首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic broccoli plants expressing a Trichoderma harzianum endochitinase gene were obtained by Agrobacterium tumefaciens-mediated transformation. PCR and Southern blot analysis confirmed the presence of the gene in plants initially selected via resistance to kanamycin. Primary transformants (T0) and selfed progeny (T1) were examined for expression of the endochitinase gene using a fluorometric assay and for their resistance to the fungal pathogens Alternaria brassicicola and Sclerotinia sclerotiorum. All transgenic plants with elevated endochitinase activity had the expected 42 kDa endochitinase band in western blot analysis, whereas no such band was detected in the non-transgenic control. Leaves of most mature T0 plants had 14–37 times higher endochitinase activity than controls; mature T1 plants had higher endochitinase activity (100–200 times that in controls), in part because of lower control values. T0 plantlets in vitro or young plants in soil had higher absolute and relative endochitinase activity. When detached leaves of T0 plants were inoculated with A. brassicicola, lesion size showed a significant negative correlation with endochitinase levels. After inoculation of two-month old T0 plants with A. brassicicola, all 15 transgenic lines tested showed significantly less severe disease symptoms than controls. In contrast, lesion size on petioles of T0 and T1 plants inoculated with S. sclerotiorum was not statistically different from controls.  相似文献   

2.
Expression of pathogenesis-related (PR) genes is part of the plant's natural defense response against pathogen attack. To study the in vivo role and function of the maize PRms protein, tobacco plants were transformed with the PRms cDNA under the control of the CaMV35S promoter. Transgenic tobacco plants grow faster and yield more leaf and seed biomass. By using immunoelectron microscopy, we found that PRms is associated with plasmodesmata in leaves of transgenic tobacco plants. Furthermore, we found that activation of sucrose efflux from photosynthetically active leaves and accumulation of higher levels of sucrose in leaf tissues are characteristic features of PRms tobacco plants. This, in turn, results in the constitutive expression of endogenous tobacco PR genes and resistance to phytopathogens. The expression of multiple plant defense genes can then be achieved by using a single transgene. These data provide a new approach for engineering disease-resistant plants while simultaneously improving plant yield and productivity through the modification of photoassimilate partitioning.  相似文献   

3.
Overexpression of antifungal pathogenesis-related (PR) proteins in crop plants has the potential for enhancing resistance against fungal pathogens. Thaumatin-like proteins (TLPs) are one group (PR-5, permatins) of antifungal PR-proteins isolated from various plants. In the present study, a plasmid containing a cDNA of rice tlp (D34) under the control of the CaMV-35S promoter was introduced into tobacco plants through Agrobacterium-mediated transformation system. A considerable overproduction of TLP was observed in transformed tobacco plants by Western blot analysis. There was a large accumulation of tlp mRNA in transgenic plants as revealed by Northern blot analysis. Southern blot analysis of the DNA from transgenic tobacco plants confirmed the presence of the rice tlp gene in the genomic DNA of transgenic tobacco plants. Immunoblot analysis of intracellular and extracellular proteins of transgenic tobacco leaves using a Pinto bean TLP antibody demonstrated that the 23-kDa TLP was secreted into the extracellular matrix. T2 progeny of regenerated plants transformed with TLP gene were tested for their disease reaction to Alternaria alternata, the brown spot pathogen. Transgenic tobacco plants expressing TLP at high levels showed enhanced tolerance to necrotization caused by the pathogen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Transgenic tobacco plants over-expressing a salicylate- and pathogen-inducible glucosyltransferase (TOGT) acting on various phenylpropanoids show enhanced resistance against infection with potato virus Y (PVY). The transgenic plants are characterized by a several-fold increased glucosyltransferase activity in leaves as well as in roots. Under non-infectious conditions profiles of phenylpropanoids in leaves of transgenic lines were similar to that of controls. Feeding experiments with leaf-discs demonstrated a higher capacity for glucosylation of the coumarin scopoletin. After inoculation with PVY the transgenic lines showed similar formation of necrotic leaf lesions but significantly decreased levels of virus coat-protein when compared with control plants. Thus, our results imply that the activity of TOGT and the subsequent accumulation of glucosylated coumarins represent an important step in the cascade of events resulting in confinement of viral pathogens.  相似文献   

