability of the mRNA structure and the association and dissociation rate constants. Interestingly, in the presence of initiation factors and initiator tRNA, the association kinetics of structured mRNAs showed two distinct phases. The second phase was found to be important for unfolding structured mRNAs to form a stable 30S initiation complex. We show that unfolding of structured mRNAs requires a SD sequence, the start codon, fMet-tRNA(fMet), and the GTP bound form of initiation factor 2 bound to the 30S subunit.  相似文献   

4.
In the initiation phase of bacterial translation, the 30S ribosomal subunit captures mRNA in preparation for binding with initiator tRNA. The purine-rich Shine-Dalgarno (SD) sequence, in the 5' untranslated region of the mRNA, anchors the 30S subunit near the start codon, via base pairing with an anti-SD (aSD) sequence at the 3' terminus of 16S rRNA. Here, we present the 3.3 A crystal structure of the Thermus thermophilus 30S subunit bound with an mRNA mimic. The duplex formed by the SD and aSD sequences is snugly docked in a "chamber" between the head and platform domains, demonstrating how the 30S subunit captures and stabilizes the otherwise labile SD helix. This location of the SD helix is suitable for the placement of the start codon AUG in the immediate vicinity of the mRNA channel, in agreement with reported crosslinks between the second position of the start codon and G1530 of 16S rRNA.  相似文献   

5.
The involvement of nucleotides adjacent to the termination codons in tRNA during the suppression of termination has been formulated as the 'context theory' by Bossi and Roth (1980) [Nature (Lond.) 286, 123-127]. The finding that U-U-G functions as an initiator codon has revived the discussion on the participation of the nucleotides flanking the initiator triplet in the decoding of initiator tRNA (context theory of initiation by the ribosome). We compared the capacity of oligonucleotides cognate to the anticodon loop of formylmethionine tRNA, such as A-U-G, A-U-G-A and U-A-U-G-A, to enhance the formation of the 30-S and 70-S ribosomal initiation complexes. Three different methods were used to determine the apparent binding constants and the stoichiometries of the respective complexes: adsorption of the complexes to nitrocellulose filters, equilibrium dialysis, and velocity sedimentation. We found that in the 30-S ribosomal initiation complex and in the presence of initiation factor 2 and GTP, formylmethionyl-tRNA is preferentially decoded by more than three mRNA bases. With the 70-S ribosome, however, once initiation factor 2 had been released, A-U-G represented the most effective codon to direct the formylmethionyl-tRNA to the peptidyl site. An extended initiator sequence may either give additional stability to the 30-S initiation complex or may allow for an ambiguity by one base pair in the decoding of the initiator tRNA.  相似文献   

6.
Using an RNA footprinting technique, accessible sites on the mRNA initiation region bound to the ribosome have been determined. Chemical probing experiments have been done both in the presence and absence of the initiator tRNA with dimethyl sulfate, kethoxal and carbodiimide as reagent probes. As an mRNA, a mini-mRNA containing the initiation region of bacteriophage lambda gene cro has been used. This region is characterized by a long single-stranded Shine-Dalgarno (SD) sequence followed by two hairpin structures of which the first one comprises in its loop the initiation codon. As compared to a free mRNA, the only nucleotides additionally protected in the binary mRNA-ribosome complex have been those which belong to the S-D sequence and the initiation codon. The protection of other nucleotides has not changed. Addition of the initiator RNA results in the modification of nucleotides in the stems of the downstream hairpin structures of the initiation region. This reflects their transition into a single-stranded conformation promoted by tRNA. A possible implication of these findings for the decoding process is discussed.  相似文献   

7.
Selection of the correct start codon during initiation of translation on the ribosome is a key event in protein synthesis. In eukaryotic initiation, several factors have to function in concert to ensure that the initiator tRNA finds the cognate AUG start codon during mRNA scanning. The two initiation factors eIF1 and eIF1A are known to provide important functions for the initiation process and codon selection. Here, we have used molecular dynamics free energy calculations to evaluate the energetics of initiator tRNA binding to different near-cognate codons on the yeast 40S ribosomal subunit, in the presence and absence of these two initiation factors. The results show that eIF1 and eIF1A together cause a relatively uniform and high discrimination against near-cognate codons. This works such that eIF1 boosts the discrimination against a first position near-cognate G-U mismatch, and also against a second position A-A base pair, while eIF1A mainly acts on third codon position. The computer simulations further reveal the structural basis of the increased discriminatory effect caused by binding of eIF1 and eIF1A to the 40S ribosomal subunit.  相似文献   

