首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brassinosteroids (BRs) induce various growth responses when applied exogenously to plant tissues, and the analysis of biosynthetic mutants reveals an essential role for plant growth and development. Only a few BR-regulated genes have been identified so far, and the corresponding gene products are assumed to be involved in cell elongation. The present study shows that BR growth responses are linked to the regulation of carbohydrate metabolism by induction of the mRNA for the key enzyme of an apoplastic phloem-unloading pathway. Addition of BRs to autotrophic tomato suspension culture cells specifically elevates the activity of cell-wall-bound invertase, whereas the intracellular invertase activities were not affected. This enhanced enzyme activity was shown to correlate with the induction of the mRNA of extracellular invertase Lin6, whereas the mRNA levels of the other three extracellular invertase isoenzymes were not affected. The induction level induced by different BRs correlates with their growth-promoting activity. The physiological significance of this regulation is further supported by the low concentrations and short incubation times required to induce Lin6 mRNA. This regulatory mechanism results in an elevated uptake of sucrose via the hexose monomers, and thus an increased supply of carbohydrates to the BR-treated cells. Experiments with tomato seedlings showed that the localized BR-dependent growth response of the hypocotyl elongation zone was accompanied by a specific induction of Lin6 mRNA that is restricted to the corresponding tissues. This study demonstrates a role of BRs in tissue-specific source/sink regulation.  相似文献   

2.
Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning.  相似文献   

3.
Sugar transporters are necessary to transfer hexose from cell wall spaces into parenchyma cells to boost hexose accumulation to high concentrations in fruit. Here, we have identified an apple hexose transporter (HTs), MdHT2.2, located in the plasma membrane, which is highly expressed in mature fruit. In a yeast system, the MdHT2.2 protein exhibited high 14C‐fructose and 14C‐glucose transport activity. In transgenic tomato heterologously expressing MdHT2.2, the levels of both fructose and glucose increased significantly in mature fruit, with sugar being unloaded via the apoplastic pathway, but the level of sucrose decreased significantly. Analysis of enzyme activity and the expression of genes related to sugar metabolism and transport revealed greatly up‐regulated expression of SlLIN5, a key gene encoding cell wall invertase (CWINV), as well as increased CWINV activity in tomatoes transformed with MdHT2.2. Moreover, the levels of fructose, glucose and sucrose recovered nearly to those of the wild type in the sllin5‐edited mutant of the MdHT2.2‐expressing lines. However, the overexpression of MdHT2.2 decreased hexose levels and increased sucrose levels in mature leaves and young fruit, suggesting that the response pathway for the apoplastic hexose signal differs among tomato tissues. The present study identifies a new HTs in apple that is able to take up fructose and glucose into cells and confirms that the apoplastic hexose levels regulated by HT controls CWINV activity to alter carbohydrate partitioning and sugar content.  相似文献   

4.
5.
The primary utilization of carbohydrates by cell suspension cultures of Rudgea jasminoides, a native woody Rubiaceae from tropical forests, was investigated. Sucrose, glucose + fructose, glucose, or fructose were supplied as carbon sources. The growth curves of R. jasminoides cultured in glucose + fructose, glucose, or fructose showed similar patterns to that observed when sucrose was supplied to the cells, except that an increase in dry mass was observed at the beginning of the stationary growth phase in the media containing only one monosaccharide. The increase in hexose levels in the media during the early stages of the cultures indicated extracellular hydrolysis of sucrose, which was further supported by the increase in the activity of acid invertase bound to the cell wall. Glucose was preferentially taken up, whereas uptake of fructose was delayed until glucose was nearly depleted from the medium. Measurements of intracellular sucrose content and cytoplasmatic and vacuolar invertases indicate that the enzymatic activity seems to be correlated with a decrease in the hexose flux into the cells of R. jasminoides. Our results indicate that the behavior of cell suspension cultures of R. jasminoides regarding sugar utilization seems to be similar to other dicotyledonous undifferentiated cell suspension cultures.  相似文献   