5.
6.
There are many reports on obtaining disease-resistance trait in plants by overexpressing genes from diverse organisms that encode chitinolytic enzymes. Current study represents an attempt to dissect the mechanism underlying the resistance to Rhizoctonia solani in cotton plants expressing an endochitinase gene from Trichoderma virens. Several assays were developed that provided a powerful demonstration of the disease protection obtained in the transgenic cotton plants. Transgene-dependent endochitinase activity was confirmed in various tissues and in the medium surrounding the roots of transformants. Biochemical and molecular analyses conducted on the transgenic plants showed rapid/greater induction of ROS, expression of several defense-related genes, and activation of some PR enzymes and the terpenoid pathway. Interestingly, even in the absence of a challenge from the pathogen, the basal activities of some of the defense-related genes and enzymes were higher in the endochitinase-expressing cotton plants. This elevated defensive state of the transformants may act synergistically with the potent, transgene-encoded endochitinase activity to confer a strong resistance to R. solani infection. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Activation of the tobacco gene hsr203 is rapid, highly localized, specific for incompatible plant-pathogen interactions, and strongly correlated with programmed cell death occurring in response to diverse pathogens. Functional characterization of hsr203 gene product has shown that HSR203 is a serine hydrolase that displays esterase activity. We show here that transgenic tobacco plants deficient in HSR203 protein exhibit an accelerated hypersensitive response when inoculated with an avirulent strain of Ralstonia solanacearum. This response was accompanied by a maximal level of cell death and a drastic inhibition of in planta bacterial growth. Transgenic plants deficient in HSR203 were also found to show increased resistance in a dosage-dependent manner to Pseudomonas syringae pv. pisi, another avirulent bacterial pathogen, and to virulent and avirulent races of Phytophthora parasitica, a fungal pathogen of tobacco, but not to different virulent bacteria. Surprisingly, expression of another hsr gene, hsr515, and that of the defence genes PR1-a and PR5, was strongly reduced in the transgenic lines. Our results suggest that hsr203 antisense suppression in tobacco can have pleiotropic effects on HR cell death and defence mechanisms, and induces increased resistance to different pathogens.  相似文献   

8.
将克隆于羽衣甘蓝的胁迫应答基因BoRS1连入中间载体p35S-2300::gus::noster相应位点,成功地构建了含BoRS1基因的植物双元表达载体p35S-2300::BoRS1::noster,并通过农杆菌介导法对烟草进行了遗传转化。PCR检测结果表明目的基因BoRS1已成功地导入并整合到烟草基因组中。RT-PCR分析显示,在不同的转基因烟草植株中BoRS1表达量存在差异。转BoRS1烟草的耐干性和甘露醇胁迫研究表明,BoRS1基因的表达对提高植物抗干旱胁迫能力有一定的作用。  相似文献   

9.
Explants of cotton (Gossypium hirsutum L. cv. Jingmian 7) were transformed with Agrobacterium tumefaciens (Smith et Townsend ) Conn LBA4404 harboring an expression cassette composed of CoYMV (Commelina Yellow Mottle Virus) promoter-gus-nos terminator on the plant expression vector pBcopd2. Transgenic plants were regenerated and selected on a medium containing kanamycin. GUS (β-glucuronidase) activity assays and Southern blot analysis confirmed that the chimerical gus gene was integrated into and expressed in the regenerated cotton plants. Plant expression vector pBI121 was also transferred into the same cotton variety and the regenerated transgenic plants were used as a positive control in GUS activity analysis. Evidences from histochemical analysis of GUS activity demonstrated that under the control of a 597 bp CoYMV promoter the gus gene was highly expressed in the vascular tissues of leaves, petioles, stems, roots, hypocotyls, bracteal leaves and most of the flower parts while GUS activity could not be detected in stigma, anther sac and developing cotton fibers of the transgenic cotton plants. GUS specific activity in various organs and tissues from transgenic cotton lines was determined and the results indicated that the CoYMV promoter-gus activities were at the same level or higher than that of CaMV 35S promoter-gus in leaf veins and roots where the vascular tissues occupy a relatively larger part of the organs, but in other organs like leaves, cotyledons and hypocotyls where the vascular tissues occupy a smaller part of the organs the CoYMV promoter-gus activity was only 1/3-1/5 of the CaMV 35S promoter-gus activity. The GUS activity ratio between veins and leaves was averaged 0.5 for 35S-GUS plants and about 2.0 for CoYMV promoter-gus transgenic plants. These results further demonstrated the vascular specific property of the promoter in transgenic cotton plants. An increasing trend of GUS activity in leaf vascular tissues of transgenic cotton plants developing from young to older was observed.  相似文献   

