首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yucca elata andHesperaloe funifera possess long, thin fibers that have potential for making specialty papers. The objective of this study is to examine patterns ofintraspecific variation in fiber properties in these two species. InYucca elata most of the variation in fiber length is found within populations where fiber length is highly correlated with leaf length. In contrast, inHesperaloe funifera there is significant variation between populations and random variation in fiber lengths within most populations. Within-plant variation inHesperaloe was also examined. Fiber length does not vary between leaves of different ages but does vary within leaves. Fibers from the base of the leaf are shorter and wider than those from the middle and distal sections; fibers from distal sections are narrowest.  相似文献   

2.
Hard fibers are tissues obtained by decorticating leaves of various monocots, including sisal and abaca. These fibers have traditionally been used in cordage applications (rope, burlap, etc.), but they are also pulped and used in the paper industry for making specialty papers including currency, tea bags, and other products requiring high tensile strength. We examined fiber properties of several genera of Agavaceae from the southwestern United States and northern Mexico to determine their potential for paper making. Leaf samples of species ofAgave, Dasylirion, Hesperaloe, Nolina, and Yucca were macerated and fiber cell length, width, and wall thickness were measured. Several species ofHesperaloe andYucca have fibers that are as long or longer (>3 mm) and narrower (<20 µ) than those of sisal. Species ofAgave, Dasylirion, and,Nolina have shorter fibers (mostly 1.5 mm). Species ofHesperaloe andYucca would appear to be most suitable for paper making.  相似文献   

3.
The leaves of the agave plant are left in the field after harvesting the heads for tequila production. Different types of agave leaves were isolated, classified, and their content in the total plant determined. The usable fractions were collected and their properties determined. Of the total wet weight of the agave plant, 54% corresponds to the agave head, 32% corresponds to materials which could be usable for sugar and fiber production which leaves 14% of the wet plant without apparent utility. The fractions with higher total reducing sugars (TRS) content were the fresh fraction of partially dry leaves stuck to the head and the leaf bases with a TRS content of 16.1% and 13.1%, respectively. The highest TRS concentration (16-28%) is in the agave head which is used for tequila production. The leaves are 90-120 cm long and 8-12 cm wide and contain fiber bundles that are 23-52 cm long and 0.6-13 mm wide. The ultimate fiber length is approximately 1.6 mm with an average width of 25 microns. There are several types of leaf fibers that can be utilized depending on what part of the plant they come from and what product is desired. Agave leaf fibers were pulped using a soda pulping process and the pulp was hand formed into test sheets. Test sheets made from pulped agave leaf fibers had a breaking length comparable to paper made from both pine and eucalyptus fibers, but the tear index and burst index were lower than the other two papers.  相似文献   

4.
As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce man-made fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers.  相似文献   

5.
The whole thigh muscles are covered with the fascia lata, which could have morphological and mechanical features that match the underlying muscles’ functions. In this study, we investigated the morphological and elastic properties of the human fascia lata taken from four (anterior, medial, lateral, and posterior) sites on the thigh of 17 legs of 12 cadavers (6 males and 6 females, 75–92 years). The thickness of the fascia lata was determined with a caliper. The interwoven collagen fiber’s directions were measured and classified into longitudinal, transverse, and diagonal in two opposing directions, relative to the thigh. Tensile strength test along the longitudinal and transverse directions was performed, and the stiffness, Young’s modulus, and hysteresis were determined. Fascia lata at the lateral site (0.8 ± 0.2 mm) was significantly thicker compared to other sites (0.2–0.3 mm). Fiber’s directions showed substantial variability among sites, and longitudinally directed fibers were higher in proportion (28–32%) than those in other directions (20–27%) at all sites except for the posterior site. The stiffness and Young’s modulus in the longitudinal direction (20–283 N/mm; 71.6–275.9 MPa, highest at the lateral site) were significantly higher than in the transverse direction (3–16 N/mm; 3.2–41.9 MPa, lowest at the lateral site). At the medial site, the proportion of the transversely directed fibers was higher in females than males, with higher stiffness and Young’s modulus thereof. The present study shows that the fascia lata possesses site- and gender-dependence of the morphological characteristics and elastic properties.  相似文献   

