首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferrous iron oxidation by Thiobacillus ferrooxidans was studied in shake flasks and a bubble column under different aeration conditions. The maximum biooxidation rate constant was affected by oxygen transfer only at low aeration intensities. At oxygen transfer rates higher than 0.03 mmol O2 l−1 min−1, the maximum biooxidation rate constant was about 0.050 h−1 in both shake flasks of different size and the bubble column. The oxygen transfer rate could be used as a basis for scaling up bioreactors for ferrous iron biooxidation by T. ferrooxidans.  相似文献   

2.
3.
Analytical procedures have been modified to determine the abundance of muramic acid in four different Holocene sediment samples. Muramic acid is specific to the peptidoglycan moiety of the cell walls of most eubacterial pro‐karyotic organisms. The following procedure seemed to be the most appropriate for the detection of muramic acid and amino acids, including diaminopimelic acid. Hydrolysis of the samples (in 6 N HCl, 4.5 h, at 100°C) was followed by separation and purification of amino sugars and amino acids using Amberlite XAD‐2 and then Bio‐Rad AG 50W‐X8 resins. The N,O‐heptafluorobutyryl‐n‐butyl ester derivatives were prepared by esterification in acidified (3 N HCl) n‐butanol for 3 h at 100°C, followed by acylation by refluxing with heptafluorobutyric anhydride in acetonitrile (2:1 v/v) for 12 min at 150°C. The derivatives were analyzed by gas chromatography (GC) and gas chromatography‐mass spectrometry. Fast atom bombardment (FAB) ionization was used for the muramic acid derivative to determine its molecular weight and structure, d‐and l‐amino acids were separated by GC and a capillary chiral column. By using this technique a stable N,O‐heptafluo‐robutyryl‐n‐butyl ester derivative of muramic acid was identified at picogram levels in Holocene sedimentary microbial communities. It has been reported previously that microorganisms in sediments rapidly degrade muramic acid from cell walls of dead prokaryotes. Kinetic experiments revealed that muramic acid was relatively stable in intact cell walls but decomposed rapidly in the free form. These investigations noted above showed that the concentration of muramic acid may be used as an indicator of the presence of the intact cell walls of cyanobacteria and most other bacteria in Holocene microbial communities, and of microbial contamination in samples older than the Holocene.  相似文献   

4.
The outer membrane protein (omp40) component from the chemolithoautotrophic acidophilic Thiobacillus ferrooxidans is apparently regulated by the external pH and the concentration of phosphorus. Its amino-terminal sequence showed little identity with the Escherichia coli OmpC, OmpF or PhoE porins, but was 38.5% identical to the outer membrane channel-forming protein NosA from Pseudomonas stutzeri, whose expression is also regulated environmentally. In addition, the partial amino acid sequence of T. ferrooxidans omp40 showed between 34 and 38% identity with the amino-terminal end of the small outer membrane proteins Rck and PagC from Salmonella typhimurium and OmpX from Enterobacter cloacae.  相似文献   

5.
Abstract: Shift of three Thiobacillus ferrooxidans strains from Fe(II) to S0 or thiosulphate liquid medium caused distinctive changes in the outer membrane protein profile. In addition to a new 55-kDa protein which was synthesized only in the presence of sulphur compounds, a higher expression of a 47-kDa protein was observed. This latter protein appeared to be constitutively synthesized, since it was detectable in small amounts even in tile presence of ferrous iron as sole energy source, but its expression was greatly enhanced when elemental sulphur or thiosulphate were present in the growth medium.  相似文献   

6.
In this study, the feasibility and engineering aspects of acidophilic ferrous iron oxidation in a continuous biofilm airlift reactor inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria were investigated. Specific attention was paid to biofilm formation, competition between both types of bacteria, ferrous iron oxidation rate, and gas liquid mass transfer limitations. The reactor was operated at a constant temperature of 30 degrees C and at pH values of 0-1.8. Startup of the reactor was performed with basalt carrier material. During the experiments the basalt was slowly removed and the ferric iron precipitates formed served as a biofilm carrier. These precipitates have highly suitable characteristics as a carrier material for the immobilization of ferrous iron-oxidizing bacteria and dense conglomerates were observed. Lowering the pH (0.6-1) resulted in dissolution of the ferric precipitates and induced granular sludge formation. The maximum ferrous iron oxidation rate achieved in this study was about 145 molFe(2+)/m(3).h at a hydraulic residence time of 0.25 h. Optimal treatment performance was obtained at a loading rate of 100 mol/m(3).h at a conversion efficiency as high as 98%. Fluorescent in situ hybridization (FISH) studies showed that when the reactor was operated at high ferrous iron conversion (>85%) for 1 month, the desirable L. ferrooxidans species could out-compete A. ferrooxidans due to the low Fe(2+) and high Fe(3+) concentrations.  相似文献   

