首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Catalase, the classical peroxisomal marker enzyme, decomposes hydrogen peroxide and is involved in the antioxidant defense mechanisms of mammalian cells. In addition, catalase can oxidize, by means of its peroxidatic activity, a variety of substrates such as methanol and ethanol, producing the corresponding aldehydes. The involvement of brain catalase in the oxidation of ethanol is well established, and severe afflictions of the CNS in hereditary peroxisomal diseases (e.g., Zellweger syndrome) are well known. Whereas the distribution of catalase in the CNS has been investigated by enzyme histochemistry and immunohistochemistry (IHC), very little is known about the exact localization of catalase mRNA in brain. Here we report the application of a tyramine/CARD (catalyzed reporter deposition)-enhanced nonradioactive in situ hybridization (ISH) protocol for detection of catalase mRNA in sections of perfusion-fixed, paraffin-embedded rat brain. Catalase mRNA could be demonstrated in a large number of neurons throughout the rat brain as a distinct cytoplasmic staining signal with excellent morphological resolution. Compared to our standard ISH protocol, the CARD-enhanced protocol for catalase mRNA detection in rat brain showed higher sensitivity and significantly better signal-to-noise ratio. In parallel IHC experiments, using an antigen retrieval method consisting of combined trypsin digestion and microwave treatment of paraffin sections, the catalase antigen was found as distinct cytoplasmic granules in most catalase mRNA-positive neurons. In addition, catalase-positive granules, presumably peroxisomes, were found by confocal laser scanning microscopy in glial cells, which were identified by double labeling immunofluorescence for GFAP and CNPase for astroglial cells and oligodentrocytes, respectively. The excellent preservation of morphology and sensitive detection of both mRNA and protein in our preparations warrant the application of the protocols described here for systematic studies of catalase and other peroxisomal proteins in diverse pathological conditions such as Alzheimer's disease and aging.  相似文献   

3.
4.
Precise localization of proteins and mRNA in histological sections is necessary for evaluating spatial gene expression patterns. Here we report sensitive detection of the gene products in fish tissues by immunohistochemistry (IHC) and in situ hybridization (ISH) assays on sections of whole specimens and vertebra embedded in methyl methacrylate (MMA) resin. This plastic resin favors easy preparation of various specimen types and enables preparation of large sections with well-preserved cell morphology. IHC analysis of the muscle regulatory factor MyoD in transverse sections of juvenile cod revealed MyoD-positive cells in the dorsolateral parts of the adaxial muscle. ISH revealed less spatially restricted signals of the bone morphogenic protein bmp4 in muscle and brain. To assess the applicability of ISH on sections of bony tissue, col1a1 and col2a1 expression was investigated in non-decalcified vertebra sections of Atlantic salmon. The former was identified in both chondrocytes and osteoblasts, whereas the latter was mostly evident in chondrocytes. We conclude that MMA resin offers easy preparation of large and problematic tissues and the possibility of carrying out both IHC and ISH analyses using standard protocols. (J Histochem Cytochem 57:825–830, 2009)  相似文献   

5.
6.
7.
Osteoprotegerin (OPG) and the receptor activator of nuclear factor (NF)-kB ligand (RANKL) are key regulators of osteoclastogenesis. The present study had the main aim of showing the localization of OPG and RANKL mRNA and protein in serial sections of the rat femurs and tibiae by immunohistochemistry (IHC) and in situ hybridization (ISH). The main results were: (1) OPG and RANKL mRNA and protein were co-localized in the same cell types, (2) maturative/hypertrophic chondrocytes, osteoblasts, lining cells, periosteal cells and early osteocytes were stained by both IHC and ISH, (3) OPG and RANKL proteins were mainly located in Golgi areas, and the ISH reaction was especially visible in active osteoblasts, (4) immunolabeling was often concentrated into cytoplasmic vacuoles of otherwise negative proliferative chondrocytes; IHC and ISH labeling increased from proliferative to maturative/hypertrophic chondrocytes, (5) the newly laid down bone matrix, cartilage-bone interfaces, cement lines, and trabecular borders showed light OPG and RANKL immunolabeling, (6) about 70% of secondary metaphyseal bone osteocytes showed OPG and RANKL protein expression; most of them were ISH-negative, (7) osteoclasts were mostly unstained by IHC and variably labeled by ISH. The co-expression of OPG and RANKL in the same bone cell types confirms their strictly coupled action in the regulation of bone metabolism.  相似文献   

