首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to elucidate the structure-antibiotic activity relationships of the peptides, the three-dimensional structures of two hybrid peptides, CA(1-8) - MA(1-12) and CA(1-8) - ME(1-12) in trifluoroethanol-containing aqueous solution were investigated by NMR spectroscopy. Both CA(1-8) - MA(1-12) and CA(1-8) - ME(1-12) have strong antibacterial activity but only CA(1-8) - ME(1-12) has hemolytic activity against human erythrocytes. CA(1-8) - MA(1-12) has a hydrophobic 310-helix of only two turns combined with one short helix in the N-terminus with a flexible hinge section in between. CA(1-8) - MA(1-12) has a severely bent structure in the middle of the peptide. These structural features as well as the low hydrophobicity of CA(1-8) - MA(1-12) seem to be crucial for the selective lysis against the membrane of prokaryotic cells. CA(1-8) - ME(1-12) has an alpha-helical structure of about three turns in the melittin domain and a flexible structure with one turn in the cecropin domain connected with a flexible hinge section in between, and these might be the structural features required for membrane disruption against prokaryotic and eukaryotic cells. The central hinge region (Gly9-Ile10-Gly11) in an amphipathic antibacterial peptide is considered to play an important role in providing the conformational flexibility required for ion channel formation of the C-terminal hydrophobic alpha-helix on cell membrane.  相似文献   

2.
B Lynch  E T Kaiser 《Biochemistry》1988,27(20):7600-7607
Previous studies on calcitonin gene related peptide (CGRP) have demonstrated that it has the characteristics of an amphiphilic peptide, and from an examination of the sequence, we have proposed that it contains an amphiphilic alpha-helix. We have synthesized two analogues of CGRP which have different lengths of idealized amphiphilic alpha-helical secondary structure. The first model, CGRM-1, has been substituted with residues generating an idealized amphiphilic alpha-helix in the region between residues 8 and 25, equivalent to approximately five turns of an alpha-helix. This peptide is not an agonist in any of our bioassays, but it does bind with low affinity to rCGRP receptors in crude liver membranes. Our second model, CGRM-2, has an idealized amphiphilic alpha-helix between residues 8 and 18, which is equivalent to approximately three turns of an alpha-helix. In an in vitro rat vas deferens assay, this peptide is an agonist with a potency one-fourth that of the native hormone. However, the potency of CGRM-2 in an adenylate cyclase assay is much lower, only 1/140th the potency of CGRP. Both model peptides display amphiphilic characteristics commensurate with their design. We conclude that there is an amphiphilic alpha-helix in rCGRP between residues 8 and 18 and that this helix terminates in the vicinity of residue 18.  相似文献   

3.
Oh D  Shin SY  Lee S  Kang JH  Kim SD  Ryu PD  Hahm KS  Kim Y 《Biochemistry》2000,39(39):11855-11864
A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CA-MA), incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA), has potent antimicrobial activity without toxicity against human erythrocytes. To investigate the effects of the Gly-Ile-Gly hinge sequence of CA-MA on the antibacterial and antitumor activities, two analogues in which the Gly-Ile-Gly sequence of CA-MA is either deleted (P1) or substituted with Pro (P2) were synthesized. The role of the tryptophan residue at position 2 of CA-MA on its antibiotic activity was also investigated using two analogues, in which the Trp2 residue of CA-MA is replaced with either Ala (P3) or Leu (P4). The tertiary structures of CA-MA, P2, and P4 in DPC micelles, as determined by NMR spectroscopy, have a short amphiphilic helix in the N-terminus and about three turns of alpha-helix in the C-terminus, with the flexible hinge region between them. The P1 analogue has an alpha-helix from Leu4 to Ala14 without any hinge structure. P1 has significantly decreased lytic activities against bacterial and tumor cells and PC/PS vesicles (3:1, w/w), and reduced pore-forming activity on lipid bilayers, while P2 retained effective lytic activities and pore-forming activity. The N-terminal region of P3 has a flexible structure without any specific secondary structure. The P3 modification caused a drastic decrease in the antibiotic activities, whereas P4, with the hydrophobic Leu side chain at position 2, retained its activities. On the basis of the tertiary structures, antibiotic activities, vesicle-disrupting activities, and pore-forming activities, the structure-function relationships can be summarized as follows. The partial insertion of the Trp2 of CA-MA into the membrane, as well as the electrostatic interactions between the positively charged Lys residues at the N-terminus of the CA-MA and the anionic phospholipid headgroups, leads to the primary binding to the cell membrane. Then, the flexibility or bending potential induced by the Gly-Ile-Gly hinge sequence or the Pro residue in the central part of the peptides may allow the alpha-helix in the C-terminus to span the lipid bilayer. These structural features are crucial for the potent antibiotic activities of CA-MA.  相似文献   

