首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基因治疗载体及其基因转移技术的关键问题与研究现状   总被引:3,自引:0,他引:3  
目前使用的基因治疗载体及其基因转移技术中还没有一种能用于临床并永久有效的基因转移技术 .该文分析了直接体内转移、间接体内转移及其非载体法、病毒载体法、非病毒性生物载体法等基因治疗转移技术存在的一些关键问题 ,并探讨了各问题的解决办法或研究策略以及基因治疗载体研究的发展方向  相似文献   

2.
Gene therapy for Parkinson's disease   总被引:4,自引:0,他引:4  
Gene therapy is a potentially powerful approach to the treatment of neurological diseases. The discovery of neurotrophic factors inhibiting neurodegenerative processes and neurotransmitter-synthesizing enzymes provides the basis for current gene therapy strategies for Parkinson's disease. Genes can be transferred by viral or nonviral vectors. Of the various possible vectors, recombinant retroviruses are the most efficient for genetic modification of cells in vitro that can thereafter be used for transplantation (ex vivo gene therapy approach). Recently, in vivo gene transfer to the brain has been developed using adenovirus vectors. One of the advantages of recombinant adenovirus is that it can transduced both quiescent and actively dividing cells, thereby allowing both direct in vivo gene transfer and ex vivo gene transfer to neural cells. Probably because the brain is partially protected from the immune system, the expression of adenoviral vectors persists for several months with little inflammation. Novel therapeutic tools, such as vectors for gene therapy have to be evaluated in terms of efficacy and safety for future clinical trials. These vectors still need to be improved to allow long-term and possibly regulatable expression of the transgene.  相似文献   

3.
BACKGROUND: Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. METHODS: The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. RESULTS: We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. CONCLUSIONS: These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.  相似文献   

4.
Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches.  相似文献   

5.
Kaneda Y  Morishita R 《Human cell》1999,12(3):109-114
More than 300 protocols have been developed for human gene therapy, but, it has not yet been proved to be a successful therapeutic strategy. One of the most important barriers to success is the development of efficient gene delivery systems. We have developed HVJ-liposomes by combining fusion proteins of HVJ (Hemagglutinating virus of Japan; Sendai virus) with liposomes containing DNA. This vector system has been very effective for in vivo gene delivery, especially in cardiovascular systems. Using HVJ-liposomes, we have reported successful gene therapy experiments such as prevention of restenosis after balloon injury, suppression of dysfunction of vein graft, and experimental ischemic disorders. Indeed, the success in the treatment of arteriosclerosis obliterance by VEGF (vascular endothelial growth factor) gene transfer was reported recently. These cardiovascular gene therapy strategies appear to be very promising therapeutics in future.  相似文献   

6.
Prospects of ex vivo cutaneous gene therapy rely on stable corrective gene transfer in epidermal stem cells followed by engraftment of corrected cells in patients. In the case of cancer prone genodermatoses, such as xeroderma pigmentosum, cells that received the corrective gene must be selected. However, this step is potentially harmful and can increase risks of immune rejection of grafts. These obstacles have recently been overcome thanks to the labeling of genetically modified stem cells using a small epidermal protein naturally absent in stem cells. This approach was shown to be respectful of the fate of epidermal stem cells that retained full growth and differentiation capacities, as well as their potential to regenerate normal human skin when grafted in a mouse model in the long term. These progresses now open realistic avenues towards ex vivo cutaneous gene therapy of cancer prone genodermatoses such as xeroderma pigmentosum. However, major technical improvements are still necessary to preserve skin appendages which would contribute to aesthetic features and comfort of patients.  相似文献   

7.
Gene transfer technology has spawned an entire realm of clinical investigation, collectively referred to as "gene therapy." The feasibility and achievements of gene therapy to prevent and treat glucose homeostasis disorders, with particular emphasis on diabetes mellitus, are evaluated in this review. While a considerable amount of effort has yielded gene delivery vectors based on adenoviral, retroviral, and herpes simplex virus DNA, the number of successful clinical applications has not been as impressive. Despite the number of successes in vitro and in animal models, preliminary safety trials in humans have not yet been attempted. The current state of this science, outlined here, underlines the necessity of marrying gene transfer technology with cell therapy. The ex vivo transfer of gene combinations into a variety of cell types will likely prove more therapeutically feasible than direct in vivo vector transfer. Current efforts aimed at assessing the future of gene therapy for diabetes must, at the very least, take into account the importance of moving successful methods into human safety trials.  相似文献   