6.
We previously provided evidence that seed coat-associated invertase is involved in controlling the carbohydrate state of developing seeds and, by this way, triggering developmental processes (Weber et al . (1995) Plant Cell , 7, 1835–1846). To verify our postulate, we compared seed development of two genotypes of Vicia faba differing in seed weight. The seed coat of the large-seeded genotype formed a higher number of parenchymatous cell layers and matured later. VfCWINV1 encoding a cell wall-bound invertase is expressed in the unloading zone of the seed coat. mRNA levels peaked later in 'large' coats and mRNA was present in more cell layers over a longer time period. Cell wall-bound invertase activity revealed a similar accumulation pattern, obviously generating the high hexose conditions present in the endospermal cavity bathing the premature cotyledons and thus controlling their carbohydrate state. High hexose conditions were correlated with an extended mitotic activity of the 'large' cotyledons. In 'large' and 'small' cotyledons, sucrose levels rose when hexoses decreased apparently terminating cell divisions and initiating differentiation and storage activities. This developmental switch was delayed in 'large' embryos. To prove the outlined relationship, sucrose was added in vitro to mitotically active cotyledons. This treatment favoured nuclear expansion and starch accumulation over cell division. In contrast, a hexose-based medium maintained cell divisions. We conclude that development of the embryo is coordinately regulated with that of the maternal seed coat which controls, by metabolic signals, the phase of cell division of the embryo and consequently also seed size.  相似文献   

7.
Leaf senescence is the final stage of leaf development in which the nutrients invested in the leaf are remobilized to other parts of the plant. Whereas senescence is accompanied by a decline in leaf cytokinin content, exogenous application of cytokinins or an increase of the endogenous concentration delays senescence and causes nutrient mobilization. The finding that extracellular invertase and hexose transporters, as the functionally linked enzymes of an apolasmic phloem unloading pathway, are coinduced by cytokinins suggested that delay of senescence is mediated via an effect on source-sink relations. This hypothesis was further substantiated in this study by the finding that delay of senescence in transgenic tobacco (Nicotiana tabacum) plants with autoregulated cytokinin production correlates with an elevated extracellular invertase activity. The finding that the expression of an extracellular invertase under control of the senescence-induced SAG12 promoter results in a delay of senescence demonstrates that effect of cytokinins may be substituted by these metabolic enzymes. The observation that an increase in extracellular invertase is sufficient to delay leaf senescence was further verified by a complementing functional approach. Localized induction of an extracellular invertase under control of a chemically inducible promoter resulted in ectopic delay of senescence, resembling the naturally occurring green islands in autumn leaves. To establish a causal relationship between cytokinins and extracellular invertase for the delay of senescence, transgenic plants were generated that allowed inhibition of extracellular invertase in the presence of cytokinins. For this purpose, an invertase inhibitor was expressed under control of a cytokinin-inducible promoter. It has been shown that senescence is not any more delayed by cytokinin when the expression of the invertase inhibitor is elevated. This finding demonstrates that extracellular invertase is required for the delay of senescence by cytokinins and that it is a key element of the underlying molecular mechanism.  相似文献   

8.
9.
Using in vitro culture of isolated small berries of Vitis vinifera L. cv. Sultana, it was possible to study the effect of different carbon sources and sucrose concentration on fruit growth, hexose accumulation and soluble invertase activity during the first stage of berry development by eliminating the source tissue. Berries cultured in vitro lack stage III of berry development which is characterised by massive accumulation of water and sugars, and thereby berries reached only 30% of the weight of those grown in the plant. Sucrose and glucose were both good carbon sources for berry growth, while fructose was not as good. Berry growth, hexose accumulation and invertase activity increased as sucrose concentration increased up to 15% in the medium. Furthermore, the onset of hexose accumulation in cultured berries depended on the concentration of sucrose in the medium, starting earlier at higher concentrations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Alkaline invertase was induced during the initiation of suspension cultures of single cells from leaf explants of sugar beets in Murashige-Skoog liquid medium which contained benzyladenine. This activity was barely detectable in the leaves themselves. In suspension cultures, the presence of both acid and alkaline invertases was detected; alkaline invertase was only present in the cytoplasm of the cultured cells, whereas acid invertase was present in the cytoplasm and cell walls, and was also detected in the culture medium. The cell wall contained at least three types of acid invertase; two of these activities were solubilized by saline (saline-released) and EDTA (EDTA-released), respectively, and the third remained tightly associated with the cell wall. Saline-released and EDTA-released invertases from the cell wall showed the significant differences in their properties: the saline-released enzyme had the highest affinity for sucrose among the invertases tested, and was easily bound to cell walls, to DNA, and to a cation exchanger, unlike the EDTA-released enzyme. Sucrose is the source of carbon for plant cells in suspension culture and is probably degraded in the cell wall by the saline-released invertase, which had the highest activity and the highest affinity for sucrose. Hexose products of this degradation would be transported to cytoplasm. Soluble invertase, EDTA-released invertase from the cell wall, and one of two extracellular invertases behaved similarly upon chromatography on DEAE-cellulose. They had similar activity profiles with changing pH, and similar Km values for sucrose. Thus it appears that they are identical. Two extracellular invertases found in the growth medium of the suspension cultures were probably identical with those in the soluble fraction of callus and seedlings of sugar beets, because they showed similar behaviors during chromatography on DEAE-cellulose, and had similar activity profiles with changing pH and Km values for sucrose.  相似文献   