4.
Pauling first described the alpha-helix nearly 50 years ago, yet new features of its structure continue to be discovered, using peptide model systems, site-directed mutagenesis, advances in theory, the expansion of the Protein Data Bank and new experimental techniques. Helical peptides in solution form a vast number of structures, including fully helical, fully coiled and partly helical. To interpret peptide results quantitatively it is essential to use a helix/coil model that includes the stabilities of all these conformations. Our models now include terms for helix interiors, capping, side-chain interactions, N-termini and 3(10)-helices. The first three amino acids in a helix (N1, N2 and N3) and the preceding N-cap are unique, as their amide NH groups do not participate in backbone hydrogen bonding. We surveyed their structures in proteins and measured their amino acid preferences. The results are predominantly rationalized by hydrogen bonding to the free NH groups. Stabilizing side-chain-side-chain energies, including hydrophobic interactions, hydrogen bonding and polar/non-polar interactions, were measured accurately in helical peptides. Helices in proteins show a preference for having approximately an integral number of turns so that their N- and C-caps lie on the same side. There are also strong periodic trends in the likelihood of terminating a helix with a Schellman or alpha L C-cap motif. The kinetics of alpha-helix folding have been studied with stopped-flow deep ultraviolet circular dichroism using synchrotron radiation as the light source; this gives a far superior signal-to-noise ratio than a conventional instrument. We find that poly(Glu), poly(Lys) and alanine-based peptides fold in milliseconds, with longer peptides showing a transient overshoot in helix content.  相似文献   

5.
E M Goodman  P S Kim 《Biochemistry》1989,28(10):4343-4347
A short peptide corresponding to the alpha-helical region of BPTI shows partial folding in aqueous solution (pH 7) as judged by circular dichroism (CD). Folding is temperature and denaturant sensitive, and the peptide is monomeric. The difference CD spectrum, obtained from spectra at two temperatures, indicates that the peptide folds as an alpha-helix. Difference CD spectroscopy provides a sensitive assay for helix formation in peptides exhibiting small amounts of structure. Helix stability in this peptide shows a marked pH dependence which is consistent with stabilizing charged side-chain interactions with the helix dipole and/or salt bridge formation.  相似文献   

6.
The structures of the fifth and sixth transmembrane segments of the bovine mitochondrial oxoglutarate carrier (OGC) and of the hydrophilic loop that connects them were studied by CD and NMR spectroscopies. Peptides F215-R246, W279-K305 and P257-L278 were synthesized and structurally characterized. CD data showed that at high concentrations of TFE and SDS all peptides assume alpha-helical structures. (1)H-NMR spectra of the three peptides in TFE/water were fully assigned and the secondary structures of the peptides were obtained from nuclear Overhauser effects, (3)J(aH-NH) coupling constants and alphaH chemical shifts. The three-dimensional solution structures of the peptides were generated by distance geometry calculations. A well-defined alpha-helix was found in the region L220-V243 of peptide F215-R246 (TMS-V), in the region P284-M303 of peptide W279-K305 (TMS-VI) and in the region N261-F275 of peptide P257-L278 (hydrophilic loop). The helix L220-V243 exhibited a sharp kink at P239, while a little bend around P291 was observed in the helical region P284-M303. Fluorescence studies performed on peptide W279-K305, alone and together with other transmembrane segments of OGC, showed that the W279 fluorescence was quenched upon addition of peptide F215-R246, but not of peptides K21-K46, R78-R108 and P117-A149 suggesting a specific interaction between TMS-V and TMS-VI of OGC.  相似文献   

