首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A defined 3-chlorobenzoate-degrading methanogenic consortium was constructed by recombining key organisms isolated from a 3-chlorobenzoate-degrading methanogenic sludge enrichment. The organisms comprise a three-tiered food chain which includes: (1) reductive dechlorination of 3-chlorobenzoate; (2) oxidation of benzoate to acetate, H2 and CO2; (3) removal of H2 plus CO2 by conversion into methane. The defined consortium, consisting of a dechlorinating organism (DCB-1), a benzoate degrader (BZ-1) and a lithotrophic methanogen ( Methanospirillum strain PM-1) grew well in a basal salts medium supplemented with 3-chlorobenzoate (3.2 mM) as the sole energy source. The chlorine released from the aromatic ringe was recovered in stoichiometric amounts as the chloride ion. The reducing power required for reductive dechlorination was obtained from the hydrogen produced in the acetogenic oxidation of benzoate. One-third of the benzoate-derived hydrogen was recycled via the reductive dechlorination of 3-chlorobenzoate, indicating that the consortium operated as a food web rather than a food chain.  相似文献   

2.
Abstract Eight homoacetogenic strains of the genera Acetobacterium, Clostridium and Sporomusa were tested for their ability to dechlorinate tetrachloroethylene (perchloroethene, PCE). Of the organisms tested only Sporomusa ovata was able to reductively dechlorinate PCE with methanol as an electron donor. Resting cells of S. ovata reductively dechlorinated PCE at a rate of 9.8 nmol h−1 (mg protein)−1 to trichloroethylene (TCE) as the sole product. The dechlorination activity depended on concomitant acetogenesis from methanol and CO2. Cell-free extracts of S. ovata, Clostridium formicoaceticum, Acetobacterium woodii , and the methanogenic bacterium Methanolobus tindarius transformed PCE to TCE with Ti(III) or carbon monoxide as electron donors. Corrinoids were shown in S. ovata to be involved in the dechlorination reaction of PCE to TCE as evident from the reversible inhibition with propyl iodide. Rates of dechlorination followed a pseudo-first-order kinetic.  相似文献   

3.
Abstract Methanobacterium thermoautotrophicum was grown in a fermenter gassed with an 80% H2/20% CO2 mixture. The effluent gas was found to contain between 30 ppm and 90 ppm carbon monoxide. Approx. 5 nmol CO were produced per min and mg cells (dry weight) by the culture. This is to our knowledge the first report on biological carbon monoxide formation under strictly anaerobic conditions.  相似文献   

4.
Influence of soil O2 and CO2 on root respiration for Agave deserti   总被引:5,自引:0,他引:5  
Respiration measured as CO2 efflux was determined at various soil O2 and CO2 concentrations for individual, attached roots of a succulent perennial from the Sonoran Desert, Agave deserti Engelm. The respiration rate increased with increasing O2 concentration up to about 16% O2 for established roots and 5% O2 for rain roots (fine branch roots on established roots induced by wetting of the soil) and then remained fairly constant up to 21% O2. When O2 was decreased from 21 to 0%, the respiration rates were similar to those obtained with increasing O2 concentration. The CO2 concentration in the root zone, which for the shallow-rooted A. deserti in the field was about 1 000 μl l-1, did not affect root respiration at concentrations up to 2 000 μl l-1, but higher concentrations reduced it, respiration being abolished at 20 000 μl l-1 (2%) CO2 for both established and rain roots. Upon lowering CO2 to 1 000 μl l-1 after exposure to concentrations up to 10000 μl l-1 CO2, inhibition of respiration was reversible. Uptake of the vital stain neutral red by root cortical cells was reduced to zero, indicating cell death, in about 4 h at 2% CO2, substantiating the detrimental effects of high soil CO2 concentrations on roots of A. deserti . This CO2 response may explain why roots of desert succulents tend to occur in porous, well-aerated soils.  相似文献   

5.
The cellular basis of guard cell sensing of rising CO2   总被引:5,自引:1,他引:4  
Numerous studies conducted on both whole plants and isolated epidermes have documented stomatal sensitivity to CO2. In general, CO2 concentrations below ambient stimulate stomatal opening, or an inhibition of stomatal closure, while CO2 concentrations above ambient have the opposite effect. The rise in atmospheric CO2 concentrations which has occurred since the industrial revolution, and which is predicted to continue, will therefore alter rates of transpirational water loss and CO2 uptake in terrestrial plants. An understanding of the cellular basis for guard cell CO2 sensing could allow us to better predict, and perhaps ultimately to manipulate, such vegetation responses to climate change. However, the mechanisms by which guard cells sense and respond to the CO2 signal remain unknown. It has been hypothesized that cytosolic pH and malate levels, cytosolic Ca2+ levels, chloroplastic zeaxanthin levels, or plasma-membrane anion channel regulation by apoplastic malate are involved in guard cell perception and response to CO2. In this review, these hypotheses are discussed, and the evidence for guard cell acclimation to prevailing CO2 concentrations is also considered.  相似文献   