8.
9.
The relative insensitivity of nonradioactive mRNA detection in tissue sections compared to the sensitive nonradioactive detection of single-copy DNA sequences in chromosome spreads, or of mRNA sequences in whole-mount samples, has remained a puzzling issue. Because of the biological significance of sensitive in situ mRNA detection in conjunction with high spatial resolution, we developed a nonradioactive in situ hybridization (ISH) protocol for detection of mRNA sequences in sections. The procedure is essentially based on the whole-mount ISH procedure and is at least equally sensitive. Increase of the hybridization temperature to 70C while maintaining stringency of hybridization by adaptation of the salt concentration significantly improved the sensitivity and made the procedure more sensitive than the conventional radioactive procedure. Thicker sections, which were no improvement using conventional radioactive ISH protocols, further enhanced signal. Higher hybridization temperatures apparently permit better tissue penetration of the probe. Application of this highly reliable protocol permitted the identification and localization of the cells in the developing heart that express low-abundance mRNAs of different members of the Iroquois homeobox gene family that are supposedly involved in cardiac patterning. The radioactive ISH procedure scarcely permitted detection of these sequences, underscoring the value of this novel method.  相似文献   

10.
To understand the biological relationships among various molecules, it is necessary to define the cellular expression patterns of multiple genes and gene products. Relatively simple methods for performing multi-label immunohistochemical detection are available. However, there is a paucity of techniques for dual immunohistochemical (IHC) and mRNA in situ hybridization (ISH) detection. The recent development of improved non-radioactive detection systems and simplified ISH protocols has prompted us to develop a tyramide signal amplification method for sequential multi-label fluorescent ISH and IHC detection in either frozen or paraffin-embedded tissue sections. We used this method to examine the relationship between glial cell line-derived neurotrophic factor receptor alpha2 (GFRalpha2) mRNA expression and IHC localization of its co-receptor Ret in the trigeminal ganglion of postnatal Day 0 mice. We found that approximately 70% of Ret-immunoreactive neurons possessed GFRalpha2 mRNA and virtually all GFRalpha2-expressing neurons contained Ret-immunoreactive protein. Finally, we used paraformaldehyde-fixed, paraffin-embedded sections and a monoclonal antibody against neuron-specific nuclear antigen (NeuN) to demonstrate the neuronal specificity of GFRalpha2 mRNA expression in adult mouse brain. This multi-labeling technique should be applicable to a wide variety of tissues, antibodies, and probes, providing a relatively rapid and simple means to compare mRNA and protein localization.  相似文献   

11.
We examined the expression and localization of the prohormone convertases, PC1 and PC2, in the ultimobranchial gland of the adult bullfrog using immunohistochemical (IHC) and in situ hybridization (ISH) techniques. In the ultimobranchial gland, PC1-immunoreactive cells were columnar, and were present in the follicular epithelium. When serial sections were immunostained with anti-calcitonin, anti-CGRP, anti-PC1, and anti-PC2 sera, PC1 was found only in the calcitonin/CGRP-producing cells. No PC2-immunopositive cells were detected. In the ISH, PC1 mRNA-positive cells were detected in the follicle cells in the ultimobranchial gland. No PC2 mRNA-positive cells were detected. RT-PCR revealed expression of the mRNAs of PC1 and the PC2 in the ultimobranchial gland. However, very little of the PC2 mRNA is probably translated because no PC2 protein was detected either by IHC staining or by Western blotting analysis. We conclude that the main prohormone convertase that is involved in the proteolytic cleavage of procalcitonin in the bullfrog is PC1.  相似文献   