7.
Surface pressure measurements, external reflection-Fourier transform infrared spectroscopy, and neutron reflectivity have been used to investigate the lipid-binding behavior of three antimicrobial peptides: melittin, magainin II, and cecropin P1. As expected, all three cationic peptides were shown to interact more strongly with the anionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-(phosphor-rac-(1-glycerol)) (DPPG), compared to the zwitterionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). All three peptides have been shown to penetrate DPPC lipid layers by surface pressure, and this was confirmed for the melittin-DPPC interaction by neutron reflectivity measurements. Adsorption of peptide was, however, minimal, with a maximum of 0.4 mg m(-2) seen for melittin adsorption compared to 2.1 mg m(-2) for adsorption to DPPG (from 0.7 microM solution). The mode of binding to DPPG was shown to depend on the distribution of basic residues within the peptide alpha-helix, although in all cases adsorption below the lipid layer was shown to dominate over insertion within the layer. Melittin adsorption to DPPG altered the lipid layer structure observed through changes in the external reflection-Fourier transform infrared lipid spectra and neutron reflectivity. This lipid disruption was not observed for magainin or cecropin. In addition, melittin binding to both lipids was shown to be 50% greater than for either magainin or cecropin. Adsorption to the bare air-water interface was also investigated and surface activity followed the trend melittin>magainin>cecropin. External reflection-Fourier transform infrared amide spectra revealed that melittin adopted a helical structure only in the presence of lipid, whereas magainin and cecropin adopted helical structure also at an air-water interface. This behavior has been related to the different charge distributions on the peptide amino acid sequences.  相似文献   

8.
A search for conformational constraints on the peptide alpha-helical conformation indicated that para-substituted amino acid derivatives of a benzene ring might be suitable for linking pairs of side chains that are separated by two turns of the helix. A 14-residue synthetic, amphiphilic alpha-helical peptide model system has been used to study the helix stabilizing effects of a series of four such bridges having constitutionally isomeric structures. These bridges were used to link positions 3 and 10 of the model peptides. The peptides were synthesized in good yield by standard solid-phase methods, including cyclization on the solid support. They were then studied for their solution conformations and melting behavior by circular dichroism (CD) spectropolarimetry, and for their elution behavior on reversed-phase HPLC columns. In aqueous solution and in 50% (v/v) trifluoroethanol, the most effective bridge for helix stabilization consisted of a 4-(aminomethyl)phenylacetic acid residue (AMPA) linked by amide bonds to the side chain functional groups of a (S)-2,3-diaminopropionic acid residue (Dap) in position 3 of the model peptide and an aspartic acid residue in position 10. This Dap3(AMPA), Asp10 bridge was about as effective as two Lys(i), Asp(i+4) lactam bridges incorporated linking residues 3 and 7, and 10 and 14, in the same model peptide sequence. This suggests that it is worth about 1 kcal/mol of helix stabilization energy.  相似文献   

9.
G S Yi  B S Choi    H Kim 《Biophysical journal》1994,66(5):1604-1611
The structure of a chemically synthesized 25-residue-long functional signal peptide of Escherichia coli ribose binding protein was compared with that of a nonfunctional mutant-signal peptide using circular dichroism and two-dimensional 1H NMR in solvents mimicking the amphiphilic environments. The functional peptide forms an 18-residue-long alpha-helix starting from the NH2-terminal region and reaching to the hydrophobic stretch in a solvent consisting of 10% dimethylsulfoxide, 40% water, and 50% trifluoroethanol (v/v). The nonfunctional mutant peptide, which contains a Pro at position 9 instead of a Leu in the wild-type peptide, does not have any secondary structure in that solvent but forms a 12-residue-long alpha-helix within the hydrophobic stretch in water/trifluoroethanol (50:50, v/v) solvent. It seems that the Pro-9 residue in the nonfunctional peptide disturbs the helix propagation from the hydrophobic stretch to the NH2-terminal region. Because both of these peptides have stable helices within the hydrophobic stretch, it may be concluded that the additional 2 turns of the alpha-helix in the NH2-terminal region of the wild-type signal peptide is important for its function.  相似文献   

