首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Follicle-regulatory protein (FRP) affects ovarian steroidogenesis and thus follicular maturation. However, secretion of FRP by cells from different-sized follicles as well as the modulation of FRP production by gonadotropins and locally produced steroids are unknown. To evaluate which cell type secretes FRP, theca and granulosa cells were obtained from porcine follicles. In addition, the effects of follicle-stimulating hormone (FSH) and steroids on FRP secretion from granulosa cells of small (less than 3 mm), medium (3-6 mm), and large (greater than 8 mm) porcine follicles and theca cells of large follicles were determined. Granulosa cells were obtained from follicular aspirates, whereas theca cells were recovered after digestion of the stereomicroscopically removed thecal layer. Both were cultured in monolayer in serum-free medium. Granulosa cells were treated as follows: 1) control; 2) FSH (250 ng/ml); 3) progesterone (500 ng/ml, 3 micrograms/ml), or estradiol-17 beta (500 ng/ml, 4 micrograms/ml), or dihydrotestosterone (500 ng/ml, 1 microgram/ml); 4) FSH + progesterone, or estradiol-17 beta, or dihydrotestosterone. Theca cells received the same treatment except that human chorionic gonadotropin (hCG) (5m IU/ml) was used in place of FSH. At 48 or 96 h, media were removed and FRP was quantitated by an Enzyme-Linked Immunosorbent Assay (ELISA). FRP was identified in granulosal medium from follicles of all sizes, but was not present in thecal cultures. At 48 h, granulosa cells from small and medium-sized follicles produced more FRP (20.04 +/- 4.4, 35.42 +/- 4.1 immunoreactive units [IRU]) than cells from large (3.53 +/- 0.97 IRU) follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Porcine thecal cells synthesize estradiol, which may function as an intraovarian regulator of follicular growth. Production of estradiol by granulosa-cell aromatase is modulated by gonadotropins and local steroidal and nonsteroidal factors. Therefore, the effect of human chorionic gonadotropin (hCG) and physiological concentrations of steroids on aromatase activity of the thecal cells was determined. Theca was excised from large porcine follicles (greater than 10 mm diameter) and plated as monolayer cultures in 1 ml of serum-free medium. Twenty-four hours after culture, cells were treated as follows: 1) control; 2) hCG (5 IU); 3) progesterone (P, 3 micrograms), estradiol-17 beta (E, 4 micrograms), or dihydrotestosterone (DHT, 1 microgram); 4) hCG + P, E, or DHT. After 27, 30, 36, 48, and 72 h of culture, media were assessed for levels of P and E. Aromatase activity was determined by a radiometric assay. Levels of P in control media increased from 27 to 72 h. hCH significantly (p less than 0.01) increased P levels from 27 to 72 h of culture. Estrogen decreased (p less than 0.05) P levels at 36, 48, and 72 h compared to controls and also prevented the hCG-induced increase in P levels at these times. DHT significantly increased (p less than 0.05) P levels at 48 and 72 h. DHT + hCG reduced the hCG-associated increase in P concentration at 36 h and 72 h, but enhanced the hCG-induced increase in P levels at 48 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
D C Johnson  T Griswold 《Steroids》1983,42(5):565-574
Immature hypophysectomized rats were injected with PMS; some groups received hCG 48h later. The C17,20-lyase activity in the granulosa cells removed from the large preovulatory follicles was estimated by the amount of labelled acetic acid produced from 21 (14C) progesterone or 17-hydroxyprogesterone. 17 alpha-hydroxylase and aromatase activity were measured by the tritium exchange method. Although the granulosa cells contained lyase, it was considerably less than their hydroxylase activity. The remaining tissue, consisting of small follicles and hypertrophied thecal and interstitial tissue, had a great deal more lyase and hydroxylase activity than did the granulosa cells. The results are consistent with the view that granulosa cells can produce estrogen from progesterone and do not require androgen precursors from the theca and/or interstitium.  相似文献   