10.
Cotton (Gossypium hirsutum L., var. Coker 312) hypocotyl explants were transformed with three strains of Agrobacterium tumefaciens, LBA4404, EHA101 and C58, each harboring the recombinant binary vector pBI121 containing the chi gene insert and neomycin phosphotransferase (nptII) gene, as selectable marker. Inoculated tissue sections were placed onto cotton co-cultivation medium. Transformed calli were selected on MS medium containing 50 mg l−1 kanamycin and 200 mg l−1 cepotaxime. Putative calli were subsequently regenerated into cotton plantlets expressing both the kanamycin resistance gene and βglucuronidase (gus) as a reporter gene. Polymerase chain reaction was used to confirm the integration of chi and nptII transgenes in the T1 plants genome. Integration of chi gene into the genome of putative transgenic was further confirmed by Southern blot analysis. ‘Western’ immunoblot analysis of leaves isolated from T0 transformants and progeny plants (T1) revealed the presence of an immunoreactive band with MW of approximately 31 kDa in transgenic cotton lines using anti-chitinase-I polyclonal anti-serum. Untransformed control and one transgenic line did not show such an immunoreactive band. Chitinase specific activity in leaf tissues of transgenic lines was several folds greater than that of untransformed cotton. Crude leaf extracts from transgenic lines showed in vitro inhibitory activity against Verticillium dahliae.Transgenic plants currently growing in a greenhouse and will be bioassayed for improved resistance against V. dahlia the causal against of verticilliosis in cotton.  相似文献   

11.
通过遗传转化技术研究了拟南芥脂转移蛋白AtDHyPRP1在细胞中的定位及其对真菌病原体的抗性。采用PCR方法从拟南芥Ws生态型克隆了AtDHyPRP1基因,构建产生pRI101-AN-AtDHyPRP1植物双元表达载体和pCAMBIA1302-AtDHyPRP1-GFP融合表达载体,经农杆菌介导的叶盘和浸花法得到烟草和拟南芥转基因植株。AtDHyPRP1基因能够明显增加烟草对灰霉菌的抗性,转AtDHyPRP1烟草叶片的被侵染部位有大量H2O2积累,激光共聚焦显微观察发现AtDHyPRP1蛋白定位于细胞表面。说明AtDHyPRP1蛋白在合成后被分泌到细胞外执行特殊的功能,与植物抗病防御机制有关。  相似文献   

12.
We demonstrate here that induced expression of sarcotoxin IA, a bactericidal peptide from Sarcophaga peregrina, enhanced the resistance of transgenic tobacco plants to both bacterial and fungal pathogens. The peptide was produced with a modified PR1a promoter, which is further activated by salicylic acid treatment and necrotic lesion formation by pathogen infection. Host resistance to infection of bacteria Erwinia carotovora subsp. carotovora and Pseudomonas syringae pv. tabaci was shown to be dependent on the amounts of sarcotoxin IA expressed. Since we found antifungal activity of the peptide in vitro, transgenic seedlings were also inoculated with fungal pathogens Rhizoctonia solani and Pythium aphanidermatum. Transgenic plants expressing higher levels of sarcotoxin were able to withstand fungal infection and remained healthy even after 4 weeks, while control plants were dead by fungal infection after 2 weeks.  相似文献   

13.
Glucose oxidase secreted by the fungus Talaromyces flavus generates, in the presence of glucose, hydrogen peroxide that is toxic to phytopathogenic fungi responsible for economically important diseases in many crops. A glucose oxidase gene from T. flavus, was modified with a carrot extensin signal peptide and fused to either a constitutive or root-specific plant promoter. T1 tobacco plants expressing the enzyme constitutively were protected against infection by the seedling pathogen Rhizoctonia solani. Constitutive expression in tobacco was associated with reduced root growth, and slow germination on culture medium, and with reduced seed set in glasshouse conditions. Several independent transformed cotton plants with a root-specific construct expressed high glucose oxidase activity in the roots, excluding the root tip. Selected T3 homozygous lines showed some protection against the root pathogen, Verticillium dahliae, but not against Fusarium oxysporum. High levels of glucose oxidase expression in cotton roots were associated with reduced height, seed set and seedling germination and reduced lateral root formation. If this gene is to be of value for crop protection against pathogens it will require precise control of its expression to remove the deleterious phenotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene has recently been confirmed by in vitro tests to possess antifungal abilities. In this study, the CTS1-2 gene has been evaluated for its in planta antifungal activity by constitutive overexpression in tobacco plants to assess its potential to increase the plant's defence against fungal pathogens. Transgenic tobacco plants, generated by Agrobacterium-mediated transformation, showed stable integration and inheritance of the transgene. Northern blot analyses conducted on the transgenic tobacco plants confirmed transgene expression. Leaf extracts from the transgenic lines inhibited Botrytis cinerea spore germination and hyphal growth by up to 70% in a quantitative in vitro assay, leading to severe physical damage on the hyphae. Several of the F1 progeny lines were challenged with the fungal pathogen, B. cinerea, in a detached leaf infection assay, showing a decrease in susceptibility ranging from 50 to 70%. The plant lines that showed increased disease tolerance were also shown to have higher chitinase activities.  相似文献   