11.
The role of apoplastic invertase (β-d -fructofuranoside — fructohydrolase, EC 3.2.1.26) of the host Picea abies for carbohydrate uptake and growth of two of its natural ectomycorrhiza partners was studied. For that purpose, hyphae of Amanita muscaria (Pers. ex Fries) Hock. and Hebeloma crustuliniforme (Bull. ex Fries) Quell., as well as roots and suspension cultured cells of Picea abies (L.) Karst. were used. Apoplastic invertase activity was demonstrated on roots and suspension cultured cells of spruce (in the latter case with 21.7 nkat (g fresh weight)?1). Inhibition of the root cell wall invertase activity (pH optimum 4.5) by increasing the apoplastic pH allowed determination of the permanent release of sucrose from the root. However, under in vivo conditions at a lower cell wall pH the hydrolysation products glucose and fructose were predominantly found. In contrast to spruce cells and certain fungi, such as Saccharomyces (Novick et al., 1981) or Phycomyces (Ruiz-Herrera et al., 1989) invertase activity of the mycorrhizal fungi Hebeloma and Amanita was negligibly low. Furthermore, sucrose could not be consumed by Amanita and Hebeloma. As a consequence, cultures of these mycorrhizal fungi starved when kept on media with sucrose as sole carbohydrate source. But addition of invertase initiated hyphal growth immediately. Studies on carbohydrate uptake of host and fungal cells confirmed that the monosaccharides glucose and fructose were readily incorporated by spruce and fungal cells, with a clear preference for glucose. From these results it is suggested that apoplastic invertase activity of the host Picea abies is a precondition for the utilization of sucrose by the studied mycorrhizal fungi during the nutritional interaction of the symbiotic partners.  相似文献   

12.
A simple method of growing plants in agar was exploited to investigate the effect of long-term nitrogen (N) and phosphorus (P) deficiencies on respiratory metabolism and growth in shoots and roots of Nicotiana tabacum seedlings, and their interaction with exogenously supplied sucrose. Levels of hexose phosphates and 3-phosphoglyceric acid (3-PGA) were low in P-deficient shoots and roots and high in N-deficient shoots and roots. The ratio of hexose phosphates to 3-PGA and levels of fructose-2,6-bisphosphate were high in P-deficient plants and low in N-deficient plants. These data reflect differences in the way metabolism was perturbed, yet both deficiencies were associated with increased root growth relative to shoot growth, starch accumulation in the shoots, and soluble carbohydrate accumulation, especially hexoses, in the roots. Enzymes for sucrose degradation (sucrose synthase, acid and alkaline invertase) and glycolysis (phosphofructokinase, pyrophosphate-dependent phospho-fructokinase and pyruvate kinase) remained unaltered or declined in the shoots and roots. The accumulation of hexoses in roots of N- and P-deficient plants may result from maintenance of high invertase activities relative to sucrose synthase and glycolytic enzymes in the roots. The possibility that hexose accumulation may drive preferential root growth osmotically in N and P deficiencies is discussed. The addition of sucrose to roots to further investigate the interaction of carbohydrates with growth and allocation in low N and low P produced clear effects even though endogenous levels of soluble carbohydrate were already high in the nutrient-deficient plants. In complete nutrition, growth was stimulated, protein content particularly of the roots was increased and there was a preferential increase in activity of sucrose synthase in roots. At low P, enzyme activities in roots were increased, including sucrose synthase, and protein content increased, particularly in the roots, but there was no increase in growth. In N-deficient plants, exogenous sucrose led to decreased protein, Rubisco and chlorophyll content in shoots, in contrast to the other conditions, and a higher protein content and a general increase of catabolic enzyme activities and growth in the roots.  相似文献   

13.
14.
In many higher plants, sucrose is loaded as a major carbon photoassimiliate into the phloem apoplastically by sucrose transporters (SUTs) and unloaded in sink tissues, where it serves as a storage material, carbohydrate backbone, and energy source. In sink tissues, a proportion of sucrose molecules are converted by cell wall invertases (CINs) into hexose that is imported into cells by monosaccharide transporters (MSTs). Thus, in developing seeds, co-ordinated regulation of SUTs, CINs, and MSTs is crucial in carbon distribution. Here, we summarize current efforts on the identification of SUTs, CINs, and MSTs in rice.  相似文献   