6.
The AOpAZRP bleaching sequence (A is an acid treatment, Op an oxygen and peroxide stage, Z an ozone stage, R a reductive treatment and P a peroxide stage) have been applied to oil palm empty fruit bunches (EFB) soda-anthraquinone and diethanolamine pulp. On similar Kappa numbers for the two types of pulp (14.2 and 17.3), paper from unbleached soda-anthraquinone pulp exhibited increased tensile index (25.8 Nm/g), stretch (2.35%), burst index (1.69 kN/g), tear index (0.50 mN m(2)/g) and brightness (60.6%) relative to paper for unbleached diethanolamine pulp; but the latter type of pulp exhibited higher viscosity (659 mL/g) than the former. Upon bleaching with the AOpAZRP sequence, diethanolamine pulp exhibited higher viscosity (783 mL/g), and the properties of the paper sheets were close to or even better to those from soda-anthraquinone pulp, namely: 22.2 vs 20.4 Nm/g tensile index, 1.30 vs 1.42 kN/g burst index, 0.71 vs 0.70 mN m(2)/g tear index and 71.3% vs 77.5% brightness. Therefore, the properties of paper from diethanolamine pulp evolved more favourably during bleaching than did those of paper from soda-anthraquinone pulp.  相似文献   

7.
The ability of the mixture of alpha-linked glucose oligomers in corn syrup to function as intrafiber components of paper is statistically assessed at the 95% confidence level for two degrees of refining (257 and 402 mL CSF) of never-dried commercial softwood and hardwood/softwood pulps. Independent of the extent of refining, the replacement of the beaten fibers by corn syrup at about the 6% level does not result in a statistically significant deterioration (two-sided t-test, p=0.05) of the ISO brightness or of the tensile, tear, burst or surface strength values of the resultant papers. The economic potential of such fiber replacement is discussed. As paper additives, the mixed alpha-oligomers (corn syrup), glucose and lactose perform indistinguishably.  相似文献   

8.
Abstract: Treatment of wood chips with lignin-degrading fungi prior to pulping has been shown to have great potential for mechanical as well as chemical pulping on a laboratory scale. Ceriporiopsis subvermispora , when grown on aspen or loblolly pine for 4 weeks, was found to be superior to other fungi. On aspen there was an energy savings of 47%, and an increase in burst and tear indices of 22% and 119%, respectively. With loblolly pine, energy savings amounted to 37%, while burst and tear indices increased by 41% and 54%, respectively. The weight loss was only 6%, but a decrease in optical properties had to be accepted. After sulfite cooking of wood chips pretreated for 2 weeks, the Kappa number decreased by 30% with hard- and softwood. Tensile and tear indices decreased by only 10%, while the brightness of unbleached pulp increased by 4% with birch. Information obtained by immunoelectron microscopy and differential staining led to the conclusion that the biopulping effect obtained after 2 weeks of incubation cannot be explained by the direct action of enzymes on lignin or polysaccharides. Instead, a low molecular mass agent is considered to be responsible for the biopulping effect. These results have changed the aims of biopulping from an emphasis on removing the bulk of lignin to an emphasis on a short-term process, lasting 2 weeks and yielding a low mass loss. Data on these kinetics of fungal development and the degree of asepsis will help to scale-up the process. An advanced chip pile is assumed to be the most feasible process design, rather than a controlled enclosed reactor.  相似文献   

9.
This paper reports the development of natural cellulose fibers from hop stems with properties similar to that of hemp. Hop stems are currently considered as byproducts and have limited applications. Since hop belongs to the genus cannabis that also includes hemp, it should be possible to obtain natural cellulose fibers from the stems of hop plants with properties similar to that of hemp. A simple alkaline extraction was used to obtain fibers from the bark of hop stems. Fibers obtained have high cellulose content, low% crystallinity but show good orientation of the cellulose crystals to the fiber axis. The strength and modulus of the fibers are lower but elongation is higher than that of hemp. Based on the properties of the fibers, we expect that the hop stem fibers will be suitable for use in textiles and composites similar to the common cellulose fibers currently in use.  相似文献   