6.
Abstract Cell suspensions of Methanobacterium thermoautotrophicum took up 45Ca2+ in a temperature-dependent, Ca2+-saturable and Co2+-sensitive process. The accumulation of 45Ca2+ was lower in the cells energized by CO2+ H2 than in those under non-energized conditions. The accumulated Ca2+ were, in part, released by the divalent cations ionophore A23187 in the presence of EGTA while the uptake of Ca2+ was accelerated by the addition of A23187 to the medium containing Ca2+. The results indicate the presence of a carrier-mediated Ca2+ uptake in the Methanobacterium thermoautotrophicum membrane which is compensated by an energy-dependent and outward-directed Ca2+ transport.  相似文献   

7.
Sensing of atmospheric CO2 by plants   总被引:15,自引:12,他引:3  
Abstract. Despite recent interest in the effects of high CO2 on plant growth and physiology, very little is known about the mechanisms by which plants sense changes in the concentration of this gas. Because atmospheric CO2 concentration is relatively constant and because the conductance of the cuticle to CO2 is low, sensory mechanisms are likely to exist only for intercellular CO2 concentration. Therefore, responses of plants to changes in atmospheric CO2 will depend on the effect of these changes on intercellular CO2 concentration. Although a variety of plant responses to atmospheric CO2 concentration have been reported, most of these can be attributed to the effects of intercellular CO2 on photosynthesis or stomatal conductance. Short-term and long-term effects of CO2 on photosynthesis and stomatal conductance are discussed as sensory mechanisms for responses of plants to atmospheric CO2. Available data suggest that plants do not fully realize the potential increases in productivity associated with increased atmospheric CO2. This may be because of genetic and environmental limitations to productivity or because plant responses to CO2 have evolved to cope with variations in intercellular CO2 caused by factors other than changes in atmospheric CO2.  相似文献   

8.
Abstract Acetobacterium woodii was continuously grown on 3,4,5-trimethoxybenzoate as pure culture or in commensalistic combination with Pelobacter acidigallici and Desulfobacter postgatei . Under pure culture conditions the following growth parameters were determined: μ max= 0.112 h−1, K s= 1.07 mM, Y max= 35 g/mol, and m = 0.22 mmol·g−1·h−1. In coculture with P. acidigallici the affinity for the substrate increased and the K s value was found to be 135 μM. Under batch culture conditions mixed populations of A. woodii, P. acidigallici , and D. postgatei completely mineralized 3,4,5-trimethoxybenzoate to CO2, whereas under continuous culture conditions more than 3 mM acetate remained unused.  相似文献   

9.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:4,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

10.
To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata , which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in p CO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low p CO2. Stomata did not respond to a decreased p CO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal p CO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to p CO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low p CO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.  相似文献   

11.
Chlamydomonas acidophila Negoro is a green algal species abundant in acidic waters (pH 2–3.5), in which inorganic carbon is present only as CO2. Previous studies have shown that aeration with CO2 increased its maximum growth rate, suggesting CO2 limitation under natural conditions. To unravel the underlying physiological mechanisms at high CO2 conditions that enables increased growth, several physiological characteristics from high- and low-CO2-acclimated cells were studied: maximum quantum yield, photosynthetic O2 evolution (Pmax), affinity constant for CO2 by photosynthesis (K0.5,p), a CO2-concentrating mechanism (CCM), cellular Rubisco content and the affinity constant of Rubisco for CO2 (K0.5,r). The results show that at high CO2 concentrations, C. acidophila had a higher K0.5,p, Pmax, maximum quantum yield, switched off its CCM and had a lower Rubisco content than at low CO2 conditions. In contrast, the K0.5,r was comparable under high and low CO2 conditions. It is calculated that the higher Pmax can already explain the increased growth rate in a high CO2 environment. From an ecophysiological point of view, the increased maximum growth rate at high CO2 will likely not be realised in the field because of other population regulating factors and should be seen as an acclimation to CO2 and not as proof for a CO2 limitation.  相似文献   

12.
Abstract The intestinal tract of invertebrate and vertebrate animals, including man, is an anoxic habitat wherein microbial formation of acetate from H2+ CO2 is often a major H2-consuming reaction. This paper will discuss the magnitude and microbiology of H2/CO2 acetogenesis in animal guts, its impact on host animal nutrition, competition for H2 between anaerobic microbes, and the global significance of intestinal H2/CO2 acetogenesis.  相似文献   