4.
Although androgens have been implicated in follicular atresia, ovarian follicular androgen synthesis is required for preovulatory follicular growth. To localize the site(s) of androgen biosynthesis and to obtain a better understanding of the regulation of the androgenic pathway(s) in rat ovarian follicles we examined the relative abilities of developing follicles to accumulate specific androgens [testosterone (T) and dihydrotestosterone (DHT)] using both radioimmunoassay (RIA) and 3H-substrate metabolism techniques. Small antral and preovulatory follicles were obtained from control or human chorionic gonadotropin (hCG)-primed immature rats, respectively (Richards and Bogovich, 1982). Small antral follicles, theca and granulosa cells produced little immunoassayable androgen (T + DHT) when incubated with or without 8-bromo-cAMP. In contrast, preovulatory follicles and theca produced more androgen than small antral tissues and in a manner acutely stimulable by cAMP. Granulosa cells produced little androgen under these conditions. Inclusion of [3H] androstenedione in the incubates yielded increased accumulation of [3H] T and [3H] DHT for all small antral and preovulatory tissues. Indeed, granulosa cells from both small antral and preovulatory follicles possessed a remarkable ability to accumulate [3H] T. This ability was not altered by hypophysectomy or subsequent treatment with estradiol and/or follicle-stimulating hormone (FSH). These results suggest that 17-ketosteroid reductase may be a constitutive enzyme in granulosa cells.  相似文献   

5.
The steroidogenic potential of various physiological compartments within the ovary of the hen were examined using in vitro systems. Three-hour incubations of individual whole small follicles (less than 1 mm-1 cm) or 100,000 collagenase-dispersed theca cells of the five largest ovarian follicles (F1-F5) were conducted in 1 ml of Medium 199 at 37 degrees C in the presence and absence of luteinizing hormone (LH) (0.39, 0.78, 1.56, 3.13 and 6.25 ng), progesterone (5 ng), and dehydroepiandrosterone (DHEA, 5 ng). Steroid output was measured by radioimmunoassay of incubation media. Progesterone was not produced by small follicles although they are a major source of DHEA and estradiol and a significant source of androstenedione. Output of DHEA, androstenedione and estradiol was highly stimulated by LH. The substrate for androstenedione and estradiol in small follicles is probably DHEA. Output of DHEA and androstenedione in theca cells of F2-F5 was stimulated by LH in a dose-related manner. A dose-response relationship between estradiol output and the concentration of LH in media was not apparent in theca cells from F2-F5. Steroidogenesis in theca tissue of large follicles occurs predominantly via the delta 4 pathway. The ability of these theca cells to metabolize progesterone to androstenedione is lost between 36 and 12 h before ovulation. Their ability to metabolize DHEA to androstenedione is still present 12 h before ovulation. Aromatase activity is significantly reduced between 36 and 12 h before ovulation. These data indicate that both large and small follicles can be stimulated by LH. The small follicles are the major source of estrogen. As the large yolky follicles mature, steroidogenesis shifts from the delta 5 to the delta 4 pathway. By 12 h before ovulation, the F1 follicle has lost the ability to convert progesterone to androstenedione. The inability of the largest ovarian follicle to convert progesterone to androstenedione contributes at least in part to the preovulatory increase in the plasma concentration of progesterone that generates the preovulatory LH surge by positive feedback.  相似文献   

6.
Dispersed granulosa and theca interna cells were recovered from follicles of prepubertal gilts at 36, 72 and 108 h after treatment with 750 i.u. PMSG, followed 72 h later with 500 i.u. hCG to stimulate follicular growth and ovulation. In the absence of aromatizable substrate, theca interna cells produced substantially more oestrogen than did granulosa cells. Oestrogen production was increased markedly in the presence of androstenedione and testosterone in granulosa cells but only to a limited extent in theca interna cells. The ability of both cellular compartments to produce oestrogen increased up to 72 h with androstenedione being the preferred substrate. Oestrogen production by the two cell types incubated together was greater than the sum produced when incubated alone. Theca interna cells were the principal source of androgen, predominantly androstenedione. Thecal androgen production increased with follicular development and was enhanced by addition of pregnenolone or by LH 36 and 72 h after PMSG treatment. The ability of granulosa and thecal cells to produce progesterone increased with follicular development and addition of pregnenolone. After exposure of developing follicles to hCG in vivo, both cell types lost their ability to produce oestrogen. Thecal cells continued to produce androgen and progesterone but no longer responded to LH in vitro. These studies indicate that several functional changes in the steroidogenic abilities of the granulosa and theca interna compartments occur during follicular maturation.  相似文献   