12.
In situ hybridization (ISH) at the electron microscopic level is essential for elucidating the intracellular distribution and role of mRNA in protein synthesis. We describe our electron microscopic ISH method using biotinylated oligonucleotide probes for rat growth hormone and prolactin mRNAs and compare the preembedding method with the postembedding method. Preembedding electron microscopic ISH localized rat growth hormone and prolactin mRNAs on the polysomes of the rough endoplasmic reticulum (RER). Rat growth hormone mRNA was distributed diffusely on the RER, whereas rat prolactin mRNA was scattered and distributed focally. Thus there might be a specific translational site for prolactin mRNA on the RER. Rat growth hormone mRNA signals were also recognized on the polysomes of the RER, using the postembedding method with streptavidin gold conjugate. The hybridization signal intensity using the postembedding method was lower, and non-specific signals were more frequent, in comparison with the preembedding method. The preembedding method thus appears to be easier and better than the postembedding method from the viewpoint of utility and preservation of mRNA. Electron microscopic ISH is considered to be an important tool for evaluating the intracellular localization of mRNA and the site of specific hormone synthesis on the RER.  相似文献   

13.
In this study we evaluated whether storing non-deparaffinized sections can affect the detection of specific mRNAs by radioactive in situ hybridization (ISH). Using a standard ISH protocol, we hybridized serial sections of paraffin blocks stored for different periods of time with (33)P-labeled riboprobes specific for rat Type III collagen and matrix metalloproteinase-2 (MMP-2). Signal intensities were evaluated using a phosphorimager and by blinded microscopic examination. For slides hybridized with the Type III collagen riboprobe, signal intensities measured with the phosphorimager or evaluated by microscopic examination were negatively correlated with the storage period of the sections. For slides hybridized with the MMP-2 riboprobe, differences in signal intensity could be detected, albeit inconsistently, with the phosphorimager, although microscopic examination consistently indicated stronger signals in freshly sectioned slides compared to slides stored for 2 weeks or more. We concluded that it was preferable to use recently prepared sections for trying to locate mRNAs in paraffin-embedded tissues by ISH. In addition, our results suggest that quantifying signal intensity using a phosphorimager is feasible for abundant mRNAs or when large differences in expression are anticipated.(J Histochem Cytochem 49:927-928, 2001)  相似文献   

14.
15.
16.
The standard method for assessment of cell proliferation in paraffin-embedded tissue sections is 5-bromodeoxyuridine (BrdU) immunohistochemistry (IHC). BrdU can be administered to laboratory animals via IP injections, is readily incorporated into nuclei during the DNA synthetic phase of the cell cycle, and is detected with an anti-BrdU antibody. This method has several disadvantages, and an accurate method for evaluation of proliferative activity that can substitute for BrdU IHC, when necessary, is of great interest to investigators. Alternative methods for detection of proliferating cells in tissue sections are proliferating cell nuclear antigen (PCNA) IHC, Ki-67 IHC, and in situ hybridization (ISH) for histone mRNA. To determine the optimal choice, we analyzed the correlation of anti-PCNA, anti-Ki-67(MIB-5), and histone mRNA labeling indices (LIs) with anti-BrdU LI in rat highly replicative (renewing) tissues. The correlation between anti-BrdU and histone mRNA LIs, as well as the correlation between anti-BrdU and anti-Ki-67 LIs, was statistically significant. There was no significant correlation between anti-BrdU and anti-PCNA LIs. These results suggest that both ISH for histone mRNA and IHC with MIB-5 are preferable techniques for assessment of cell proliferation in rat paraffin-embedded renewing tissues compared to PCNA IHC. They can substitute for BrdU IHC when necessary.  相似文献   