8.
The ability of various cytokines to hamper tumor growth or to induce anti-tumor immune response has resulted in their study as antitumor agents in gene therapy approaches. In this review we will concentrate on the costimulation of antitumor immune responses using modification of various cell types by cytokine genes. Several strategies have emerged such as (i). modification of tumor cells with cytokine genes ex vivo (whole tumor cell vaccines), (ii). ex vivo modification of other cell types for cytokine gene delivery, (iii). delivery of cytokine genes into tumor microenvironment in vivo, (iv). modification of dendritic cells with cytokine genes ex vivo. Originally single cytokine genes were used. Subsequently, multiple cytokine genes were applied simultaneously, or in combination with other factors such as chemokines, membrane bound co-stimulatory molecules, or tumor associated antigens. In this review we discuss these strategies and their use in cancer treatment as well as the promises and limitations of cytokine based cancer gene therapy. Clinical trials, including our own experience, employing the above strategies are discussed.  相似文献   

9.
Watts KL  Adair J  Kiem HP 《Cytotherapy》2011,13(10):1164-1171
Hematopoietic stem cell (HSC) gene therapy remains a highly attractive treatment option for many disorders, including hematologic conditions, immunodeficiencies including human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS), and other genetic disorders such as lysosomal storage diseases. In this review, we discuss the successes, side-effects and limitations of current gene therapy protocols. In addition, we describe the opportunities presented by implementing ex vivo expansion of gene-modified HSC, as well as summarize the most promising ex vivo expansion techniques currently available. We conclude by discussing how some of the current limitations of HSC gene therapy could be overcome by combining novel HSC expansion strategies with gene therapy.  相似文献   

10.
TCR基因修饰T细胞的过继性免疫治疗是指将识别肿瘤抗原的特异性TCR基因转导至外周血T细胞,经大量扩增后回输给患者,从而发挥抗肿瘤效应的一种治疗技术。目前TCR基因治疗所面临的关键问题之一是如何改造修饰转TCR基因使得转TCR α链和β链在T细胞表面优先配对以提高转T细胞的功能,并避免off-target反应毒性的产生。最近,各种基因修饰策略被用于优化转TCR基因配对和减少错配。介绍了近年来针对TCR基因进行修饰改造的各种策略及TCR基因治疗的临床试验。  相似文献   

11.
This review provides insight into two clinical trials conducted with ex vivo manipulated CD34+ cells. The first was an attempt to deliver a gene therapy for treatment of HIV and the second an attempt to improve rates of hemopoietic recovery with ex vivo generated myeloid cells.  相似文献   

12.
Cancer immunogene therapy: A review   总被引:5,自引:0,他引:5  
Although immunotherapy has long held out promise as a specific, potent approach to cancer therapy, clinical applications have been unrewarding to date. However, advances in gene transfer technology and basic immunology have opened new avenues to stimulate antitumor immune responses including immunogene therapy. Many different approaches to immunogene therapy have been identified. These include transferring genes encoding proinflammatory proteins to tumor cells, suppressing immunosuppressive gene expression, and transferring proinflammatory genes and/or tumor antigen genes to professional antigen-presenting cells. In some cases, genes are transferred to tumor or antigen-presenting cells in situ. In others, gene transfer is performed ex vivo as part of preparing an anticancer vaccine. We discuss the underlying approach, relative success, and clinical application of various cancer immunogene therapy strategies, paying particular attention to immunogene therapy vaccines. Large numbers of preclinical studies have been reported, but only scattered clinical trial results have appeared in the literature. Although very successful preclinically, the ideal cancer immunogene therapy approach remains to be determined and will likely vary with tumor type. Clinical impact may be improved in the future as treatment protocols are refined.  相似文献   

13.
Endothelial nitric oxide synthase (eNOS) is an attractive target for cardiovascular gene therapy. Marrow stromal cells (MSCs), also known as mesenchymal stem cells, hold great promise for use in adult stem cell-based cell and gene therapy. To determine the feasibility of adenoviral-mediated eNOS gene transfer into ex vivo expanded MSCs, rat MSCs (rMSCs) were isolated, expanded ex vivo, and transduced with Ad5RSVeNOS, an adenoviral vector containing the eNOS gene under the control of the Rous sarcoma virus promoter. The presence of eNOS protein in Ad5RSVeNOS-transduced rMSCs was confirmed by immunohistochemical and Western blot analysis. Transduction efficiency was dose dependent, and eNOS transgene expression in rMSCs persisted for =" BORDER="0">21 days in culture. The rMSCs retained multipotential differentiation capability after adenoviral-mediated eNOS gene transfer. Furthermore, intracavernosal injection of Ad5RSVeNOS-transduced rMSCs increased the expression of eNOS in the corpus cavernosum, and stem cells were identified within corporal sinusoids. These findings demonstrate that replication-deficient recombinant adenovirus can be used to engineer ex vivo expanded rMSCs and that high-level eNOS transgene expression can be achieved, pointing out the clinical potential of using this novel adult stem cell-based gene therapy method for the treatment of cardiovascular diseases. adenoviral vector; nitric oxide; gene expression; differentiation; gene therapy  相似文献   