7.
The intermediary production of elemental sulfur during the microbial oxidation of reduced sulfur compounds has frequently been reported. Thiobacillus ferrooxidans, an acidophilic chemolithoautotroph, was found to produce an insoluble sulfur compound, primarily elemental sulfur, during the oxidation of thiosulfate, trithionate, tetrathionate and sulfide. This was confirmed by light and electron microscopy. Sulfur was produced from sulfide by an oxidative step, while the production from tetrathionate was initiated by a hydrolytic step, probably followed by a series of chemical reactions. The oxidation of intermediary sulfur was severely inhibited by sulfhydryl-binding reagents such as N-ethylmaleimide, by the addition of uncouplers or after freezing and thawing of the cells, which probably damaged the cell membrane. The mechanisms behind these inhibitions have not yet been clarified. Finally, it was observed that elemental sulfur oxidation by whole cells depended on the medium composition. The absence of sulfate or selenate reduced the sulfur oxidation rate.Non-standard abbreviations NEM N-ethylmaleimide - CCCP carbonyl cyanide m-chlorophenyl hydrazone  相似文献   

8.
The hybrid system obtained by conjugating the protein azurin, which is a very stable and well-described protein showing a unique interplay among its electron transfer and optical properties, with 20-nm sized gold nanoparticles has been investigated. Binding of azurin molecules to gold nanoparticle surface results in the red shift of the nanoparticle resonance plasmon band and in the quenching of the azurin single tryptophan fluorescence signal. These findings together with the estimate of the hydrodynamic radius of the composite, obtained by means of Dynamic Light Scattering, are consistent with the formation of a monolayer of protein molecules, with preserved natural folding, on nanoparticle surface. The fluorescence quenching of azurin bound molecules is explained by an energy transfer from protein to metal surface and it is discussed in terms of the involvement of the Az electron transfer route in the interaction of the protein with the nanoparticle.  相似文献   

9.
冯言  刘马峰  程安春 《微生物学报》2016,56(7):1061-1069
几乎所有细菌的生长都离不开铁元素。在有氧的环境中,三价铁离子几乎无法被细菌直接利用。但是在宿主胃肠道中,铁元素主要以可溶性的亚铁离子形式存在,它们可通过革兰氏阴性菌外膜直接进入胞周质,在周质通过亚铁离子转运系统,将铁离子转运至胞浆供细菌利用。绝大多数阴性菌主要是通过Feo转运系统利用亚铁离子,大肠杆菌的Feo转运系统由feoA、feoB和feoC3个基因组成。除Feo转运系统外,还发现Yfe转运系统、Efe转运系统、Sit转运系统等。本文重点介绍革兰氏阴性菌Feo转运系统的组成及作用机制,以期为进一步研究细菌亚铁离子的转运机制提供参考。  相似文献   

10.
PVA-cryogels entrapping about 109 cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well. A maximum oxidation rate of 3.1 g Fe2+ l–1 h–1 was achieved at the dilution rate of 0.4 h–1 or higher, while no obvious precipitate was determined at this time. In addition, cell-immobilized PVA-cryogels packed in bioreactor maintained their oxidative ability for more than two months under non-sterile conditions. Nomenclature: C A0 – Concentration of Fe2+ in feed stream (g l–1) C A – Concentration of Fe2 + in outlet stream (g l– 1) D – Dilution rate of the packed-bed bioreactor (h–1) F – Volumetric flow rate of iron solution (l h–1) F A0 – Mass flow rate of Fe2+ in the feed stream (g h–1) K – Kinetic constant (l l–1 h–1) r A – Oxidation rate of Fe2+ (g l–1 h–1) V – Volume of packed-bed bioreactor (l) X A – Conversion ratio of Fe2+ (%)  相似文献   

11.
The cyclic electron transfer system in purple bacteria is composed of the photosynthetic reaction center, the cytochromebc 1 complex, cytochromec 2, and ubiquinone. These components share many characteristics with those of photosynthesis and respiration in other organisms. Studies of the cyclic electron transfer system have provided useful insights about the evolution and general mechanisms of membranous energy-conserving systems. The photosynthetic system in purple bacteria may represent a prototype of highly efficient, energy-conserving electron transfer systems in the organisms. Recipient of the Botanical Society Award of Young Scientists, 1992  相似文献   

