首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary metabolic gene clusters widely exist in the genomes of Streptomyces but mostly remain silent. To awaken this hidden reservoir of natural products, various strategies concerning secondary metabolic pathways are applied. Here, we describe that butenolide signaling molecule deficiency and glucose addition can interdependently activate the expression of silent oviedomycin biosynthetic gene clusters in Streptomyces ansochromogenes and Streptomyces antibioticus. Since oviedomycin is a promising anti-tumor lead compound, in order to improve its yield, we use the cluster-situated genes (ovmF, ovmG, ovmI and ovmH) encoding the enzymes for acyl carrier protein modification and precursor biosynthesis, and the discrete precursor biosynthetic genes (pyk2, gap1 and accA2) involved in glycolysis to assemble two gene modules (pFGIH and pPGA). Their co-overexpression in ΔsabA (a disruption mutant of sabA encoding SAB synthase) has superimposed effect on the yield of oviedomycin, which can be further increased to 59-fold in the presence of galactose as optimal carbon source. This is the most unambiguous evidence that butenolide signaling system can synergize with the optimization of primary metabolism to regulate the expression of secondary metabolic gene clusters, providing efficient strategies for mining natural products of Streptomyces.  相似文献   

2.
【目的】分析刺孢吸水链霉菌北京变种(农抗120产生菌)基因组和次级代谢产物组分,研究并鉴定农抗120产生菌中未被发现的活性组分。【方法】利用antiSMASH在线分析农抗120产生菌Streptomyces hygrospinosusvar.beijingensis基因组信息,锁定可能的制霉菌素和丰加霉素生物合成基因簇。利用HPLC和LC-MS等分析方法对农抗120产生菌发酵产物进行分析,同时利用制霉菌素和丰加霉素标准品作为对照,以鉴定该菌株代谢组分中的次级代谢产物。此外,通过构建目标基因簇大片段缺失突变株,并对所得突变株发酵产物进行检测,以确定生物合成基因簇与目的代谢产物的对应关系。【结果】本研究综合利用基因组序列分析、基因缺失突变株构建以及代谢产物检测方法,鉴定了农抗120产生菌中制霉菌素和丰加霉素两种活性成分,并确定了负责这些化合物合成的基因簇。【结论】本研究所构建的多重基因簇失活突变株为挖掘刺孢吸水链霉菌北京变种更多的天然次级代谢产物奠定了基础。  相似文献   

3.
4.

Background

Cyanobacteria are well known for the production of a range of secondary metabolites. Whilst recent genome sequencing projects has led to an increase in the number of publically available cyanobacterial genomes, the secondary metabolite potential of many of these organisms remains elusive. Our study focused on the 11 publically available Subsection V cyanobacterial genomes, together with the draft genomes of Westiella intricata UH strain HT-29-1 and Hapalosiphon welwitschii UH strain IC-52-3, for their genetic potential to produce secondary metabolites. The Subsection V cyanobacterial genomes analysed in this study are reported to produce a diverse range of natural products, including the hapalindole-family of compounds, microcystin, hapalosin, mycosporine-like amino acids and hydrocarbons.

Results

A putative gene cluster for the cyclic depsipeptide hapalosin, known to reverse P-glycoprotein multiple drug resistance, was identified within three Subsection V cyanobacterial genomes, including the producing cyanobacterium H. welwitschii UH strain IC-52-3. A number of orphan NRPS/PKS gene clusters and ribosomally-synthesised and post translationally-modified peptide gene clusters (including cyanobactin, microviridin and bacteriocin gene clusters) were identified. Furthermore, gene clusters encoding the biosynthesis of mycosporine-like amino acids, scytonemin, hydrocarbons and terpenes were also identified and compared.