15.
The activities of soluble invertase (EC 3.2.1.26), cell wall invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13) were determined in Easter lily ( Lilium longiflorum Thunb. cv. Nellie White) floral organs during flower development. These enzyme activities were correlated with dry weight gains and carbohydrate pools to investigate the importance of their expression in maintaining sink strength of floral organs. In the early stages of flower bud development, anthers exhibited the highest rates of dry weight gain and activity of sucrolytic enzymes. Once anther growth was completed, the dry weight gain of tepal, filament, stigma and style increased with a concomitant increase in hexose concentrations and invertase activity. Although all three enzymes capable of catalyzing sucrose cleavage were present in every flower organ of L. longiflorum , soluble invertase was the predominant enzyme in all flower organs except stigma where cell wall invertase dominated. Soluble invertase activity was highly correlated with dry weight gain in most of the flower organs.  相似文献   

16.
In culture, the ectomycorrhiza-forming fungi Amanita muscaria (Pers. ex Fries) Hock. and Hebeloma crustuliniforme (Bull. ex Fries) Quel. only grow on media with glucose or fructose but not with sucrose as sole carbohydrate source. This is due to their lack of wall-bound invertase activity. Therefore, utilization of sucrose by the fungi within a mycorrhizal association is believed to depend on the wall-bound invertase activity of the host. This enzyme activity was studied in the apoplast of suspension cultured cells of Picea abies (L.) Karst. An ionically and a tightly wall-bound isoform of acid invertase were found that function as β-d -fructofuranoside-fructohydrolases (EC 3.2.1.26). The ionically bound enzyme could be easily released from walls of intact cells with buffer of high ionic strength. In its native form, the ionically bound invertase isoform is a monomeric protein with a molecular mass of 61 kDa, as determined by gel filtration and SDS-PAGE. Glycoprotein nature of the enzyme was demonstrated with antibodies directed against the digoxigenin-labeled protein. The Km values of both enzymes for sucrose, their natural substrate, are relatively high (ionically bound invertase Km= 16 mM, tightly bound invertase Km= 8.6 mM). Activity of both wall-bound invertase isoforms strongly depends on the apoplastic pH. They have a narrow pH-optimum and exhibit highest activity at pH 4.5. with elevated activity between pH 4.5 and 6.0. Furthermore, fructose acts as competitive inhibitor of both isoforms, whereas glucose is not inhibitory. Unloading of sucrose from host cells to the apoplastic interface of the Hartig net in ectomycorrhizae appears to depend on the rate of hydrolysis by the wall-bound invertase of the host. Since the activity of the plant invertase depends on the actual pH value and the fructose concentration in the mycorrhizal interface, we suggest that the fungus can actively influence the activity of the plant invertase by acidification of the cell wall and by fructose uptake. Thus, the fungus itself can regulate its own supply of glucose and fructose.  相似文献   

17.
Vascular differentiation and epidermal disruption are associated with establishment of tumors induced by Agrobacterium tumefaciens. Here, we address the relationship of these processes to the redirection of nutrient-bearing water flow and carbohydrate delivery for tumor growth within the castor bean (Ricinus communis) host. Treatment with aminoethoxyvinyl-glycine showed that vascular differentiation and epidermal disruption were central to ethylene-dependent tumor establishment. CO2 release paralleled tumor growth, but water flow increased dramatically during the first 3 weeks. However, tumor water loss contributed little to water flow to host shoots. Tumor water loss was followed by accumulation of the osmoprotectants, sucrose (Suc) and proline, in the tumor periphery, shifting hexose-to-Suc balance in favor of sugar signals for maturation and desiccation tolerance. Concurrent activities and sites of action for enzymes of Suc metabolism changed: Vacuolar invertase predominated during initial import of Suc into the symplastic continuum, corresponding to hexose concentrations in expanding tumors. Later, Suc synthase (SuSy) and cell wall invertase rose in the tumor periphery to modulate both Suc accumulation and descending turgor for import by metabolization. Sites of abscisic acid immunolocalization correlated with both central vacuolar invertase and peripheral cell wall invertase. Vascular roles were indicated by SuSy immunolocalization in xylem parenchyma for inorganic nutrient uptake and in phloem, where resolution allowed SuSy identification in sieve elements and companion cells, which has widespread implications for SuSy function in transport. Together, data indicate key roles for ethylene-dependent vascularization and cuticular disruption in the redirection of water flow and carbohydrate transport for successful tumor establishment.  相似文献   