12.
Most Candida albicans cells cultured in RPMI1640 medium at 37 degrees C grow in hyphal form in aerobic conditions, but they grow in yeast form in anaerobic conditions. The hyphal growth of C. albicans was inhibited in glucose-deficient conditions. Malonic acid, an inhibitor of succinate dehydrogenase, enhanced the yeast proliferation of C. albicans, indicating that the hyphal-formation signal was derived from the glycolysis system and the signal was transmitted to the electron transfer system via the citric acid cycle. Thenoyl trifluoro acetone (TTFA), an inhibitor of the signal transmission between complex II and Co Q, significantly inhibited the hyphal growth of C. albicans. Antimycin, KCN, and oligomycin, inhibitors of complex III, IV, and V, respectively, did not inhibit the hyphal growth of C. albicans. The production of mRNAs for the hyphal formation signal was completely inhibited in anaerobic conditions. These results indicate that the electron transfer system functions upstream of the RAS1 signal pathway and activates the expression of the hyphal formation signal. Since the electron transfer system is inactivated in anaerobic conditions, C. albicans grew in yeast form in this condition.  相似文献   

13.
The conjugated redox reaction was driven across the electron transfer membrane prepared from a urethane prepolymer to carry positive charge, where NADP+ as electron transfer carrier was adsorbed in the prepared polyurethane membrane. Glutathione reductase [NAD (P)H: oxidized-glutathione oxidoreductase (EC 1.6.4.1)] was used as the catalyst for production of the reduced form of glutathione (GSH) from the oxidized form (GSSG) in the objective reaction, and methyl viologen (MV) was used for the electrochemical regeneration of NADPH in the subreaction. The conjugated redox reaction in the separated reactions system, using the three-compartment cell with two membranes, was successful without MV contamination. Under the given conditions, the conversion ratio of GSH from GSSG reached 50% after 4 h of incubation at 30°C and the amount of GSH accumulated was 0.5 μmol ml−1 of reaction mixture.  相似文献   

14.
In this contribution, we have studied the dynamics of electron transfer (ET) of a flavoprotein to the bound cofactor, an important metabolic process, in a model molecular/macromolecular crowding environments. Vitamin B2 (riboflavin, Rf) and riboflavin binding protein (RBP) are used as model cofactor and flavoprotein, respectively. An anionic surfactant sodium dodecyl sulfate (SDS) is considered to be model crowding agent. A systematic study on the ET dynamics in various SDS concentration, ranging from below critical micellar concentration (CMC), where the surfactants remain as monomeric form to above CMC, where the surfactants self-assemble to form nanoscopic micelle, explores the dynamics of ET in the model molecular and macromolecular crowding environments. With energy selective excitation in picosecond-resolved studies, we have followed temporal quenching of the tryptophan residue of the protein and Rf in the RBP–Rf complex in various degrees of molecular/macromolecular crowding. The structural integrity of the protein (secondary and tertiary structures) and the vitamin binding capacity of RBP have been investigated using various techniques including UV–Vis, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) studies in the crowding environments. Our finding suggests that the effect of molecular/macromolecular crowding could have major implication in the intra-protein ET dynamics in cellular environments.  相似文献   

15.
Ionic strength dependencies of electron transfer between Cytochrome b 5 and variants of yeast Cytochrome c were analyzed by curve fitting to the simple model of the electrostatic interaction between the two proteins assuming the process to be non-diffusion-controlled. Mutagenesis of Lys79, but not Lys72, leads to an increase of effective radius of the interacting charged species, suggesting that the mutation effects of the two residues on the electrostatic field distribution near the contact site are different, even within the crude electrostatic model used. Extrapolation of the ionic strength dependencies to infinite ionic strength resulted in similar values, around (2–3)×10-6 for all Cyt c variants considered thus showing the lysine residue mutations to primarily affect protein association rather than the electron transfer directly. Based on the ionic strength dependencies of binding constants of the two proteins into an electrostatically stabilized complex, the monomolecular electron transfer rate constant was estimated to be 1.1×104–1.6×105 s-1. The electrostatic part of the binding energy of the complex at I=0.19 was estimated to be-2.4 kcal/mol, strongly at variance with the values-13.0 and-6.4 kcal/mol reported for the two types of complexes identified using Brownian dynamics techniques. Possible reasons for this discrepancy are discussed.  相似文献   

