首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
反胶团萃取蛋白质技术的反萃过程研究进展   总被引:2,自引:0,他引:2  
反胶团萃取分离技术是一种新型的生物产品分离技术,本文简要介绍了反胶团萃取蛋白质技术的反萃过程的动力学,重点综述了在提高蛋白质反萃效率方面的研究进展,并对目前存在的问题、发展方向等进行了评述。  相似文献   

2.
反胶团是表面活性剂溶解在非极性溶剂中形成的、围绕一个“水核”的纳米级聚集体。液液反胶团萃取蛋白质技术,因对目标物质选择性好、容量大和能保持其活性而得到广泛研究[1-9].在反胶团萃取蛋白质的研究中,多数作者采用单一表面活性剂AOT[2]或季胺盐[3]的反胶团体系。两种体系的共同弱点是:体系受离子强度、pH值等静电因素的影响大,直接影响萃取率,为了克服它们的不足,有人在AOT体系中加亲和试剂增强反胶团对蛋白质的亲和性[4],加磷酸类阴离子表面活性剂[5]、天然表面活性剂磷脂[6]等以增强体系的萃取性能e人在季胺盐的反胶团体系中加非离子表面活性剂作助剂提高蛋白质的萃取率[7],有人则反阴、阳和非离子表面活性剂混合形成反胶团提高某种酶的萃取容量[8],本文用中性磷氧萃取剂三烷基氧膦(TRPO)与阴离子表面活性剂琥珀二辛酯磺酸钠(AOT)混合溶解在异辛烷中形成反胶团萃取牛血红蛋白(BHb),比较AOT、TRPO及AOT三体系对牛血红蛋白(BHb)的萃取性能。  相似文献   

3.
反胶团萃取蛋白质的研究   总被引:11,自引:0,他引:11  
本文以溶菌酶,胰蛋白酶和胃蛋白酶为对象,研究了水相pH值,离子强度、阳离子种类和蛋白质分子量等因素对反胶团萃取蛋白质的影响。结果表明,反胶团萃取的单级萃取率高,调节PH值和离子强度等工艺条件,就可以实现不同种类蛋白质的有效分离,可望成为一种生物产品分离的新方法。  相似文献   

4.
反向微胶团萃取分离酪氨酸的研究   总被引:4,自引:0,他引:4  
研究了AOT反向微胶团的性质 ,并以酪氨酸为反向微胶团的萃取对象 ,探讨了各种因素对酪氨酸分配比的影响 ,优化了萃取、反萃取的工艺条件。  相似文献   

5.
反胶团萃取   总被引:2,自引:0,他引:2  
反胶团萃取分离技术是一种新型的 ,有发展前途的生物产品分离技术。本文着重对反胶团的表面活性剂 ,各种影响因素 (W0 、pH、T等 ) ,动力学和热力学的理论研究以及目前的开发应用状况等多方面的现状进行综述 ,并对今后的发展进行展望  相似文献   

6.
反胶团萃取分离技术是一种新型的,有发展前途的生物产品分离技术。本文着重对反胶团的表面活性剂,各种影响因素(W0、pH、T等),动力学和热力学的理论研究以及目前的开发应用状况等多方面的现状进行综述,并对今后的发展进行展望。  相似文献   

7.
生物物质的分离新技术--反胶团萃取   总被引:5,自引:0,他引:5  
反胶团萃取分离技术是一种新型的,有发展前途的生物产品的分离技术。本文着重对反胶团的各种影响因素(表面活性剂的种类、水与表面活性剂的摩尔比WO、pH值、温度T等),动力学和热力学的理论研究以及目前的开发应用状况等多方面的现状进行综述,并对今后的发展进行展望。  相似文献   

8.
氨基酸制备中的萃取技术   总被引:3,自引:2,他引:1  
总结了氨基酸制备中的三大萃取技术:离子交换反应萃取,液膜分离萃取和反相胶团萃取及其在毛发水解氨基酸萃取分离方面的应用。  相似文献   

9.
白地霉脂肪酶的双水相萃取和反胶团提取   总被引:3,自引:0,他引:3  
对影响双水相萃取和反胶团提取脂肪酶的各种因素进行了探讨,并通过正交实验进一步优化提取条件,PEG浓度15%,(NH4)2SO4浓度22.5%,pH8.0的条件下进行双水相萃取,脂肪酶纯化倍数达到7.5倍;CTAB浓度150mmol/L,相体积比4/2,水相pH8.0,温度40℃的条件下进行反胶团提取,脂肪酶的比活力达到最大,但其比活力稍有下降,约为原来的0.9倍。  相似文献   