13.
Origin, fate and significance of CO2 in tree stems   总被引:1,自引:1,他引:0  
Although some CO2 released by respiring cells in tree stems diffuses directly to the atmosphere, on a daily basis 15–55% can remain within the tree. High concentrations of CO2 build up in stems because of barriers to diffusion in the inner bark and xylem. In contrast with atmospheric [CO2] of c.  0.04%, the [CO2] in tree stems is often between 3 and 10%, and sometimes exceeds 20%. The [CO2] in stems varies diurnally and seasonally. Some respired CO2 remaining in the stem dissolves in xylem sap and is transported toward the leaves. A portion can be fixed by photosynthetic cells in woody tissues, and a portion diffuses out of the stem into the atmosphere remote from the site of origin. It is now evident that measurements of CO2 efflux to the atmosphere, which have been commonly used to estimate the rate of woody tissue respiration, do not adequately account for the internal fluxes of CO2. New approaches to quantify both internal and external fluxes of CO2 have been developed to estimate the rate of woody tissue respiration. A more complete assessment of internal fluxes of CO2 in stems will improve our understanding of the carbon balance of trees.  相似文献   

14.
N-sufficient cells of Chlorella sorokiniana Shihira and Krauss, strain 211/8k, absorbed NH4+ under light plus CO2 conditions, when growth occurred, but not in darkness or in the absence of CO2, when growth was inhibited. N-sufficient cells subjected to conditions of N-starvation for a 24-h period showed a marked loss of photosynthetic activity. Upon supply of NH4+, N-starved cells sufflated with CO2 air exhibited a time-dependent recovery of photosynthetic activity, both when suspended in light and in darkness. By contrast, growth only occurred in cells suspended in light. N-starved cells absorbed NH4+ in darkness, but at a lower rate than in light. All of these data suggest that dark NH4+ uptake is driven by N assimilation to recover from N-starvation and that the light-dependent NH4+ uptake is driven by growth, being then influenced by conditions that affect recovery or growth. Unlike CO2 conditions, in a CO2-free atmosphere, absorption of NH4+ by N-starved cells occurred at a higher rate in darkness than in light. Accordingly, resumption of photosynthetic potential after NH4+ supply occurred in darkened cells, but not in illuminated cells. Respiratory activity of N-starved cells was enhanced up to 3-fold by NH4+ and 2-fold by methylammonium, with different patterns, suggesting that respiratory enzymes were affected by N-metabolism, especially through short-term control mechanisms triggered by the expenditure of metabolic energy involved in N-metabolism.  相似文献   

15.
In Chlamydomonas reinhardtii the formation of a starch sheath surrounding the pyrenoid is observed when cells grown under high CO2 (5% CO2 in air) are transferred to low CO2 (0.03%) conditions. Formation of the starch sheath occurs coincidentally with induction of the CO2 concentrating mechanism and with de novo synthesis of 5 polypeptides with molecular masses of 21, 36, 37, 42–44 kDa. We studied the effect of CO2 concentrations on photosynthesis, ultrastructure and protein synthesis in Chlamydomonas reinhardtii cw-15 (wild phenotype for photosynthesis) and in the starch-less mutant BAFJ -6, with the aim to clarify the role of the pyrenoid starch sheath in the operation of the CO2 concentrating mechanism and whether these low CO2-inducible polypeptides are involved in the formation of starch sheath. When wild type and starch-less mutant cells were transferred from high to low CO2, the CO2 requirement for half-maximal rates of photosynthesis decreased from 40 μM to 2 μM CO2. 35SO42- labeling analyses showed that the starch-less mutant induced the 5 low CO2-inducible polypeptides. These observations suggest that the starch-less mutant was able to induce a fully active CO2 concentrating mechanism. Since the starch-less mutant did not form a pyrenoid starch sheath, we suggest that the starch sheath is not involved in the operation of the CO2 concentrating mechanism and that none of these 5 low CO2-inducible proteins is involved in the formation of the starch sheath in Chlamydomonas .  相似文献   

16.
Abstract Bacteria from an anaerobic enrichment reductively removed chlorine from the ortho- position of 2,3,6-trichlorobenzoic acid (2,3,6-TBA) producing 2,5-dichlorobenzoate (2,5-DBA). The strictly aerobic bacterium Pseudomonas aeruginosa JB2 subsequently used 2,5-DBA as a growth substrate in the presence of oxygen. The anaerobic dechlorinating microbial population was grown with P. aeruginosa JB2 in continuous culture. Inside the liquid culture, a nylon netting, on a stainless-steel support, contained vermiculite particles to provide a strictly anaerobic environment within the aerated culture. Complete mineralization of 2,3,6-TBA depended on the extent of oxygen input into the reactor. Under strictly anaerobic conditions 2,5-DBA and Cl were produced stoichiometrically through the reductive dechlorination of 2,3,6-TBA. This process of reductive dechlorination was not inhibited by (moderate) aeration resulting in an O2-concentration of 0.3–0.5 μM in the culture liquid.  相似文献   