7.
Theca was excised from large (greater than 8 mm) and medium-sized (3-6 mm) pig follicles and prepared as monolayer cultures in serum-free media. After 24 h cells were treated with (1) M199 (control), (2) 5 i.u. hCG, (3) 100 micrograms or 100 ng FRP or (4) hCG (5 i.u.) + FRP (100 micrograms or 100 ng). At 3, 6, 12, 24 and 48 h after treatment, progesterone, oestradiol, androstenedione and testosterone were measured in media. Formation of progesterone by microsomal fractions incubated (37 degrees C) with 1 microM-pregnenolone + 5-microM-NAD+ for 1 h was used as a measure of 3 beta-HSD activity. Aromatase activity was determined by incubating cells with [3H]testosterone for 3 h (37 degrees C) and measuring 3H2O release. In theca from large follicles, hCG enhanced 3 beta-HSD activity after 48 h (P less than 0.05) and secretion of progesterone after 36 h. FRP alone inhibited 3 beta-HSD activity at 36 and 72 h, but had little effect on progesterone secretion. FRP inhibited (P less than 0.05) the hCG-induced increase in 3 beta-HSD activity at 36, 48 and 72 h. HCG enhanced aromatase activity after 48 h while FRP prevented (P less than 0.05) the hCG-induced increase in aromatase activity at 48 and 72 h. Secretion of oestradiol was enhanced (P less than 0.05) at 48 h but inhibited at 72 h by hCG. FRP alone had little effect on secretion of oestradiol but hCG + FRP was inhibitory at 72 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Y Takeo  J Kohno  M Hokano 《Acta anatomica》1986,127(3):161-170
The relation between sex hormone levels in blood and ultrastructural changes of ovarian follicles was examined in persistent-estrous rats exposed to continuous illumination (LL) for 100 days. Plasma LH showed a tonic level secretory pattern, and circulating estradiol and estrone concentrations were relatively high, while both levels of FSH and progesterone were low. Various stages of growing and degenerating follicles were observed in the ovary of the LL-exposed rats. The early stage of antral follicle did not seem to possess the ability of steroidogenesis. Theca cells around mature antral follicles contained prominent Golgi apparatuses, plenty of smooth endoplasmic reticulum (ER), abundant free ribosomes and many round-mitochondria. A few newly formed lipid droplets were seen in some of theca cells. Granulosa cells contained much distended rough ER, well-developed mitochondria, several lipid droplets and microfilaments. The theca cells of abnormal follicles with hyperplastic and infolded layers of granulosa cells contained many lipid droplets. However, the development of the smooth ER became hindered with increasing lipid droplets in the theca cell. On the other hand, granulosa cells of abnormal follicles contained greater numbers of lipid droplets than those of antral mature follicles, and were equipped with well-developed cytoplasmic organelles as were those of mature antral follicles. Theca interna cells of abnormal follicles may be more involved in the secretion of androgen, which has already been accumulated in the lipid droplets, than the cells involved in the active synthesis of the hormone, while the granulosa cells may convert its androgen to estrogen. The present findings suggest that both follicles of mature and abnormal types in the LL-exposed rat retain enough capacity of estradiol production and participate in the continued elevation of circulating estradiol, probably resulting in the stimulation of the theca cells by the tonic level of LH and of the granulosa cells by the levels of FSH, which are lower than the basal values during the normal 4-day estrous cycle.  相似文献   

9.
The present experiment was to investigate the effect of gonadotropins (LH and hCG), steroids (estradiol and progesterone) and culture media (TCM 199, Ham-F-12, BMOC-3 and modified KRB) on in vitro maturation of cumulus-enclosed bovine oocytes. Oocytes isolated from follicles of 相似文献   