10.
The solution conformation of three peptides corresponding to the two beta-hairpins and the alpha-helix of the protein L B1 domain have been analyzed by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). In aqueous solution, the three peptides show low populations of native and non-native locally folded structures, but no well-defined hairpin or helix structures are formed. In 30% aqueous trifluoroethanol (TFE), the peptide corresponding to the alpha-helix adopts a high populated helical conformation three residues longer than in the protein. The hairpin peptides aggregate in TFE, and no significant conformational change occurs in the NMR observable fraction of molecules. These results indicate that the helical peptide has a significant intrinsic tendency to adopt its native structure and that the hairpin sequences seem to be selected as non-helical. This suggests that these sequences favor the structure finally attained in the protein, but the contribution of the local interactions alone is not enough to drive the formation of a detectable population of native secondary structures. This pattern of secondary structure tendencies is different to those observed in two structurally related proteins: ubiquitin and the protein G B1 domain. The only common feature is a certain propensity of the helical segments to form the native structure. These results indicate that for a protein to fold, there is no need for large native-like secondary structure propensities, although a minimum tendency to avoid non-native structures and to favor native ones could be required.  相似文献   

11.
S W Chi  G S Yi  J Y Suh  B S Choi    H Kim 《Biophysical journal》1995,69(6):2703-2709
Recently we reported (Yi et al., 1994) that the alpha-helical content of the signal peptide of Escherichia coli ribose binding protein, when determined by circular dichroism (CD) and two-dimensional NMR in trifluoroethanol/water solvent, is higher than that of its nonfunctional mutant signal peptide. In the present investigation, the structures of the signal peptides of two revertant ribose binding proteins in the same solvent were also determined with CD and two-dimensional 1H NMR spectroscopy. According to the CD results, both of these revertant signal peptides showed an intermediate helicity between those of wild-type and mutant signal peptides, the helical content of the revertant peptide with higher recovery of the translocation capability being higher. On the other hand, the alpha-helix regions of the wild-type and the revertant peptides as determined by NMR were shown to be the same. This discrepancy may be due to the difference in stability between identical alpha-helical stretches in wild-type and revertant peptides. A good correlation was observed between the helical content of these four ribose binding protein signal peptides in TFE/water as studied by CD and their in vivo translocation activities. It appears, therefore, that both the proper length of the helix and the stability are of functional significance.  相似文献   

12.
Taylor JW 《Biopolymers》2002,66(1):49-75
Side-chain lactam bridges linking amino acid residues that are spaced several residues apart in the linear sequence offer a convenient and flexible method for introducing conformational constraints into a peptide structure. The availability of a variety of selectively cleavable protecting groups for amines and carboxylic acids allows for several approaches to the synthesis of monocyclic, dicyclic, and bicyclic lactam-bridged peptides by solid-phase methods. Multicyclic structures are also accessible, but segment-condensation syntheses with solution-phase cyclizations are most likely to provide the best synthetic approach to these more complex constrained peptides. Lactam bridges linking (i, i + 3)-, (i, i + 4), and (i, i + 7)-spaced residue pairs have all proven useful for stabilization of alpha helices, and (i, i + 3)-linked residues have also been demonstrated to stabilize beta-turns. These structures are finding an increasing number of applications in protein biology, including studies of protein folding, protein aggregation, peptide ligand-receptor recognition, and the development of more potent peptide therapeutics. Defining the functional roles of the amphiphilic alpha-helices in medium-sized peptide hormones, and studying helix propagation from rigid, alpha-helix initiating bicyclic peptides are among the most exciting developments currently underway in this field.  相似文献   