17.
Abstract Bacteria from an anaerobic enrichment reductively removed chlorine from the ortho - position of 2,3,6-trichlorobenzoic acid (2,3,6-TBA) producing 2,5-dichlorobenzoate (2,5-DBA). The strictly aerobic bacterium Pseudomonas aeruginosa JB2 subsequently used 2,5-DBA as a growth substrate in the presence of oxygen. The anaerobic dechlorinating microbial population was grown with P. aeruginosa JB2 in continuous culture. Inside the liquid culture, a nylon netting, on a stainless-steel support, contained vermiculite particles to provide a strictly anaerobic environment within the aerated culture. Complete mineralization of 2,3,6-TBA depended on the extent of oxygen input into the reactor. Under strictly anaerobic conditions 2,5-DBA and Cl were produced stoichiometrically through the reductive dechlorination of 2,3,6-TBA. This process of reductive dechlorination was not inhibited by (moderate) aeration resulting in an O2-concentration of 0.3–0.5 μM in the culture liquid.  相似文献   

18.
A variety of food-grade organic substrates were evaluated to identify materials that could be used to support long-term anaerobic bioremediation processes in the subsurface. In this work, the rate and extent of biogas production was used as an indicator of the potential for substrate fermentation to H2 and acetate, the primary electron donors used in reductive dechlorination. The rate and extent of biogas (primarily CO2+ CH4) evolution varied widely between the different substrates. For many of the substrates, biogas generation declined to very low levels within 100 days of substrate addition. However, a few substrates including several vegetable oils and sucrose esters of fatty acid (SEFAs) did support biogas production for extended time periods. Column studies demonstrated that both soybean oil and a SEFA could support sulfate reduction, methanogenesis and reductive dechlorination of perchloroethene (PCE) to cis-dichloroethene (cis-DCE) for over 14 months. The slower degradation rate of the SEFAs could be used to control substrate degradation rate in the subsurface, increasing substrate lifetime and reducing the required reinjection frequency.  相似文献   

19.
Dark-grown shoots of tubers of the aquatic monocot Potamogön pectinatus L. elongated more strongly in anaerobic than aerobic solutions over 5 days. The response was located in the stem rather than the leaf. Anaerobic carbon dioxide (CO2) production was similar to that in aerobic conditions. Approximately half the anaerobic stem extension was attributed to acidification of the submerging medium by respiratory CO2. Sparging with an anaerobic gas mixture of nitrogen and hydrogen to remove dissolved CO2 inhibited stem elongation and prevented acidification of the medium. Similarly, supplying CO2 anaerobically promoted stem elongation while acidifying the medium. Carbon dioxide was also active on aerobic shoots. The effect of CO2 on anaerobic stem extension could be mimicked with an acidic buffer. Anaerobic stem extension was inhibited by exogenous abscisic acid (ABA), while gibberellic acid and the gibberellin-biosynthesis inhibitor paclobutrazol proved inactive. Exogenous indole-3-acetic acid promoted stem extension in the absence of oxygen. A strong gravitropic response by anaerobic stems of P. pectinatus was inhibited by the auxin-efflux inhibitor naphthylphthalamic acid.  相似文献   

20.
During starch degradation in intact isolated chloroplasts from Chlamydomonas reinhardtii gas exchange was studied with a mass spectrometer. Oxygen uptake by intact chloroplasts in the dark never exceeded 1.5% of the starch degradation rate [maximum 15 nmol O2 (mg Chl)−1 h−1 consumed. 1 000 nmol glucose (mg Chl)−1h−1 degraded]. Evolution of CO2 under aerobic conditions [9.8–28 nmol (mg Chl)−1 h−1] was stimulated by addition of 0.1–0.5 m M oxaloacetate [393–425 nmol CO2 (mg Chl)−1 h−1]. Pyridoxal phosphate (5 m M ) inhibited starch degradation by more than 80%, but had no effect on O2 uptake. Starch degradation rates and CO2 evolution did not differ under acrobic and anaerobic conditions. Increasing Pi in the reaction medium from 0.5 m M to 5.0 m M stimulated starch degradation by 230 and 260% under aerobic and anaerobic conditions, respectively. A rapid autooxidation of reduced ferredoxin was observed in a reconstituted system consisting of purified Chlamydomonas ferredoxin, purified Chlamydomonas NADP-ferredoxin oxidoreductase (EC 1.6.7.1) and NADPH. Addition of isolated thylakoids from C. reinhardtii did not affect the rate of O2 uptake. Our results clearly indicate the absence of any oxygen requirement during starch degradation in isolated chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号