16.
 The intramolecular electron-transfer rate constant for the Cu(II)–topaNH2⇌ Cu(I)–topaSQ equilibrium in methylamine oxidase has been measured by temperature-jump relaxation techniques. At pH 7.0 the estimated kobs = 150±30 s–1 for both methylamine and benzylamine; assuming the equilibrium constant is ≈0.7–1 at pH 7.0 and 296 K, this would correspond to a forward electron-transfer rate constant kET≈ 60–75 s–1. Although substantially slower than the previously determined kET≈ 20 000 s–1 for pea seedling amine oxidase [5] steady-state kinetics measurements established that kET > kcat≈ 4–10 s–1. Thus the Cu(I)-semiquinone state is a viable intermediate in methylamine oxidase turnover. Received: 16 August 1995 / Accepted: 21 December 1995  相似文献   

17.
Copper-containing nitrite reductase is able to catalyze the reduction of nitrite with a turnover rate of several hundreds per second. Electrons for the reaction are donated by the electron transfer protein pseudoazurin. The process of protein complex formation, electron transfer and dissociation must occur on the millisecond timescale to enable the fast turnover of the enzyme. The structure of this transient protein complex has been studied using paramagnetic NMR spectroscopy. Gadolinium complexes were attached specifically through two engineered Cys residues on three sites on the surface of nitrite reductase, causing strong distance-dependent relaxation effects on the residues of pseudoazurin. Docking of the two proteins based on these NMR-derived distance restraints and the chemical shift perturbation data shows convergence to a cluster of structures with an average root-mean-square deviation of 1.5 Å. The binding interface consists of polar and non-polar residues surrounded by charges. The interprotein distance between the two type-1 copper sites is 15.5(± 0.5) Å, enabling fast interprotein electron transfer. The NMR-based lower limit estimate of 600 s−1 for the dissociation rate constant and the fast electron transfer are consistent with the transient nature of the complex.  相似文献   

18.
Shigeru Itoh 《BBA》1980,593(2):212-223
1. Electrogenic steps in photosynthetic cyclic electron transport in chromatophore membrane of Chromatium vinosum were studied by measuring absorption changes of added merocyanin dye and of intrinsic carotenoid.

2. The change in dye absorbance was linear with the membrane potential change induced either by light excitation or by application of diffusion potential by adding valinomycin in the presence of K+ concentration gradient.

3. It was estimated that chromatophore membrane became 40–60 mV and 110–170 mV inside positive upon single and multiple excitations with single-turnover flashes, respectively, from the responses of the dye and the carotenoid.

4. Electron transfers between cytochrome c-555 or c-552 and reaction center bacteriochlorophyll dimer (BChl2) and between BChl2 and the primary electron acceptor were concluded to be electrogenic from the redox titration of the dye response.

5. No dye response which corresponded to the change of redox level of cytochrome b was observed in the titration curve. Addition of antimycin A slightly decreased the dye response.

6. The dye response was decreased under phosphorylating conditions.

7. From the results obtained localization of the electron transfer components in chromatophore membrane is discussed.  相似文献   


19.
R.J. Debus  G.E. Valkirs  M.Y. Okamura  G. Feher 《BBA》1982,682(3):500-503
Inhibition of the electron transfer from QA to QB was measured in the presence of Fab fragments of antibodies directed against the subunits of reaction centers of Rhodopseudomonas sphaeroides R-26. Anti-M Fab inhibited the electron transfer, whereas anti-L Fab and anti-H Fab did not. From these experiments, we conclude that the binding site for QB is located on the M-subunit.  相似文献   

20.
The kinetics of charge recombination in Photosystem I P700-FA/FB complexes and P700-FX cores lacking the terminal iron?sulfur clusters were studied over a temperatures range of 310 K to 4.2 K. Analysis of the charge recombination kinetics in this temperature range allowed the assignment of backward electron transfer from the different electron acceptors to P700+. The kinetic and thermodynamic parameters of these recombination reactions were determined. The kinetics of all electron transfer reactions were activation-less below 170 K, the glass transition temperature of the water-glycerol solution. Above this temperature, recombination from [FA/FB]? in P700-FA/FB complexes was found to proceed along two pathways with different activation energies (Ea). The charge recombination via A1A has an Ea of ~290 meV and is dominant at temperatures above ~280 K, whereas the direct recombination from FX? has an Ea of 22 meV and is prevalent in the 200 K to 270 K temperature range. Charge recombination from the FX cluster becomes highly heterogeneous at temperatures below 200 K. The conformational mobility of Photosystem I was studied by molecular dynamics simulations. The FX cluster was found to ‘swing’ by ~30° along the axis between the two sulfur atoms proximal to FA/FB. The partial rotation of FX is accompanied by significant changes of electric potential within the iron?sulfur cluster, which may induce preferential electron localization at different atoms of the FX cluster. These effects may account for the partial arrest of forward electron transfer and for the heterogeneity of charge recombination observed at the glass transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号