Conclusions

Genome mining has revealed the diversity, abundance and complex nature of the secondary metabolite potential of the Subsection V cyanobacteria. This bioinformatic study has identified novel biosynthetic enzymes which have not been associated with gene clusters of known classes of natural products, suggesting that these cyanobacteria potentially produce structurally novel secondary metabolites.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1855-z) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Identification of secondary metabolites produced by cryptic gene in bacteria may be difficult, but in the case of nonribosomal peptide (NRP)-type secondary metabolites, this study can be facilitated by bioinformatic analysis of the biosynthetic gene cluster and tandem mass spectrometry analysis. To illustrate this concept, we used mass spectrometry-guided bioinformatic analysis of genomic sequences to identify an NRP-type secondary metabolite from Streptomyces peucetius ATCC 27952. Five putative NRPS biosynthetic gene clusters were identified in the S. peucetius genome by DNA sequence analysis. Of these, the sp970 gene cluster encoded a complete NRPS domain structure, viz., C-A-T-C-A-T-E-C-A-T-C-A-T-C domains. Tandem mass spectrometry revealed that the functional siderophore peptide produced by this cluster had a molecular weight of 644.4 Da. Further analysis demonstrated that the siderophore peptide has a cyclic structure and an amino acid composition of AchfOrn–Arg–hOrn–hfOrn. The discovery of functional cryptic genes by analysis of the secretome, especially of NRP-type secondary metabolites, using mass spectrometry together with genome mining may contribute significantly to the development of pharmaceuticals such as hybrid antibiotics.  相似文献   

7.
Since the discovery of the streptomycin produced by Streptomyces griseus in the middle of the last century, members of this bacterial genus have been largely exploited for the production of secondary metabolites with wide uses in medicine and in agriculture. They have even been recognized as one of the most prolific producers of natural products among microorganisms. With the onset of the genomic era, it became evident that these microorganisms still represent a major source for the discovery of novel secondary metabolites. This was highlighted with the complete genome sequencing of Streptomyces coelicolor A3(2) which revealed an unexpected potential of this organism to synthesize natural products undetected until then by classical screening methods. Since then, analysis of sequenced genomes from numerous Streptomyces species has shown that a single species can carry more than 30 secondary metabolite gene clusters, reinforcing the idea that the biosynthetic potential of this bacterial genus is far from being fully exploited. This review highlights our knowledge on the potential of Streptomyces ambofaciens ATCC 23877 to synthesize natural products. This industrial strain was known for decades to only produce the drug spiramycin and another antibacterial compound, congocidine. Mining of its genome allowed the identification of 23 clusters potentially involved in the production of other secondary metabolites. Studies of some of these clusters resulted in the characterization of novel compounds and of previously known compounds but never characterized in this Streptomyces species. In addition, genome mining revealed that secondary metabolite gene clusters of phylogenetically closely related Streptomyces are mainly species-specific.  相似文献   

8.
9.

Background

Kutzneria is a representative of a rarely observed genus of the family Pseudonocardiaceae. Kutzneria species were initially placed in the Streptosporangiaceae genus and later reconsidered to be an independent genus of the Pseudonocardiaceae. Kutzneria albida is one of the eight known members of the genus. This strain is a unique producer of the glycosylated polyole macrolide aculeximycin which is active against both bacteria and fungi. Kutzneria albida genome sequencing and analysis allow a deeper understanding of evolution of this genus of Pseudonocardiaceae, provide new insight in the phylogeny of the genus, as well as decipher the hidden secondary metabolic potential of these rare actinobacteria.

Results

To explore the biosynthetic potential of Kutzneria albida to its full extent, the complete genome was sequenced. With a size of 9,874,926 bp, coding for 8,822 genes, it stands alongside other Pseudonocardiaceae with large circular genomes. Genome analysis revealed 46 gene clusters potentially encoding secondary metabolite biosynthesis pathways. Two large genomic islands were identified, containing regions most enriched with secondary metabolism gene clusters. Large parts of this secondary metabolism “clustome” are dedicated to siderophores production.