13.
Uperolein, a physalaemin-like endecapeptide, has been shown to be selective for Neurokinin 1 receptor. As a first step towards understanding the structure-activity relationship, we report the membrane-induced structure of Uperolein with the aid of circular dichroism and 2D (1)H NMR spectroscopy. Sequence-specific resonance assignments of protons have been made using correlation spectroscopy (TOCSY, DQF-COSY) and NOESY spectroscopy. The interproton distance constraints and dihedral angle constraints have been utilized to generate a family of structures using torsion angle molecular dynamics within program DYANA. The conformational range of the peptide revealed by NMR and CD studies has been analysed in terms of characteristic secondary features. Analysis of NMR data indicates that the global fold of Uperolein can be explained in terms of equilibrium between 3(10)-helix and alpha-helix from residues 5 to 11. An extended highly flexible N-terminus displays some degree of order and a possible turn structure. A comparison between the structures of Uperolein and Substance P, a prototype and endogenous Neurokinin 1 receptor agonist, indicates several common features in the distribution of hydrophobic and hydrophilic residues. Both the peptides show an amphiphilic character towards the middle region. The similarities suggest that the molecules interact with the receptor in an analogous manner.  相似文献   

14.
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.  相似文献   

15.
A novel antibacterial peptide, moricin, isolated from the silkworm Bombyx mori, consists of 42 amino acids. It is highly basic and the amino acid sequence has no significant similarity to those of other antibacterial peptides. The 20 structures of moricin in methanol have been determined from two-dimensional 1H-nuclear magnetic resonance spectroscopic data. The solution structure reveals an unique structure comprising of a long alpha-helix containing eight turns along nearly the full length of the peptide except for four N-terminal residues and six C-terminal residues. The electrostatic surface map shows that the N-terminal segment of the alpha-helix, residues 5-22, is an amphipathic alpha-helix with a clear separation of hydrophobic and hydrophilic faces, and that the C-terminal segment of the alpha-helix, residues 23-36, is a hydrophobic alpha-helix except for the negatively charged surface at the position of Asp30. The results suggest that the amphipathic N-terminal segment of the alpha-helix is mainly responsible for the increase in permeability of the membrane to kill the bacteria.  相似文献   

16.
The conformational features of four related antigenic peptides (A, B, C and USA) from the foot-and-mouth disease virus (FMDV) (VP1; 141-160 of serotype A, subtype 12), assessed by CD, were found to correlate with the serological properties of these peptides. The CD spectra of the four peptides, obtained under cryogenic and solvent titration conditions, were consistent with three conformational components (a left-handed extended helix, an alpha-helix and a 3(10) helix) for peptides A and C and four components (a beta-turn of type II, an alpha-helix, a gamma-turn and a 3(10) helix) for peptides B and USA. The amino acid substitutions at positions 148 and 153, which distinguish the peptides, are therefore responsible for both their conformational and antigenic differences.  相似文献   

17.
N1 is the first residue in an alpha-helix. We have measured the contribution of all 20 amino acids to the stability of a small helical peptide CH(3)CO-XAAAAQAAAAQAAGY-NH(2) at the N1 position. By substituting every residue into the N1 position, we were able to investigate the stabilizing role of each amino acid in an isolated context. The helix content of each of the 20 peptides was measured by circular dichroism (CD) spectroscopy. The data were analyzed by our modified Lifson-Roig helix-coil theory, which includes the n1 parameter, to find free energies for placing a residue into the N1 position. The rank order for free energies is Asp(-), Ala > Glu(-) > Glu(0) > Trp, Leu, Ser > Asp(0), Thr, Gln, Met, Ile > Val, Pro > Lys(+), Arg, His(0) > Cys, Gly > Phe > Asn, Tyr, His(+). N1 preferences are clearly distinct from preferences for the preceding N-cap and alpha-helix interior. pK(a) values were measured for Asp, Glu, and His, and protonation-free energies were calculated for Asp and Glu. The dissociation of the Asp proton is less favorable than that of Glu, and this reflects its involvement in a stronger stabilizing interaction at the N terminus. Proline is not energetically favored at the alpha-helix N terminus despite having a high propensity for this position in crystal structures. The data presented are of value both in rationalizing mutations at N1 alpha-helix sites in proteins and in predicting the helix contents of peptides.  相似文献   