8.
9.
Two exceptional mechanisms of eukaryotic translation initiation have recently been identified that differ fundamentally from the canonical factor-mediated, end-dependent mechanism of ribosomal attachment to mRNA. Instead, ribosomal 40S subunits bind in a factor-independent manner to the internal ribosomal entry site (IRES) in an mRNA. These two mechanisms are exemplified by initiation on the unrelated approximately 300 nt.-long Hepatitis C virus (HCV) IRES and the approximately 200 nt.-long cricket paralysis virus (CrPV) intergenic region (IGR) IRES, respectively. Ribosomal binding involves interaction with multiple non-contiguous sites on these IRESs, and therefore also differs from the factor-independent attachment of prokaryotic ribosomes to mRNA, which involves base-pairing to the linear Shine-Dalgarno sequence. The HCV IRES binds to the solvent side of the 40S subunit, docks a domain of the IRES into the ribosomal exit (E) site and places the initiation codon in the ribosomal peptidyl (P) site. Subsequent binding of eIF3 and the eIF2-GTP/initiator tRNA complex to form a 48S complex is followed by subunit joining to form an 80S ribosome. The CrPV IRES binds to ribosomes in a very different manner, by occupying the ribosomal E and P sites in the intersubunit cavity, thereby excluding initiator tRNA. Ribosomes enter the elongation stage of translation directly, without any involvement of initiator tRNA or initiation factors, following recruitment of aminoacyl-tRNA to the ribosomal aminoacyl (A) site and translocation of it to the P site.  相似文献   

10.
11.
Chloroplast ribosome-binding sites were identified on the plastidrbcL andpsbA mRNAs using toeprint analysis. TherbcL translation initiation domain is highly conserved and contains a prokaryotic Shine-Dalgarno (SD) sequence (GGAGG) located 4 to 12 nucleotides upstream of the initiator AUG. Toeprint analysis ofrbcL mRNA associated with plastid polysomes revealed strong toeprint signals 15 nucleotides downstream from the AUG indicating ribosome binding at the translation initiation site.Escherichia coli 30S ribosomes generated similar toeprint signals when mixed withrbcL mRNA in the presence of initiator tRNA. These results indicate that plastid SD sequences are functional in chloroplast translation initiation. ThepsbA initiator region lacks a SD sequence within 12 nucleotides of the initiator AUG. However, toeprint analysis of soluble and membrane polysome-associatedpsbA mRNA revealed ribosomes bound to the initiator region.E. coli 30S ribosomes did not associate with thepsbA translation initiation region.E. coli and chloroplast ribosomes bind to an upstream region which contains a conserved SD-like sequence. Therefore, translation initiation onpsbA mRNA may involve the transient binding of chloroplast ribosomes to this upstream SD-like sequence followed by scanning to localize the initiator AUG. Illumination 8-day-old dark-grown barley seedlings caused an increase in polysome-associatedpsbA mRNA and the abundance of initiation complexes bound topsbA mRNA. These results demonstrate that light modulates D1 translation initiation in plastids of older dark-grown barley seedlings.  相似文献   

12.
X Q Wu  P Iyengar    U L RajBhandary 《The EMBO journal》1996,15(17):4734-4739
For functional studies of mutant Escherichia coli initiator tRNAs in vivo, we previously described a strategy based on the use of tRNA genes carrying an anticodon sequence change from CAU to CUA along with a mutant chloramphenicol acetyltransferase (CAT) gene carrying an initiation codon change from AUG to UAG. Surprisingly, under conditions where the mutant initiator tRNA is optimally active, the CAT gene with the UAG initiation codon produced more CAT protein (3- to 9-fold more depending on the conditions) than the wild-type CAT gene. Here we show that two new mutant CAT genes having GUC and AUC initiation codons also produce more of the CAT protein in the presence of the corresponding mutant initiator tRNAs. These results are most easily understood if assembly of the 30S ribosome-initiator tRNA-mRNA initiation complex in vivo proceeds with the 30S ribosome binding first to the initiator tRNA and then to the mRNA. In cells overproducing the mutant initiator tRNAs, most ribosomes would carry the mutant initiator tRNA and these ribosomes would select the mutant CAT mRNA over the other mRNAs.  相似文献   