10.
Biomechanical researches are essential to develop new techniques to improve the clinical relevance. Skeletal muscle generates the force which results in the motion of human body, so it is essential to study the mechanical and structural properties of skeletal muscle. Many researchers have carried out mechanical study of skeletal muscle with in-vivo testing. This work aims to examine anisotropic mechanical behavior of skeletal muscle with in vitro test (tensile test). It is important to understand the mechanical and structural behavior of skeletal muscle when it is subjected to external loading; the research aims to determine the structural properties of skeletal muscle by tensile testing. Tensile testing is performed on 5 samples of skeletal muscle of a goat at the rate of 1mm/min with fiber orientation along the length and 45° inclined to the length. It is found that muscle is stiffer in the direction parallel to the muscle fiber than at 45° to the muscle fibers. The tensile strength of the skeletal muscle along the fiber direction is 0.44 MPa at maximum load of 110 N and for direction 45° inclined to the muscle fibers, the strength is 0.234 MPa at max load 43 N. The displacement of Muscle sample against the maximum load is small along the length of the muscle fiber i.e. under longitudinal elongation [15.257 mm] as compared to 45° inclined to the length of skeletal muscle [17.775 mm] and under cross fiber elongation [19.7291mm by FEA]. The testing is not performed for 90° fiber orientation due to unavailability of soft tissue in cross fiber direction of the required specification, but finite element analysis is done on the skeletal muscle for the cross fiber orientation. As the fiber orientation within skeletal muscle differs with respect to the length of the muscle, the stiffness of skeletal muscle is also changing effectively. Hence skeletal muscle exhibits the anisotropic mechanical behavior.  相似文献   

11.
The inferior olivary nucleus provides one of the two main inputs to the cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be related to timing of motor commands and/or motor learning. Climbing fiber spikes lead to large all-or-none action potentials in cerebellar Purkinje cells, overriding any other ongoing activity and silencing these cells for a brief period of time afterwards. Empirical evidence shows that the climbing fiber can transmit a short burst of spikes as a result of an olivary cell somatic spike, potentially increasing the information being transferred to the cerebellum per climbing fiber activation. Previously reported results from in vitro studies suggested that the information encoded in the climbing fiber burst is related to the occurrence of the spike relative to the ongoing sub-threshold membrane potential oscillation of the olivary cell, i.e. that the phase of the oscillation is reflected in the size of the climbing fiber burst. We used a detailed three-compartmental model of an inferior olivary cell to further investigate the possible factors determining the size of the climbing fiber burst. Our findings suggest that the phase-dependency of the burst size is present but limited and that charge flow between soma and dendrite is a major determinant of the climbing fiber burst. From our findings it follows that phenomena such as cell ensemble synchrony can have a big effect on the climbing fiber burst size through dendrodendritic gap-junctional coupling between olivary cells.  相似文献   

12.
Nanofibrous biocomposite scaffolds of type I collagen and nanohydroxyapatite (nanoHA) of varying compositions (wt %) were prepared by electrostatic cospinning. The scaffolds were characterized for structure and morphology by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The scaffolds have a porous nanofibrous morphology with random fibers in the range of 500-700 nm diameters, depending on the composition. FT-IR and XRD showed the presence of nanoHA in the fibers. The surface roughness and diameter of the fibers increased with the presence of nanoHA in biocomposite fiber as evident from AFM images. Tensile testing and nanoindendation were used for the mechanical characterization. The pure collagen fibrous matrix (without nanoHA) showed a tensile strength of 1.68 +/- 0.10 MPa and a modulus of 6.21 +/- 0.8 MPa with a strain to failure value of 55 +/- 10%. As the nanoHA content in the randomly oriented collagen nanofibers increased to 10%, the ultimate strength increased to 5 +/- 0.5 MPa and the modulus increased to 230 +/- 30 MPa. The increase in tensile modulus may be attributed to an increase in rigidity over the pure polymer when the hydroxyapatite is added and/or the resulting strong adhesion between the two materials. The vapor phase chemical crosslinking of collagens using glutaraldehyde further increased the mechanical properties as evident from nanoindentation results. A combination of nanofibrous collagen and nanohydroxyapatite that mimics the nanoscale features of the extra cellular matrix could be promising for application as scaffolds for hard tissue regeneration, especially in low or nonload bearing areas.  相似文献   