10.
用反胶束技术分离纯化蛋白质,具有高选择性、易于大规模操作等优点,具有良好的工业应用前景。但是离子型表面活性剂形成的反胶束体系萃取蛋白质容易引起蛋白质的变性,这是由于离子型表面活性剂的强电荷作用会导致蛋白质发生变性,从而在两相界面上产生沉淀。这也是离子型反胶束体系用于蛋白质萃取所存在的最大的困难。本文对用AOT/异辛烷反胶束体系从胰酶粗提物中萃取胰蛋白酶进行了研究,通过在反胶束相加入乙醇,解决了反胶束萃取蛋白质时使蛋白质变性失活的问题,并且大大减少了分相的时间。前萃取和反萃取之后的分相时间只需要10分钟左右,简化了实验步骤,优化了实验方法,在工业上的大规模应用成为可能。在本研究中,胰蛋白酶的前萃取率达到90%,反萃取率接近100%。最终得率为88%。纯化后的比活提高了5倍多,从300U/mg左右提高到了1800U/mg。  相似文献   

11.
The extraction of a relatively large molecular weight protein, bovine serum albumin (BSA), using nano-sized reverse micelles of nonionic surfactant polyoxyethylene p-t-octylphenol (Triton-X-100) is attempted for the first time. Suitability of reverse micelles of anionic surfactant sodium bis (2-ethyl hexyl) sulfosuccinate (AOT) and Triton-X-100/AOT mixture in organic solvent toluene for BSA extraction is also investigated. Although, the size of the Triton-X-100 reverse micelle in toluene is large enough to host BSA molecule in the hydraulic core, the overall extraction efficiency is found to be low, which may be due to lack of strong driving force. AOT/toluene system resulted in complete forward extraction at aqueous pH 5.5 and a surfactant concentration of 160 mM. The back extraction with aqueous phase (pH 5.5) resulted in 100% extraction of BSA from the organic phase. The addition of Triton-X-100 to AOT reduced the extraction efficiency of AOT reverse micelles, which may be attributed to reduced hydrophobic interaction. The circular dichroism (CD) spectrum of BSA extracted using AOT/toluene reverse micelles indicated the structural stability of the protein extracted.  相似文献   

12.
In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l−1, aqueous pH 5.5 and KCl concentration 0.8 mol l−1. The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.  相似文献   

13.
The extraction of lactoperoxidase (EC 1.11.1.7) from whey was studied using single step reverse micelles‐assisted extraction and compared with reverse micellar extraction. The reverse micelles‐assisted extraction resulted in extraction of contaminating proteins and recovery of lactoperoxidase in the aqueous phase leading to its purification. Reverse micellar extraction at the optimized condition after forward and backward steps resulted in activity recovery of lactoperoxidase and purification factor of the order of 86.60% and 3.25‐fold, respectively. Whereas reverse micelles‐assisted extraction resulted in higher activity recovery of lactoperoxidase (127.35%) and purification factor (3.39‐fold). The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) profiles also evidenced that higher purification was obtained in reverse micelles‐assisted extraction as compared of reverse micellar extracted lactoperoxidase. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
The concentrations of dioctyldimethyl ammonium chloride (DODMAC) and 1-decanol in isooctane needed to form reverse micelles by phase contact have been determined. The behavior of these reverse micelles in the extraction of aspartic acid, glutamic acid, and threonine was studied by analyzing all of the ionic species in the aqueous phase. The amino acid is extracted from the aqueous phase by exchanging with the Cl(-) counterions of DODMAC in the reverse micelles. The ionic species in the reverse micelles tend toward their undissociated states as the water uptake by the reverse micelles decreases. The effect of 1-decanol on the extraction of the amino acids with two negative charges is due to the change in the water uptake of the reverse micelles. The concentration of DODMAC has no effect on the ion exchange of the amino acid with one negative charge with the Cl(-) counterions of DODMAC in the reverse micelles. Higher molar ratios of decanol to DODMAC favor the selective separation of amino acids with different charge numbers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
Nattokinase is a novel fibrinolytic enzyme that is considered to be a promising agent for thrombosis therapy. In this study, reverse micelles extraction was applied to purify and concentrate nattokinase from fermentation broth. The effects of temperature and phase volume ratio used for the forward and backward extraction on the extraction process were examined. The optimal temperature for forward and backward extraction were 25°C and 35°C respectively. Nattokinase became more thermosensitive during reverse micelles extraction. And it could be enriched in the stripping phase eight times during backward extraction. It was found that nattokinase could be purified by AOT reverse micelles with up to 80% activity recovery and with a purification factor of 3.9.  相似文献   