18.
Amphipathic alpha-helices are the membrane binding motif in many proteins. The corresponding peptides are often random coil in solution but are folded into an alpha-helix upon interaction with the membrane. The energetics of this ubiquitous folding process are still a matter of conjecture. Here, we present a new method to quantitatively analyze the thermodynamics of peptide folding at the membrane interface. We have systematically varied the helix content of a given amphipathic peptide when bound to the membrane and have correlated the thermodynamic binding parameters determined by isothermal titration calorimetry with the alpha-helix content obtained by circular dichroism spectroscopy. The peptides investigated were the antibiotic magainin 2 amide and three analogs in which two adjacent amino acid residues were substituted by their d-enantiomers. The thermodynamic parameters controlling the alpha-helix formation were found to be linearly related to the helicity of the membrane-bound peptides. Helix formation at the membrane surface is characterized by an enthalpy change of DeltaH(helix) approximately -0.7 kcal/mol per residue, an entropy change of DeltaS(helix) approximately -1.9 cal/molK residue and a free energy change of DeltaG(helix)=-0.14 kcal/mol residue. Helix formation is a strong driving force of peptide insertion into the membrane and accounts for about 50 % of the free energy of binding. An increase in temperature entails an unfolding of the membrane-bound helix. The temperature dependence can be described with the Zimm-Bragg theory and the enthalpy of unfolding agrees with that deduced from isothermal titration calorimetry.  相似文献   

19.
Cell‐penetrating peptides (CPPs) are peptides that cross cell membranes, either alone or while carrying molecular cargo. Although their interactions with mammalian cells have been widely studied, much less is known about their interactions with fungal cells, particularly at the biophysical level. We analyzed the interactions of seven CPPs (penetratin, Pep‐1, MPG, pVEC, TP‐10, MAP, and cecropin B) with the fungal pathogen Candida albicans using experiments and molecular simulations. Circular dichroism (CD) of the peptides revealed a structural transition from a random coil or weak helix to an α‐helix occurs for all peptides when the solvent is changed from aqueous to hydrophobic. However, CD performed in the presence of C. albicans cells showed that proximity to the cell membrane is not necessarily sufficient to induce this structural transition, as penetratin, Pep‐1, and MPG did not display a structural shift in the presence of cells. Monte Carlo simulations were performed to further probe the molecular‐level interaction with the cell membrane, and these simulations suggested that pVEC, TP‐10, MAP, and cecropin B strongly penetrate into the hydrophobic domain of the membrane lipid bilayer, inducing a transition to an α‐helical conformation. In contrast, penetratin, Pep‐1 and MPG remained in the hydrophilic region without a shift in conformation. The experimental data and MC simulations combine to explain how peptide structure affects their interaction with cells and their mechanism of translocation into cells (direct translocation vs. endocytosis). Our work also highlights the utility of combining biophysical experiments, biological experiments, and molecular modeling to understand biological phenomena.  相似文献   

20.
The structures of the fifth and sixth transmembrane segments of the bovine mitochondrial oxoglutarate carrier (OGC) and of the hydrophilic loop that connects them were studied by CD and NMR spectroscopies. Peptides F215-R246, W279-K305 and P257-L278 were synthesized and structurally characterized. CD data showed that at high concentrations of TFE and SDS all peptides assume α-helical structures. 1H-NMR spectra of the three peptides in TFE/water were fully assigned and the secondary structures of the peptides were obtained from nuclear Overhauser effects, 3JαH-NH coupling constants and αH chemical shifts. The three-dimensional solution structures of the peptides were generated by distance geometry calculations. A well-defined α–helix was found in the region L220-V243 of peptide F215-R246 (TMS-V), in the region P284-M303 of peptide W279-K305 (TMS-VI) and in the region N261-F275 of peptide P257-L278 (hydrophilic loop). The helix L220-V243 exhibited a sharp kink at P239, while a little bend around P291 was observed in the helical region P284-M303. Fluorescence studies performed on peptide W279-K305, alone and together with other transmembrane segments of OGC, showed that the W279 fluorescence was quenched upon addition of peptide F215-R246, but not of peptides K21-K46, R78-R108 and P117-A149 suggesting a specific interaction between TMS-V and TMS-VI of OGC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号