14.
The etiology of many neurodegenerative diseases has been identified in recent years. Treatment of central nervous system (CNS) disease could focus on one or more steps that lead to cell loss. In the past decade, cell therapy and/or ex vivo gene therapy have emerged as possible strategies for the treatment of neurodegenerative diseases. The ability to grow CNS-derived neural progenitor cells using growth factors has been extremely useful to study diverse phenomena including lineage choice, commitment and differentiation. By virtue of their biological properties and their presence in the adult CNS, neural progenitors represent good candidates for multiple cell-based therapies for neural diseases. Further identification of the molecules that direct the differentiation of adult neural progenitors may allow their activation in vivo to induce self-repair. This review addresses the nature, distribution and regulation of neural stem cells and the potential for applying these cells to both structural CNS repair and gene therapy.  相似文献   

15.
Rheumatoid arthritis (RA) is a severe autoimmune systemic disease. Chronic synovial inflammation results in destruction of the joints. No conventional treatment is efficient in RA. Gene therapy of RA targets mainly the players of inflammation or articular destruction: TNF-alpha or IL-1 blocking agents (such as anti-TNF-alpha monoclonal antibodies, soluble TNF-alpha receptor, type II soluble receptor of IL-1, IL-1 receptor antagonist), antiinflammatory cytokines (such as IL-4, IL-10, IL-1), and growth factors. In this polyarticular disease, the vector expressing the therapeutic protein can be administered as a local (intra-articular injection) or a systemic treatment (extra-articular injection). All the main vectors have been used in experimental models, including the more recent lentivirus and adeno-associated virus. Ex vivo gene transfer was performed with synovial cells, fibroblasts, T cells, dendritic cells, and different cells from xenogeneic origin. In vivo gene therapy is simpler, although a less controlled method. Clinical trials in human RA have started with ex vivo retrovirus-expressing IL-1 receptor antagonists and have demonstrated the feasibility of the strategy of gene therapy. The best target remains to be determined and extensive research has to be conducted in preclinical studies.  相似文献   

16.
The establishment of efficient gene delivery to target human tissue is a major obstacle for transition of gene therapy from the pre-clinical phases to the clinic. The poor long-term patency rates for coronary artery bypass grafting (CABG) is a major clinical problem that lacks an effective and proven pharmacological intervention. Late vein graft failure occurs due to neointima formation and accelerated atherosclerosis. Since CABG allows a clinical window of opportunity to genetically modify vein ex vivo prior to grafting it represents an ideal opportunity to develop gene-based therapies. Adenoviral vectors have been frequently used for gene delivery to vein ex vivo and pre-clinical studies have shown effective blockade in neointima development by overexpression of candidate therapeutic genes. However, high titers of adenovirus are required to achieve sufficient gene delivery to provide therapeutic benefit. Improvement in the uptake of adenovirus into the vessel wall would therefore be of benefit. Here we determined the ability of an adenovirus serotype 5 vector genetically-engineered with the RGD-4C integrin targeting peptide inserted into the HI loop (Ad-RGD) to improve the transduction of human saphenous vein smooth muscle cells (HSVSMC), endothelial cells (HSVEC) and intact saphenous vein compared to a non-modified virus (Ad-CTL). We exposed each cell type to virus for 10, 30 or 60 mins and measured transgene at 24 h post infection. For both HSVSMC and HSVEC Ad-RGD mediated increased transduction, with the largest increases observed in HSVSMC. When the experiments were repeated with intact human saphenous vein (the ultimate clinical target for gene therapy), again Ad-RGD mediated higher levels of transduction, at all clinically relevant exposures times (10, 30 and 60 mins tissue:virus exposure). Our study demonstrates the ability of peptide-modified Ad vectors to improve transduction to human vein graft cells and tissue and has important implications for gene therapy for CABG.  相似文献   

17.
Adeno-associated virus type 2 (AAV), a nonpathogenic human parvovirus, is gaining attention as a vector for potential use in human gene therapy. We and others have described AAV-mediated beta-globin gene transfer and expression in established human and murine erythroleukemia cell lines in vitro. However, successful AAV-mediated globin gene transduction of hematopoietic stem cells and long-term expression in vivo in progeny cells have not been documented. We report here that infection of murine hematopoietic bone marrow cells ex vivo with a recombinant AAV vector containing the genomic copy of a normal human globin gene followed by transplantation of these cells into lethally irradiated congenic mice resulted in efficient gene transfer into hematopoietic cells with long-term repopulating ability as detected by the presence of the human globin gene sequences in bone marrow and spleen in primary recipient mice for at least 6 months. Long-term expression of the human globin gene was also detected in bone marrow, but not in spleen, in primary recipient mice. Furthermore, in secondary-transplant experiments, we were also able to document the presence as well as expression of the transduced human globin gene in mouse bone marrow for up to 3 months. These results provide further support for potential use of the AAV-based vector system in gene therapy of human hemoglobinopathies in general and sickle-cell anemia and beta-thalassemia in particular.  相似文献   