10.
Follicular fluid was collected from small (1-2 mm), medium (3-5 mm) and large (6-12 mm) follicles of pigs, treated with charcoal to remove steroids, and tested for effects on the induction of functional LH/hCG receptors in cultures of granulosa cells from small antral pig follicles. Granulosa cells were cultured for 2, 4 or 6 days in Medium 199 + 10% pig serum. Granulosa cells cultured in the presence of purified human FSH (0.1 microgram/ml, LER 8/117), insulin (1 mU/ml), cortisol (0.01 microgram/ml) and thyroxine (10(-7) M) accumulated a 4- to 8-fold increase in LH/hCG receptors compared to control cultures. The amounts of cyclic AMP and progesterone secreted after exposure to ovine LH (1 microgram/ml: NIH-S19) were also increased 2-3-fold and 80-100-fold, respectively. Exposure to FSH alone resulted in lower amounts of LH/hCG receptors with a concomitant decrease in optimum LH responses. Addition of 12.5-50% follicular fluid obtained from small (1-2 mm) follicles led to a dose-dependent inhibition of the FSH plus insulin, cortisol and thyroxine induction of LH/hCG receptors after 4 days of culture. Fluid from medium follicles showed reduced ability to inhibit LH/hCG receptor induction, and fluid from large follicles exerted only a slight inhibition or no inhibition of receptor induction. Fluid from medium-sized and large follicles exerted a progressive dose-dependent stimulation of progesterone secretion by the granulosa cell cultures. The inhibitory activity was precipitated primarily with 70% ethanol and to a lesser degree by 36 and 90% ethanol. These studies demonstrate that induction of functional LH/hCG receptors in cultures of pig granulosa cells from immature follicles is enhanced by including insulin, cortisol and thyroxine, in addition to FSH, in the culture medium, and that follicular fluid modulates both receptor induction and progesterone secretion as a function of follicular maturation.  相似文献   

11.
Theca cells are the endocrine cells associated with ovarian follicles that play an essential role in fertility by producing the androgen substrate required for ovarian estrogen biosynthesis. Theca cells differentiate from the interfollicular stroma in response to proteins secreted from growing follicles. The most common endocrine cause of infertility is associated with excessive proliferation of theca cells and ovarian hyperandrogenism. Cell facts: -ovarian androgen-producing cells; -are associated only with developing follicles; -over-activity of theca cells causes infertility due to hyperandrogenism; -under-activity of theca cells causes infertility due to lack of estrogen. Theca cells: androgen-producing cells in the ovary.  相似文献   

12.
Thecal cell steroidogenesis plays a major role in folliculogenesis within the porcine ovary. Accordingly, the effects of physiological concentrations of steroids on 3 beta-hydroxysteroid dehydrogenase activity (3 beta-HSD) were determined. Theca was excised from large porcine follicles and prepared in a monolayer culture in 1 ml of serum-free media. Cells were treated 24 h after culture as follows: (1) control, (2) hCG (5 IU); (3) progesterone (P, 3 micrograms); estradiol-17 beta (E, 4 micrograms); 5 beta-dihydrotestosterone (DHT, 1 microgram); (4) hCG + P or E or DHT. At 3, 6, 12, 24 and 48 h after treatment, media were assessed for P levels. For 3 beta-HSD activity, P formation by microsomal fractions incubated with 1 microM pregnenolone + 5 microM NAD+ for 1 h (37 degrees C) was monitored. Thecal cell P secretion increased from 27 to 72 h. hCG significantly (P less than 0.05) increased P levels after 36 h compared to controls. E or E + hCG decreased P levels at 36, 48, and 72 h and DHT prevented the hCG-induced increase in P secretion. 3 beta-HSD activity in thecal microsomes increased significantly from 27 to 72 h. hCG had little effect on 3 beta-HSD activity compared with controls from 27 to 36 h, but significantly (P less than 0.05) decreased 3 beta-HSD activity at 48 and 72 h. However, P or P + hCG significantly (P less than 0.05) decreased 3 beta-HSD activity at all times. In addition, E or E + hCG significantly (P less than 0.05) decreased 3 beta-HSD activity at 48 and 72 h. DHT prevented the hCG-induced decrease in 3 beta-HSD activity. In conclusion, porcine thecal secretion of P and microsomal 3 beta-HSD activity increased during 72 h of culture. Paradoxically, the addition of hCG to cultures enhanced media P concentrations but inhibited 3 beta-HSD activity. Further, the addition of E to cultures decreased media concentrations of P while P or E decreased 3 beta-HSD activity. Therefore, paracrine/autocrine effects of locally produced steroids may play a role in modulating thecal cell steroidogenesis.  相似文献   