13.
Some properties of alginate gels derived from algal sodium alginate   总被引:1,自引:0,他引:1  
Alginic acid in soluble sodium alginate turns to insoluble gel after contact with divalent metal ions, such as calcium ions. The sodium alginate character has an effect on the alginate gel properties. In order to prepare a suitable calcium alginate gel for use in seawater, the effects of sodium alginate viscosity and M/G ratio (the ratio of D-mannuronate to L-guluronate) on the gel strength were investigated. The wet tensile strengths of gel fibers derived from high viscosity sodium alginate were higher than those from low viscosity sodium alginate. The tensile strength increased with diminishing sodium alginate M/G ratio. Among the gel fibers tested, the gel fiber obtained from a sodium alginate I-5G (1% aqueous solution viscosity = 520 mPa·s, M/G ratio = 0.6) had the highest wet tensile strength. After 13 days treatment in seawater, the wet tensile strength of the gel fiber retained 36% of the original untreated gel strength. For sodium alginates with similar viscosities, the seawater tolerance of low M/G ratio alginate was greater than that of the high M/G ratio one. This study enables us to determine a suitable calcium alginate gel for use in seawater.  相似文献   

14.
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.  相似文献   

15.
Cui W  Li X  Zhu X  Yu G  Zhou S  Weng J 《Biomacromolecules》2006,7(5):1623-1629
This study was aimed at assessing the potential use of electrospun fibers as drug delivery vehicles with focus on the different diameters and drug contents to control drug release and polymer fiber degradation. A drug-loaded solvent-casting polymer film was made with an average thickness of 100 microm for comparative purposes. DSC analysis indicated that electrospun fibers had a lower T(g) but higher transition enthalpy than solvent-casting polymer film due to the inner stress and high degree of alignment and orientation of polymer chains caused by the electrospinning process. Inoculation of paracetanol led to a further slight decrease in the T(g) and transition enthalpy. An in vitro drug release study showed that a pronounced burst release or steady release phase was initially observed followed by a plateau or gradual release during the rest time. Fibers with a larger diameter exhibited a longer period of nearly zero order release, and higher drug encapsulation led to a more significant burst release after incubation. In vitro degradation showed that the smaller diameter and higher drug entrapment led to more significant changes of morphologies. The electrospun fiber mat showed almost no molecular weight reduction, but mass loss was observed for fibers with small and medium size, which was characterized with surface erosion and inconsistent with the ordinarily polymer degrading form. Further wetting behavior analysis showed that the high water repellent property of electrospun fibers led to much slower water penetration into the fiber mat, which may contribute to the degradation profiles of surface erosion. The specific degradation profile and adjustable drug release behaviors by variation of fiber characteristics made the electrospun nonwoven mat a potential drug delivery system rather than polymer films and particles.  相似文献   

16.
Paper sheets from olive tree wood pulp obtained by soda, sulphite or kraft pulping were studied to examine the influence of pulp beating on properties of the paper sheets.Paper sheets from kraft and sulphite pulps exhibited the highest resistance, and sulphite pulp the highest brightness. Soda pulp required more intensive beating than did kraft or sulphite pulps; in fact, the PFI beater had be operated at a 40–50% higher number of beating revolutions to obtain soda pulp with 70–80° SR.The breaking length, stretch, burst index and tear index of paper sheets obtained from kraft pulp, beaten to a Shopper–Riegler index of 70–80° SR were 20–30%, 30–50%, 50–60% and 15–35% higher, respectively, than those of sheets obtained from soda pulp.  相似文献   

17.
Fiber network theory was developed to describe cloth, a thin material with strength in the fiber directions. The interosseous ligament (IOL) of the forearm is a broad, thin ligament with highly aligned fibers. The objectives of this study were to develop a model of the stress and strain distributions in the IOL, based on fiber network theory, to compare the strains from the model with the experimentally measured strains, and to evaluate the force distribution across the ligament fibers from the model. The geometries of the radius, ulna, and IOL were reconstructed from CT scans. Position and orientation of IOL insertion sites and force in the IOL were measured during a forearm compression experiment in pronation, neutral rotation, and supination. An optical image-based technique was used to directly measure strain in two regions of the IOL in neutral rotation. For the network model, the IOL was represented as a parametric ruled three-dimensional surface, with rulings along local fiber directions. Fiber strains were calculated from the deformation field, and fiber stresses were calculated from the strains using average IOL tensile properties from a previous study. The in situ strain in the IOL was assumed uniform and was calculated so that the net force predicted by the network model in neutral rotation matched the experimental result. The net force in the IOL was comparable to experimental results in supination and pronation. The model predicted higher stress and strain in fibers near the elbow in neutral rotation, and higher stresses in fibers near the wrist in supination. Strains in neutral forearm rotation followed the same trends as those measured experimentally. In this study, a model of stress and strain in the IOL utilizing fiber network theory was successfully implemented. The model illustrates variations in the stress and strain distribution in the IOL. This model can be used to show surgeons how different fibers are taut in different forearm rotation positions-this information is important for understanding the biomechanical role of the IOL and for planning an IOL reconstruction.  相似文献   