18.
cDNA for an acid invertase (EC 3.2.1.26 [EC] ) of tomato (Lycopersiconesculentum Mill.) fruit was introduced into tomato plants underthe control of the cauliflower mosaic virus 35S promoter inthe antisense orientation. The antisense gene effectively suppressedthe invertase activity in soluble and cell wall fractions fromripening fruits. The sucrose content of fruits of the transformantswas markedly increased, while the hexose content was reduced.These results indicate that acid invertase is one of main determinantsof the sugar composition of tomato fruit. The invertase activityin the cell wall fraction of the leaf tissues of the transformantswas not suppressed to the same extent as that in the solublefraction. Wounding of the control leaf tissues induced invertaseactivity in both soluble and cell wall fractions. The inductionof activity in the soluble fraction was suppressed by the antisensegene, while that in the cell wall fraction was unaffected. Thesefindings suggest that mRNA for some other invertase, in particular,the mRNA for a cell wall-bound invertase, was present in leaves. 1Present address: Plant Breeding and Genetics Research Laboratory,Japan Tobacco Inc., 700 Higashibara, Toyoda, Iwata, Shizuoka,438 Japan. 2Present address: National Institute of Agrobiological Resources,Kannondai, Tsukuba, Ibaraki, 305 Japan.  相似文献   

19.
Acid invertase (EC 3.2.1.26) is one of the key enzymes involved in the carbohydrate sinkorgan development and the sink strength modulation in crops. The experiment conducted with ‘Starkrimson’ apple (Malus domestica Borkh) fruit showed that, during the fruit development, the activity of acid invertase gradually declined concomitantly with the progressive accumulation of fructose, glucose and sucrose, while Western blotting assay of acid invertase detected a 30 ku peptide of which the immuno-signal intensity increased during the fruit development. The immunolocalization via immunogold electron microscopy showed that, on the one hand, acid invertase was mainly located on the flesh cell wall with numbers of the immunosignals present in the vacuole at the late stage of fruit development; and on the other hand, the amount of acid invertase increased during fruit development, which was consistent with the results of Western blotting. The in vivo preincubation of fruit discs with soluble sugars showed that the activity of extractible acid invertase was inhibited by fructose or glucose, while Western blotting did not detect any changes in apparent quantity of the enzyme nor other peptides than 30 ku one. So it is considered that fructose and glucose induced the post-translational or translocational inhibitory regulation of acid invertase in developing apple fruit. The mechanism of the post-translational inhibition was shown different from both the two previously reported ones that proposed either the inhibition by hexose products in the in vitro chemical reaction equilibrium system or the inhibition by the proteinaceous inhibitors. It was hypothesized that fructose and glucose might induce acid invertase inhibition by modulating the expression of some inhibition-related genes or some structural modification of acid invertase.  相似文献   

20.
Sugar uptake by maize endosperm suspension cultures   总被引:1,自引:1,他引:0       下载免费PDF全文
Maize (Zea mays L.) endosperm suspension cultures are a useful model system for studying biochemical and physiological events in developing maize endosperm. In this report, sugar uptake by the cultures is characterized. Uptake of 14C-labeled fructose and l-glucose was linear with time, while the rate of uptake of radioactivity from sucrose increased over a 120 min period. Both saturable and linear components of uptake were observed for fructose, glucose, sucrose, 1′-deoxy-1′-fluorosucrose, and maltose. Uptake of mannitol, sorbitol, and l-glucose took place at lower rates and was linear with concentration. Rates of incorporation of radioactivity from fructose and glucose exceeded that of sucrose at all concentrations tested. Kinetics of 1′-deoxy-1′-fluorosucrose uptake indicated that 14C from sucrose can be taken up by a saturable carrier of intact sucrose as well as by invertase hydrolysis and subsequent uptake of hexoses. Cell wall invertase was demonstrated histochemically. Further study of fructose uptake at a concentration at which the saturable component predominated revealed sensitivity to metabolic inhibitors, respiratory uncouplers, the nonpermeant sulfhydryl reagent p-chloromercuribenzenesulfonic acid, and nigericin. Uptake was not affected by valinomycin plus K+ and was stimulated by fusicoccin. Fructose and glucose uptake was not pH-sensitive below pH 7.0, whereas uptake of radioactivity from sucrose and 1′-deoxy-1′-fluorosucrose declined as the pH was increased above 5.0. Fructose uptake was not completely inhibited by glucose and vice versa, suggesting the presence of specific carriers. These results indicate that maize endosperm suspension cultures (a) absorb fructose via a typical, energy-requiring, carrier-mediated proton cotransport system; (b) possess saturable carriers for glucose and sucrose; and (c) also absorb sucrose via hexose uptake after sucrose hydrolysis by extracellular invertase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号