13.
Previously described models for avian ovarian steroidogenesis, using mature, 25-40-mm preovulatory follicles as the source of tissues, were based on the assumption that interaction of the granulosa layer, as the predominant source of progesterone, with adjacent theca cells is required for maximal production of C21, C19, and C18 steroids. In the present study, we evaluated the steroidogenic capacity of ovarian cells isolated from less mature, 6-8-mm and 9-12-mm follicles in the chicken ovary (representative of a stage of development 2-3 wk prior to ovulation) to determine at which stage of follicular development granulosa and/or theca cells become steroidogenically competent. Granulosa cells collected from 6-8-mm follicles were found to be virtually incompetent to produce steroids, containing extremely low basal levels of progesterone (12 pg/5 x 10(5) cells) and failing to respond with increased steroid output following a 3-h exposure to ovine LH (oLH; 0.1 and 100 ng/0.5 ml), ovine FSH (oFSH; 100, 500, and 1,000 ng/0.5 ml), 8-bromo-cyclic adenosine monophosphate (8-bromo-cAMP; 0.33 and 3.33 mM) or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, addition of pregnenolone (20 and 200 ng/0.5 ml) to granulosa incubations resulted in significantly increased progesterone levels. Granulosa cells of 6-8-mm follicles also failed to increase cAMP formation in the presence of oLH (10, 100, and 1,000 ng/0.5 ml) and 3-isobutyl-1-methylxanthine (IBMX; 10 microM), but responded to stimulation with 1,000 ng oFSH (4.4-fold increase over basal) or 10 microM forskolin (32-fold increase over basal) in the presence of IBMX. In contrast, granulosa cells isolated from 9-12-mm follicles and incubated for 3 h in vitro were found to contain basal progesterone levels 200-fold higher than those found in granulosa cells of 6-8-mm follicles. Furthermore, granulosa cells of 9-12-mm follicles markedly increased progesterone production following incubation in the presence of oFSH (100-1,000 ng/0.5 ml), 8-bromo-cAMP (0.33 and 3.33 mM), or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, these granulosa cells remained unresponsive to oLH (0.1, 10, and 100 ng/0.5 ml), failing to increase cAMP accumulation (in the presence of IBMX) and progesterone output. Theca cells of small yellow follicles were found to produce measurable basal levels of progesterone, androstenedione, and estradiol, and levels of each steroid were significantly increased following a 3-h challenge with oLH, 8-bromo-cAMP, 25-hydroxycholesterol, and pregnenolone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
We have investigated the possible role of theca and granulosa cell interaction in the control of the hormone-producing activity and growth of granulosa and theca cells during bovine ovarian follicular development, using a coculture system in which granulosa and theca cells were grown on opposite sides of a collagen membrane. When follicular cells were isolated from small follicles (3-5 mm), theca cells reduced estradiol, progesterone, and inhibin production by granulosa cells to 14 +/- 5%, 64 +/- 6%, and 27 +/- 4%, respectively, of the production by granulosa cells cultured alone. On the other hand, when the cells were isolated from large follicles (15-18 mm), theca cells increased these levels to 253 +/- 34%, 156 +/- 24%, and 287 +/- 45%, respectively. Theca cells did not affect the growth of granulosa cells. Androstenedione production by theca cells was augmented by granulosa cells to 861 +/- 190% (in small follicles) and 1298 +/- 414% (in large follicles), respectively. The growth of theca cells was also augmented by granulosa cells (small follicle, 210 +/- 43%, and large follicle, 194 +/- 24%, respectively). These results indicate that theca cells secrete factor(s) inhibiting the differentiation of immature while promoting that of matured granulosa cells; they also suggest that granulosa cells secrete factor(s) promoting both the differentiation and growth of theca cells throughout the follicular maturation process.  相似文献   