18.
Effects of intracellular ionic strength on the isotonic contraction properties of both intact fibers and skinned fibers give insights into the cross-bridge mechanism, but presently there is fundamental disagreement in the results on the two fiber preparations. This paper, which studies the effects on contraction of varying the osmotic pressure of the bathing medium with impermeant and permeant solutes, explains the above controversy and establishes the physiological significance of the previous results on skinned fibers. Fast-twitch fibers, isolated singly from tibialis and semitendinosus muscles of frogs, were activated by a temperature-jump technique in hyperosmotic solutions with either 100 or 150 mM sucrose (impermeant), or 50 or 75 mM KCl (permeant). Intracellular ionic strength was expected to rise in these solutions from the standard value of approximately 190 to 265 mM. Cell volume and the speed of unloaded shortening both decreased with sucrose and were constant with KCl. On the other hand, isometric force decreased equally with equiosmolar addition of either solute; this is additional evidence that contractile force decreases with ionic strength and is independent of fiber volume. Therefore, for the main cross-bridges, force per bridge is constant with changes in the lateral separation between the myofilaments. The next finding, that at a fixed cell volume the contraction speed is constant with KCl, provides clear evidence in intact fibers that the intrinsic speed of shortening is insensitive to increased ionic strength. The data with KCl are in agreement with the results on skinned fibers. The results suggest that in the cross-bridge kinetics in vivo the rate-limiting step is different for force than that for shortening. On the other hand, the decrease in speed with sucrose is associated with the shrinkage in cell volume, and is explained by the possibility of an increased internal load. A major fraction of the internal load may arise from unusual interactions between the sliding filaments; these interactions are enhanced in the fibers compressed with sucrose, but this does not affect the intrinsic kinetics of the main cross-bridges.  相似文献   

19.
This work presents the comparative study on the dyeing behavior of cellulose fibers in alkaline solutions and under the influence of UV radiation. The cellulosic fabrics were pretreated followed by conventional mercerization technique or treatment with UV irradiation. For different time duration the reorganization of cellulose fibers by swelling treatments in alkaline solutions results in numerous structural modifications, causing changes of their accessibility and/or reactivity. The results revealed that the swelling of the cellulosic fibers depends on type of pre-treatment, dose of the radiation and the concentration of alkaline solution used. SEM analysis confirmed that UV irradiation of the cellulosic fibers leads to a higher swelling in comparison with any concentration of NaOH treatment. In comparison of both the treatments, the mercerized cellulosic fibers have shown better tear and tensile strength as compared to the untreated and UV irradiated one. There is adverse effect of UV radiation on the mechanical properties of UV radiation. Moreover, no loss in weight was observed after exposing the cellulose fabrics surface to UV radiation.  相似文献   

20.
We studied the mechanical and anatomical anisotropy of the canine diaphragmatic central tendon (CT). Dumb-bell-shaped strips with effective dimensions of 10 x 2 mm (length x width) were cut from different regions of the canine diaphragmatic CT in two different orientations relative to the direction of neighboring muscle fibers. Specimens sampled with their long axial dimension oriented parallel to the neighboring muscle fibers were named Group-1 and those sampled with an orientation perpendicular to the neighboring muscle fibers were named Group-2. Results from one-dimensional stress-strain and tensile failure strength tests revealed that the CT is a nonlinear, inelastic, and anisotropic material. Group-1 specimens were found to have a higher stiffness, higher failure strength and higher strain energy density at failure than Group-2 specimens. Polarized microscopy showed that multiple sheets of collagen fiber bundles formed an orthogonal network in the tendon. Collagen fiber bundles along Group-1 direction formed parallel trajectory lines connecting the neighboring costal and crural muscles; bundles along Group-2 direction were observed to orient 90 degrees away. At the central apex region of the CT, collagen bundles of Group-1 formed a fan-like trajectory pattern. This collagen network architecture was compared favorably to the trajectories of an approximated principal stress field in the CT due to simulated contractile forces from its adjacent costal and crural muscles. These combined results suggest a structure-function relationship for the anatomical and mechanical anisotropy in the canine diaphragmatic CT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号