13.
The kinetics of initiator transfer RNA (tRNA) interaction with the messenger RNA (mRNA)-programmed 30S subunit and the rate of 50S subunit docking to the 30S preinitiation complex were measured for different combinations of initiation factors in a cell-free Escherichia coli system for protein synthesis with components of high purity. The major results are summarized by a Michaelis-Menten scheme for initiation. All three initiation factors are required for maximal efficiency (kcat/KM) of initiation and for maximal in vivo rate of initiation at normal concentration of initiator tRNA. Spontaneous release of IF3 from the 30S preinitiation complex is required for subunit docking. The presence of initiator tRNA on the 30S subunit greatly increases the rate of 70S ribosome formation by increasing the rate of IF3 dissociation from the 30S subunit and the rate of 50S subunit docking to the IF3-free 30S preinitiation complex. The reasons why IF1 and IF3 are essential in E. coli are discussed in the light of the present observations.  相似文献   

14.
Initiation factor 3 (IF3) acts to switch the decoding preference of the small ribosomal subunit from elongator to initiator tRNA. The effects of IF3 on the 30 S ribosomal subunit and on the 30 S.mRNA. tRNA(f)(Met) complex were determined by UV-induced RNA crosslinking. Three intramolecular crosslinks in the 16 S rRNA (of the 14 that were monitored by gel electrophoresis) are affected by IF3. These are the crosslinks between C1402 and C1501 within the decoding region, between C967xC1400 joining the end loop of a helix of 16 S rRNA domain III and the decoding region, and between U793 and G1517 joining the 790 end loop of 16 S rRNA domain II and the end loop of the terminal helix. These changes occur even in the 30 S.IF3 complex, indicating they are not mediated through tRNA(f)(Met) or mRNA. UV-induced crosslinks occur between 16 S rRNA position C1400 and tRNA(f)(Met) position U34, in tRNA(f)(Met) the nucleotide adjacent to the 5' anticodon nucleotide, and between 16 S rRNA position C1397 and the mRNA at positions +9 and +10 (where A of the initiator AUG codon is +1). The presence of IF3 reduces both of these crosslinks by twofold and fourfold, respectively. The binding site for IF3 involves the 790 region, some other parts of the 16 S rRNA domain II and the terminal stem/loop region. These are located in the front bottom part of the platform structure in the 30 S subunit, a short distance from the decoding region. The changes that occur in the decoding region, even in the absence of mRNA and tRNA, may be induced by IF3 from a short distance or could be caused by the second IF3 structural domain.  相似文献   

15.
The interaction of ribosomal proteins with mRNA in the 40S initiation complex was examined by chemical cross-linking. 40S initiation complexes were formed by incubating rat liver [(3)H]Met-tRNAi, rat liver 40S ribosomal subunits, rabbit globin mRNA, and partially purified initiation factors of rabbit reticulocytes in the presence of guanylyl(beta, gamma-methylene)-diphosphonate. The initiation complexes were then treated with 1,3-butadiene diepoxide to introduce crosslinks between the mRNA and proteins. The covalent mRNA-protein conjugates were isolated by chromatography on an oligo(dT) cellulose column in the presence of sodium dodecyl sulfate, followed by sucrose density gradient centrifugation. Proteins cross-linked to the mRNA were labeled with Na(125)I, extracted by extensive ribonuclease digestion, and analyzed by two-dimensional and diagonal polyacrylamide gel electrophoresis. Three ribosomal proteins, S6, S8, and S23/S24, together with small amounts of S3/S3a, S27, and S30, were identified as the protein components cross-linked to the globin mRNA protein complex, and were shown to attach directly to the mRNA. It is suggested that these proteins constitute the ribosomal binding site for mRNA in the 40S initiation complex.  相似文献   