15.
We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle.  相似文献   

16.
The steroid secreting activities of dispersed granulosa and theca interna cells from preovulatory follicles of prepubertal gilts 72 h after pregnant mare's serum gonadotropin treatment (750 IU) were compared. The cells were cultured for 24 h with or without steroid substrate (10(-8) to 10(-5) M progesterone, 17 alpha-hydroxyprogesterone, or androstenedione), FSH (100 ng/mL), LH (100 ng/mL), and cyanoketone (0.25 microM, an inhibitor of 3 beta-hydroxysteroid dehydrogenase). Granulosa cells cultured alone secreted mainly progesterone. Theca interna cells secreted mainly 17 alpha-hydroxyprogesterone and androstenedione, with secretion being markedly enhanced by LH. In the presence of cyanoketone, which inhibited endogenous progesterone production, theca interna but not granulosa cells were able to convert exogenous progesterone to 17 alpha-hydroxyprogesterone and androstenedione, and exogenous 17 alpha-hydroxyprogesterone to androstenedione and estradiol-17 beta in high yield. The secretion of the latter steroids from exogenous substrates was unaffected by LH. Theca interna cells secreted more estradiol-17 beta than did granulosa cells in the absence of aromatizable substrate, but estradiol-17 beta secretion by the latter was markedly increased after the addition of androstenedione. These apparent differences in steroid secreting activity between the cell types suggest that the enzymes responsible for conversion of C21 to C19 steroids, i.e., 17 alpha-hydroxylase and C17,20-lyase, reside principally in the theca interna cells. However, aromatase activity appears to be much higher in granulosa cells.  相似文献   

17.
Atresia that is induced experimentally and the preovulatory surge of gonadotropins stimulate similar changes in follicular steroidogenesis in the rat, i.e., both enhance production of progesterone and reduce production of androgen and 17 beta-estradiol. In this study, mature cycling rats were either stimulated with human chorionic gonadotropin (hCG) or atresia was induced by blocking the proestrous surge of gonadotropins through the use of pentobarbitone or hypophysectomy. Changes in activity of C17,20-lyase (lyase) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha SDH) were estimated from homogenates of 10-15 Graafian follicles by evaluating conversion of precursors to products that were separated and quantified by high performance liquid chromatography (HPLC). Within 3 h of administration to proestrous rats, hCG reduced follicular lyase activity (pmole androstenedione produced per mg protein during 30 min incubation) from (mean +/- SEM) 221.3 +/- 24.2 to 120.2 +/- 30.4, and to 8.5 +/- 0.1 after 9 h. By contrast, 20 alpha SDH activity increased somewhat after hCG stimulation. Similar changes were observed after follicular atresia was induced, with hypophysectomy causing the most striking changes. Lyase was reduced to 60% within 6 h after the operation, and to 2% within 24 h. Activity of 20 alpha SDH was doubled within 6 h of hypophysectomy and remained high even 24 h later. Thus, in preovulatory rat follicles, luteinizing hormone (LH)/hCG reduces lyase activity and similar changes occur in such follicles undergoing atresia. There was no clear correlation between 20 alpha SDH and lyase activities; our results did not support the argument that 20 alpha SDH products regulate lyase following the ovulatory stimulus and atresia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A Makris  K J Ryan 《Steroids》1980,35(1):53-64
The comparative ability of granulosa cells and theca of the hamster preovulatory follicle to produce androgens in vitro from endogenous and exogenous substrates was assessed. The results indicate that theca are the major source of follicular androstenedione, but that the granulosa cells may be the major source of follicular testosterone. Theca and granulosa cells accumulate comparable amounts of dihydrotestosterone from exogenous androstenedione and testosterone and both may be a significant source of follicular DHT. LH stimulates the conversion of progesterone and 17 alpha-OH progesterone to androstenedione, testosterone and DHT in theca. LH does not stimulate the conversion of androstenedione to testosterone or DHT, and that of testosterone to DHT in either granulosa cells or theca. FSH, in granulosa cells but not in theca, stimulates the conversion of adrostenedione to testosterone but it has no effect in DHT accumulation from exogenous testosterone.  相似文献   