17.
18.
In a attempt to improve the sensitivity of the simultaneous use of immunohistochemistry (IHC) with estrogen receptor (ER) and in situ hybridization (ISH) with a neuropeptide receptor, we first applied an existing microwave (MW) irradiation protocol for immunohistochemical detection of the estrogen receptor in frozen brain sections. Regions of interest were the preoptic area and the arcuate nucleus of the hypothalamus. ER signal was effective only after MW heating of sections in the two regions. Control sections without pretreatment exhibited no staining for ER. Second, the MW protocol was applied in a novel procedure that consists of evaluation of the expression of the galanin receptor mRNA with a radioactive riboprobe after MW pretreatment. The galanin receptor mRNA signal intensity obtained after heating was quantitatively at least as good or significantly increased according to the region, with no discernible loss of tissue morphology. Finally, we describe a novel application of MW pretreatment on the same frozen section processed with ER antibody and a radioactive galanin receptor riboprobe. The stainings for estrogen and galanin receptors were intense in many cells of the preoptic area, with very low background. These results show that both IHC and ISH can be significantly improved by subjecting frozen sections to MW heating before the double labeling. This approach may provide a potential method to answer the important question of whether or not estrogen has a direct action on the expression of a peptide receptor. (J Histochem Cytochem 49:901-910, 2001)  相似文献   

19.
Galectins are galactoside-binding proteins that exhibit an important function in tumor progression by promoting cancer cell invasion and metastasis formation. Using Northern blotting and Western blotting analysis, in situ hybridization (ISH), and immunohistochemistry (IHC), we studied galectin-1 and galectin-3 in tissue samples of 33 primary pancreatic cancers and in tumor metastases in comparison to 28 normal pancreases. Furthermore, the molecular findings were correlated with the clinical and histopathological parameters of the patients. Northern blotting and Western blotting analysis showed significantly higher galectin-1 and galectin-3 mRNA and protein levels in pancreatic cancer samples than in normal controls. For galectin-1, no ISH signals and immunoreactivity were observed in acinar or ductal cells in the normal pancreas and in pancreatic cancer cells, whereas fibroblasts and extracellular matrix cells around the cancer mass exhibited strong mRNA signals and immunoreactivity. Galectin-3 mRNA signals and immunoreactivity were strongly present in most pancreatic cancer cells, whereas in the normal controls only faint ISH and IHC signals were seen in some ductal cells. Metastatic pancreatic cancer cells exhibited moderate to strong galectin-3 immunoreactivity but were negative for galectin-1. No relationship between the galectin-1 and galectin-3 mRNA levels and the tumor stage or between the IHC staining score and the tumor stage was found. However, galectin-1 mRNA levels and the IHC staining score were significantly higher in poorly differentiated tumors compared with well/moderately differentiated tumors, whereas for galectin 3 no differences were found. The expression pattern of galectin-1 and galectin-3 in pancreatic cancer tissues indicates that galectin-1 plays a role in the desmoplastic reaction that occurrs around pancreatic cancer cells, whereas galectin-3 appears to be involved in cancer cell proliferation. High levels of galectin-3 in metastatic cancer cells suggest an impact on metastasis formation.  相似文献   

20.
In an attempt to improve our abilities to predict peroxisomal proteins, we have combined machine-learning techniques for analyzing peroxisomal targeting signals (PTS1) with domain-based cross-species comparisons between eight eukaryotic genomes. Our results indicate that this combined approach has a significantly higher specificity than earlier attempts to predict peroxisomal localization, without a loss in sensitivity. This allowed us to predict 430 peroxisomal proteins that almost completely lack a localization annotation. These proteins can be grouped into 29 families covering most of the known steps in all known peroxisomal pathways. In general, plants have the highest number of predicted peroxisomal proteins, and fungi the smallest number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号