18.
The easy accessibility of the skin as a therapeutic target provides an exciting potential for this organ for the development of gene therapy protocols for cutaneous diseases and a variety of metabolic disorders. Thus far, full phenotypic reversion of a diseased phenotype has been achieved in vivo for junctional epidermolysis bullosa and X-linked or lamellar ichthyosis and in vitro for xeroderma pigmentosum. These recessive skin diseases are characterized by skin blistering, abnormalities in epidermal differentiation and increased development of skin cancers, respectively. Corrective gene delivery at both molecular and functional levels was achieved by transduction of cultured skin cells using retroviral vectors carrying the specific curative cDNA. These positive results should prompt clinical trials based on transplantation of artificial epithelia reconstructed ex vivo using genetically modified keratinocytes. Promising results have also been obtained in phenotypic reversion of cells isolated from patients suffering from a number of metabolic diseases such as gyrate atrophy, familial hypercholesterolemia or phenylketonuria. In these diseases transplantation of autologous artificial epithelia expressing the transgenes of interest or direct transfer of the DNA to the skin represents a potential therapeutic approach for the systemic delivery of active molecules. Successful cutaneous gene therapy trials, however, require development of protocols for efficient gene transfer to epidermal stem cells, and information about the host immune response to the recombinant polypeptides produced by the implanted keratinocytes. The availability of spontaneous animal models for genodermatoses will validate the gene therapy approach in preclinical trials.  相似文献   

19.
Over the past dozen years, the majority of clinical gene therapy trials for inherited genetic diseases and cancer therapy have been performed using murine onco-retrovirus as the gene delivery vector. The earliest systems used were relatively inefficient in both the rates of transduction and expression of the transgene. Formidable obstacles inherent in the cell biology and/or the immunology of the target cell systems limited the efficacy of gene therapy for many target diseases. Development of novel retrovirus gene transfer systems that are in progress have begun to overcome these obstacles. Evidence of this progress is the recent successful functional correction of the immune T and B lymphocyte deficiency in patients with X-linked severe combined immunodeficiency (X-SCID) and adenosine deaminase (ADA)-deficient SCID following onco-retrovirus vector ex vivo transduction of autologous marrow stem cells [Science 296 (2002) 2410; Science 288 (2000) 669; N. Engl. J. Med. 346 (2002) 1185]. These achievements of prolonged clinical benefit from gene therapy were tempered by the finding of insertional mutageneses in two of the treated X-SCID patients [N. Engl. J. Med. 348 (2003) 255].  相似文献   

20.
For skin gene therapy, introduction of a desired gene into keratinocyte progenitor or stem cells could overcome the problem of achieving persistent gene expression in a significant percentage of keratinocytes. Although keratinocyte stem cells have not yet been completely characterized and purified for gene targeting purposes, lentiviral vectors may be superior to retroviral vectors at gene introduction into these stem cells, which are believed to divide and cycle slowly. Our initial in vitro studies demonstrate that lentiviral vectors are able to efficiently transduce nondividing keratinocytes, unlike retroviral vectors, and do not require the lentiviral accessory genes for keratinocyte transduction. When lentiviral vectors expressing green fluorescent protein (GFP) were directly injected into the dermis of human skin grafted onto immunocompromised mice, transduction of dividing basal and nondividing suprabasal keratinocytes could be demonstrated, which was not the case when control retroviral vectors were used. However, flow cytometry analysis demonstrated low transduction efficiency, and histological analysis at later time points provided no evidence for progenitor cell targeting. In an alternative in vivo method, human keratinocytes were transduced in tissue culture (ex vivo) with either lentiviral or retroviral vectors and grafted as skin equivalents onto immunocompromised mice. GFP expression was analyzed in these human skin grafts after several cycles of epidermal turnover, and both the lentiviral and retroviral vector-transduced grafts had similar percentages of GFP-expressing keratinocytes. This ex vivo grafting study provides a good in vivo assessment of gene introduction into progenitor cells and suggests that lentiviral vectors are not necessarily superior to retroviral vectors at introducing genes into keratinocyte progenitor cells during in vitro culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号