19.
Angiogenin is a member of the ribonuclease A superfamily of proteins that has been implicated in stimulating angiogenesis but whether angiogenin can directly affect ovarian granulosa or theca cell function is unknown. Therefore, the objective of these studies was to determine the effect of angiogenin on proliferation and steroidogenesis of bovine granulosa and theca cells. In experiments 1 and 2, granulosa cells from small (1 to 5 mm diameter) follicles and theca cells from large (8 to 22 mm diameter) follicles were cultured to evaluate the dose-response effect of recombinant human angiogenin on steroidogenesis. At 30 and 100 ng/ml, angiogenin inhibited (P<0.05) granulosa cell progesterone production and theca cell androstenedione production but did not affect (P>0.10) granulosa cell estradiol production or theca cell progesterone production, and did not affect numbers of granulosa or theca cells. In experiments 3 and 4, granulosa and theca cells from both small and large follicles were cultured with 300 ng/ml of angiogenin to determine if size of follicle influenced responses to angiogenin. At 300 ng/ml, angiogenin increased large follicle granulosa cell proliferation but decreased small follicle granulosa cell progesterone and estradiol production and large follicle theca cell progesterone production. In experiments 5 and 6, angiogenin stimulated (P<0.05) proliferation and DNA synthesis in large follicle granulosa cells. In experiment 7, 300 ng/ml of angiogenin increased (P<0.05) CYP19A1 messenger RNA (mRNA) abundance in granulosa cells but did not affect CYP11A1 mRNA abundance in granulosa or theca cells and did not affect CYP17A1 mRNA abundance in theca cells. We conclude that angiogenin appears to target both granulosa and theca cells in cattle, but additional research is needed to further understand the mechanism of action of angiogenin in granulosa and theca cells, as well as its precise role in folliculogenesis.  相似文献   

20.
Ovarian follicular development is controlled by numerous paracrine and endocrine regulators, including oocyte-derived growth differentiation factor 9 (GDF9), and a localized increase in bioavailable insulin-like growth factor 1 (IGF1). The effects of GDF9 on function of theca cells collected from small (3-6 mm) and large (8-22 mm) ovarian follicles were investigated. In small-follicle theca cells cultured in the presence of both LH and IGF1, GDF9 increased cell numbers and DNA synthesis, as measured by a (3)H-thymidine incorporation assay, and dose-dependently decreased both progesterone and androstenedione production. Theca cells from large follicles had little or no response to GDF9 in terms of cell proliferation or steroid production induced by IGF1. Small-follicle theca cell studies indicated that GDF9 decreased the abundance of LHR and CYP11A1 mRNA in theca cells, but had no effect on IGF1R, STAR, or CYP17A1 mRNA abundance or the percentage of cells staining for CYP17A1 proteins. GDF9 activated similar to mothers against decapentaplegics (SMAD) 2/3-induced CAGA promoter activity in transfected theca cells. Small-follicle theca cells had more ALK5 mRNA than large-follicle theca cells. Small-follicle granulosa cells appeared to have greater GDF9 mRNA abundance than large-follicle granulosa cells, but theca cells had no detectable GDF9 mRNA. We conclude that theca cells from small follicles are more responsive to GDF9 than those from large follicles and that GDF9 mRNA may be produced by granulosa cells in cattle. Because GDF9 increased theca cell proliferation and decreased theca cell steroidogenesis, oocyte- and granulosa cell-derived GDF9 may simultaneously promote theca cell proliferation and prevent premature differentiation of the theca interna during early follicle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号