Conclusions

Kutzneria albida is the first species of the genus Kutzneria with a completely sequenced genome. Genome sequencing allowed identifying the gene cluster responsible for the biosynthesis of aculeximycin, one of the largest known oligosaccharide-macrolide antibiotics. Moreover, the genome revealed 45 additional putative secondary metabolite gene clusters, suggesting a huge biosynthetic potential, which makes Kutzneria albida a very rich source of natural products. Comparison of the Kutzneria albida genome to genomes of other actinobacteria clearly shows its close relations with Pseudonocardiaceae in line with the taxonomic position of the genus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-885) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
12.
Here, we report the complete genome sequence of the type strain of the myxobacterial genus Chondromyces, Chondromyces crocatus Cm c5. It presents one of the largest prokaryotic genomes featuring a single circular chromosome and no plasmids. Analysis revealed an enlarged set of tRNA genes, along with reduced pressure on preferred codon usage compared to that of other bacterial genomes. The large coding capacity and the plethora of encoded secondary metabolite biosynthetic gene clusters are in line with the capability of Cm c5 to produce an arsenal of antibacterial, antifungal, and cytotoxic compounds. Known pathways of the ajudazol, chondramide, chondrochloren, crocacin, crocapeptin, and thuggacin compound families are complemented by many more natural compound biosynthetic gene clusters in the chromosome. Whole-genome comparison of the fruiting-body-forming type strain (Cm c5, DSM 14714) to an accustomed laboratory strain which has lost this ability (nonfruiting phenotype, Cm c5 fr−) revealed genetic changes in three loci. In addition to the low synteny found with the closest sequenced representative of the same family, Sorangium cellulosum, extensive genetic information duplication and broad application of eukaryotic-type signal transduction systems are hallmarks of this 11.3-Mbp prokaryotic genome.  相似文献   

13.
【目的】Streptomyces sp. PRh5是从东乡野生稻(Oryza rufipogon Griff.)中分离获得的一株对细菌和真菌都具有较强抗菌活性的内生放线菌。为深入研究PRh5菌株抗菌机制及挖掘次级代谢产物基因资源,有必要解析PRh5菌株的基因组序列信息。【方法】采用高通量测序技术对PRh5菌株进行全基因组测序,然后使用相关软件对测序数据进行基因组组装、基因预测与功能注释、直系同源簇(COG)聚类分析、共线性分析及次级代谢产物合成基因簇预测等。【结果】基因组组装获得290 contigs,整个基因组大小约11.1 Mb,GC含量为71.1%,序列已提交至GenBank数据库,登录号为JABQ00000000。同时,预测得到50个次级代谢产物合成基因簇。【结论】将为Streptomyces sp. PRh5的功能基因组学研究及相关次级代谢产物的生物合成途径与异源表达研究提供基础。  相似文献   

14.
The complete genome of the biocontrol antagonist Bacillus amyloliquefaciens AS 43.3 is reported. B. amyloliquefaciens AS 43.3 has previously been shown to be effective in reducing Fusarium head blight in wheat. The 3.9 Mbp genome was sequenced, assembled, and annotated. Genomic analysis of the strain identified 9 biosynthetic gene clusters encoding secondary metabolites associated with biocontrol activity. The analysis identified five non-ribosomal peptide synthetase clusters encoding three lipopeptides (surfactin, iturin, and fengycin), a siderophore (bacillibactin), and the antibiotic dipeptide bacilysin. In addition, three polyketide synthetase clusters were identified which encoded for the antibacterials: bacillaene, difficidin, and macrolactin. In addition to the non-ribosomal mediated biosynthetic clusters discovered, we identified a ribosomally encoded biosynthetic cluster that produces the antibiotic plantazolicin. To confirm the gene clusters were functional, cell-free culture supernatant was analyzed using LC–MS/MS. The technique confirmed the presence of all nine metabolites or their derivatives. The study suggests the strain is most likely a member of the B. amyloliquefaciens subsp. plantarium clade. Comparative genomics of eight completed genomes of B. amyloliquefaciens identify the core and pan-genomes for the species, including identifying genes unique to the biocontrol strains. This study demonstrates the growing importance of applying genomic-based studies to biocontrol organisms of plant pathogens which can enable the rapid identification of bioactive metabolites produced by a prospective biological control organism. In addition, this work provides a foundation for a mechanistic understanding of the B. amyloliquefaciens AS 43.3/Fusarium head blight biocontrol interaction.  相似文献   