15.
16.
Aims Many resistance genes against fungal pathogens show costs of resistance. Genetically modified (GM) plants that differ in only one or a few resistance genes from control plants present ideal systems for measuring these costs in the absence of pathogens.Methods To assess the ecological relevance of costs of pathogen resistance, we grew individual plants of four transgenic spring wheat lines in a field trial with three pathogen levels and varied the genetic diversity of the crop.Important findings We found that two lines with a Pm3b transgene were more resistant to powdery mildew than their sister lines of the variety Bobwhite, whereas lines with chitinase (A9) or chitinase and glucanase (A13) transgenes were not more resistant than their mother variety Frisal. Nevertheless, in the absence of the pathogen, both the GM lines of Bobwhite as well as those of Frisal performed significantly worse than their controls, i.e. Pm3b #1 and Pm3b #2 had 39% or 53% and A9 and A13 had 14% or 23% lower yields. In the presence of the pathogen, all GM lines except Pm3b #2 could increase their yields and other fitness-related traits, reaching the performance levels of the control lines. Line Pm3b #2 seemed to have lost its phenotypic plasticity and had low performance in all environments. This may have been caused by very high transgene expression. No synergistic effects of mixing different GM lines with each other were detected. This might have been due to high transgene expression or the similarity between the lines regarding their resistance genes. We conclude that costs of resistance can be high for transgenic plants with constitutive transgene expression and that this can occur even in cases where the non-transgenic control lines are already relatively resistant, such as in our variety Frisal. Transgenic plants could only compete with conventional varieties in environments with high pathogen pressure. Furthermore, the large variability among the GM lines, which may be due to unpredictable transgene expression, suggests that case-by-case assessments are necessary to evaluate costs of resistance.  相似文献   

17.
Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines. High levels of TcChi1 transgene expression in the transgenic lines were confirmed by northern blot analysis. Chitinase activity levels were measured using an in vitro fluorometric assay. The transgene was expressed at varying levels in the different transgenic lines with up to a sixfold increase of endochitinase activity compared to non-transgenic and transgenic control plants. The in vivo antifungal activity of the transgene against the foliar pathogen Colletotrichum gloeosporioides was evaluated using a cacao leaf disk bioassay. The assay demonstrated that the TcChi1 transgenic cacao leaves significantly inhibited the growth of the fungus and the development of leaf necrosis compared to controls when leaves were wound inoculated with 5,000 spores. These results demonstrate for the first time the utility of the cacao transformation system as a tool for gene functional analysis and the potential utility of the cacao chitinase gene for increasing fungal pathogen resistance in cacao.  相似文献   

18.
19.
20.
Defensins are small positively charged, antimicrobial peptides (~5 kDa in size) and some of them exhibit potent antifungal activity. We have cloned the complete cDNA containing an ORF of 243 bp of a defensin of mustard. The deduced amino acid sequence of the peptide showed more than 90% identity to the amino acid sequence of the well-characterized defensins, RsAFP-1 and RsAFP-2 of Raphanus sativus. We have generated and characterized transgenic tobacco and peanut plants constitutively expressing the mustard defensin. Transgenic tobacco plants were resistant to the fungal pathogens, Fusarium moniliforme and Phytophthora parasitica pv. nicotianae. Transgenic peanut plants showed enhanced resistance against the pathogens, Pheaoisariopsis personata and Cercospora arachidicola, which jointly cause serious late leaf spot disease. These observations indicate that the mustard defensin gene can be deployed for deriving fungal disease resistance in transgenic crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号