16.
eIF3j is located in the decoding center of the human 40S ribosomal subunit   总被引:1,自引:0,他引:1  
Protein synthesis in all cells begins with the ordered binding of the small ribosomal subunit to messenger RNA (mRNA) and transfer RNA (tRNA). In eukaryotes, translation initiation factor 3 (eIF3) is thought to play an essential role in this process by influencing mRNA and tRNA binding through indirect interactions on the backside of the 40S subunit. Here we show by directed hydroxyl radical probing that the human eIF3 subunit eIF3j binds to the aminoacyl (A) site and mRNA entry channel of the 40S subunit, placing eIF3j directly in the ribosomal decoding center. eIF3j also interacts with eIF1A and reduces 40S subunit affinity for mRNA. A high affinity for mRNA is restored upon recruitment of initiator tRNA, even though eIF3j remains in the mRNA-binding cleft in the presence of tRNA. These results suggest that eIF3j functions in part by regulating access of the mRNA-binding cleft in response to initiation factor binding.  相似文献   

17.
The 3'-terminal -A-C-C-A sequence of yeast tRNA(Phe) has been modified by replacing either adenosine-73 or adenosine-76 with the photoreactive analogue 8-azidoadenosine (8N3A). The incorporation of 8N3A into tRNA(Phe) was accomplished by ligation of 8-azidoadenosine 3',5'-bisphosphate to the 3' end of tRNA molecules which were shortened by either one or four nucleotides. Replacement of the 3'-terminal A76 with 8N3A completely blocked aminoacylation of the tRNA. In contrast, the replacement of A73 with 8N3A has virtually no effect on the aminoacylation of tRNA(Phe). Neither substitution hindered binding of the modified tRNAs to Escherichia coli ribosomes in the presence of poly(U). Photoreactive tRNA derivatives bound noncovalently to the ribosomal P site were cross-linked to the 50S subunit upon irradiation at 300 nm. Nonaminoacylated tRNA(Phe) containing 8N3A at either position 73 or position 76 cross-linked exclusively to protein L27. When N-acetylphenylalanyl-tRNA(Phe) containing 8N3A at position 73 was bound to the P site and irradiated, 23S rRNA was the main ribosomal component labeled, while smaller amounts of the tRNA were cross-linked to proteins L27 and L2. Differences in the labeling pattern of nonaminoacylated and aminoacylated tRNA(Phe) containing 8N3A in position 73 suggest that the aminoacyl moiety may play an important role in the proper positioning of the 3' end of tRNA in the ribosomal P site. More generally, the results demonstrate the utility of 8N3A-substituted tRNA probes for the specific labeling of ribosomal components at the peptidyltransferase center.  相似文献   

18.
Two factors (IF-I and IF-II) necessary for the initiation of protein synthesis have been partially purified from a 0.5 M KC1 wash of chicken erythroblast polysomes. IF-I mediates the binding of the initiator tRNA and GTP to a 40 S ribosomal subunit, resulting in the formation of a 44 S initiation intermediate. In the presence of IF-II and a suitable RNA template, the 44 S initiation intermediate combines with a 60 S ribosomal subunit to form a functional 80 S initiation complex. The methionyl moiety of the initiator tRNA in the 80 S initiation complex is able to react with puromycin to form methionylpuromycin.  相似文献   

19.
U A Bommer  G Lutsch  J Stahl  H Bielka 《Biochimie》1991,73(7-8):1007-1019
More than ten different protein factors are involved in initiation of protein synthesis in eukaryotes. For binding of initiator tRNA and mRNA to the 40S ribosomal subunit, the initiation factors eIF-2 and eIF-3 are particularly important. They consist of several different subunits and form stable complexes with the 40S ribosomal subunit. The location of eIF-2 and eIF-3 in these complexes as well as the interactions of the individual components have been analyzed by biochemical methods and electron microscopy. The results obtained are summarized in this article, and a model is derived describing the spatial arrangement of eIF-2 and eIF-3 together with initiator tRNA and mRNA on the 40S subunit. Conclusions on the location of functionally important sites of eukaryotic small ribosomal subunits are discussed with regard to the respective location of these sites in the prokaryotic counterpart.  相似文献   

20.
All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号