15.
Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.  相似文献   

16.
17.
【背景】纳他霉素(Natamycin)是一种天然、广谱、高效的多烯大环内酯类抗真菌剂,褐黄孢链霉菌(Streptomyces gilvosporeus)是一种重要的纳他霉素产生菌。目前S. gilvosporeus基因组序列分析还未有报道,限制了该菌中纳他霉素及其他次级代谢产物合成及调控的研究。【目的】解析纳他霉素高产菌株S. gilvosporeus F607的基因组序列信息,挖掘其次级代谢产物基因资源,为深入研究该菌株的纳他霉素高产机理及生物合成调控机制奠定基础。【方法】利用相关软件对F607菌株的基因组序列进行基因预测、功能注释、进化分析和共线性分析,并预测次级代谢产物合成基因簇;对纳他霉素生物合成基因簇进行注释分析,比较分析不同菌种中纳他霉素生物合成基因簇的差异;分析预测S.gilvosporeusF607中纳他霉素生物合成途径。【结果】F607菌株基因组总长度为8482298bp,(G+C)mol%为70.95%,分别在COG、GO、KEGG数据库提取到5 062、4 428、5063个基因的注释信息。同时,antiSMASH软件预测得到29个次级代谢产物合成基因簇,其中纳他霉素基因簇与S.natalensis、S. chattanoogensis等菌株的纳他霉素基因簇相似性分别为81%和77%。除2个参与调控的sngT和sgnH基因和9个未知功能的orf基因有差异外,S. gilvosporeus F607基因簇中其他纳他霉素生物合成基因及其排列顺序与已知的纳他霉素基因簇高度一致。【结论】分析了S. gilvosporeus全基因组信息,预测了S. gilvosporeus F607中纳他霉素生物合成的途径,为从基因组层面上解析S. gilvosporeus F607菌株高产纳他霉素的内在原因提供了基础数据,为揭示纳他霉素高产的机理及工业化生产和未来新药的发现奠定了良好的基础。  相似文献   

18.
19.
The marine sponge Amphimedon sp., collected from Hurghada (Egypt) was investigated for its sponge-derived actinomycetes diversity. Nineteen actinomycetes were cultivated and phylogenetically identified using 16S rDNA gene sequencing were carried out. The strains belong to genera Kocuria, Dietzia, Micrococcus, Microbacterium and Streptomyces. Many silent biosynthetic genes clusters were investigated using genome sequencing of actinomycete strains and has revealed in particular the genus Streptomyces that has indicated their exceptional capacity for the secondary metabolites production that not observed under classical cultivation conditions. In this study, the effect of N-acetylglucosamine on the metabolome of Streptomyces sp. RM66 was investigated using three actinomycetes media (ISP2, M1 and MA). In total, twelve extracts were produced using solid and liquid fermentation approaches. Liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) data were analysed using metabolomics tools to compare natural product production across all crude extracts. Our study highlighted the elicitation effect of N-acetylglucosamine on the secondary metabolite profiles of Streptomyces sp. RM66. These results highlight the of N-acetylglucosamine application as an elicitor to induce the cryptic metabolites and for increasing the chemical diversity. All the twelve extracts were tested for their antibacterial activity was tested against Staphylococcus aureus NCTC 8325, antifungal activity against Candida albicans 5314 (ATCC 90028) and anti-trypanosomal activity against Trypanosoma brucei brucei. Extract St1 showed the most potent one with activities 2.3, 3.2 and 4.7 ug/ml as antibacterial, antifungal and anti-trypanosomal, respectively.  相似文献   

20.
Field pennycress (Thlaspi arvense L.) is being domesticated as a new winter cover crop and biofuel species for the Midwestern United States that can be double-cropped between corn and soybeans. A genome sequence will enable the use of new technologies to make improvements in pennycress. To generate a draft genome, a hybrid sequencing approach was used to generate 47 Gb of DNA sequencing reads from both the Illumina and PacBio platforms. These reads were used to assemble 6,768 genomic scaffolds. The draft genome was annotated using the MAKER pipeline, which identified 27,390 predicted protein-coding genes, with almost all of these predicted peptides having significant sequence similarity to Arabidopsis proteins. A comprehensive analysis of pennycress gene homologues involved in glucosinolate biosynthesis, metabolism, and transport pathways revealed high sequence conservation compared with other Brassicaceae species, and helps validate the assembly of the pennycress gene space in this draft genome. Additional comparative genomic analyses indicate that the knowledge gained from years of basic Brassicaceae research will serve as a powerful tool for identifying gene targets whose manipulation can be predicted to result in improvements for pennycress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号