16.
Di(2‐ethylhexyl) phosphoric acid (HDEHP) was used as a transition metal ion chelator and introduced to the nonionic reverse micellar system composed of equimolar Triton X‐45 and Span 80 at a total concentration of 30 mmol/L. Ni(II) ions were chelated to the HDEHP dimers in the reverse micelles, forming a complex denoted as Ni(II)R2. The Ni(II)‐chelate reverse micelles were characterized for the purification of recombinant hexahistidine‐tagged enhanced green fluorescent protein (EGFP) expressed in Escherichia coli. The affinity binding of EGFP to Ni(II)R2 was proved by investigation of the forward and back extraction behaviors of purified EGFP. Then, EGFP was purified with the affinity reverse micelles. It was found that the impurities in the feedstock impeded EGFP transfer to the reverse micelles, though they were little solubilized in the organic phase. The high specificity of the chelated Ni2+ ions toward the histidine tag led to the production of electrophoretically pure EGFP, which was similar to that purified by immobilized metal affinity chromatography. A two‐stage purification by the metal‐chelate affinity extraction gave rise to 87% recovery of EGFP. Fluorescence spectrum analysis suggests the preservation of native protein structure after the separation process, indicating the system was promising for protein purification. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
The extraction of flexibly-structured protein in Aerosol-OT (AOT)/isooctane reverse micelles was investigated. A flexibly-structured lysozyme was prepared by reduction and carboxymethylation of the disulfide bonds in the lysozyme molecule. For a comparison, lysozymes whose surface hydrophobicity was modified by monoacylation of the amino groups were also used. The extraction rate of the flexibly-structured lysozyme into the micellar phase was greater than that of the native and monoacylated lysozymes, although the free energy change of the lysozyme prepared by breaking the disulfide bonds was smaller than that of the lysozymes whose surfaces were monoacylated. Viscosity measurement of the micellar organic phase containing the modified lysozymes indicated that extraction of the flexibly-structured lysozyme changed the micelle–micelle interaction, while measurement of the interfacial tension between the AOT/isooctane and protein aqueous systems showed the flexibly-structured lysozyme to be the most amphiphilic in character. These results indicated that the flexible structure of a protein was more dominant than its surface hydrophobicity for its incorporation into reverse micelles, and that it leads to greater micelle–micelle interaction.  相似文献   

18.
Reverse micellar extraction is a promising technique in large-scale bioseparation. However, low recovery and high salt concentration in back extraction limit its application. In CTAB/n-octane/n-hexanol reverse micellar system, the enzyme, pancreatic kallikrein could be effectively enwrapped into reverse micelles in forward extraction, but was difficult to be released during back extraction. In this study, dilute chaotropes (urea and GuHCl) were introduced to enhance the release of enzyme instead of high salts in back extraction. Kallikrein enwrapped in reverse micelles was released effectively in the presence of dilute urea and GuHCl during back extraction. Nearly 100% activity recovery of kallikrein from commercial product was obtained by adding 0.60 M urea, and for kallikrein from crude material, the recovery increased greatly by adding 0.80 M urea and 0.08 M GuHCl in the stripping solution. The mechanism of chaotrope for enhancing the release of enzyme from micelles was explored and dynamic light scatter analysis showed that the chaotrope would influence the sizes of micelles during reverse micellar extraction.  相似文献   

19.
Reverse micelle extraction is still in the stage of laboratory. Major limitation associated with use of synthetic surfactants in reverse micelle extraction process is the unfolding or denaturation of proteins. Sugar surfactants are thought non-toxic and environmentally benign, and can exhibit interesting interfacial properties, but the application of sugar-based surfactants in protein extraction is still limited. In the present study, we extracted bovine serum albumin (BSA) by using reverse micelles from glucosylammonium (GA) and lactosylammonium (LA) surfactants (with dicarboxylate as counter ion). It was found that under optimum condition, (1) the maximum forward extraction efficiency was ca. 86% with GA, while only around 50% with LA, and (2) almost all BSA solubilized in reverse micelles prepared from GA could be recovered into aqueous phase, while the recovery of BSA from the reverse micelles of LA was lower. In addition, the optimum extraction parameters were closely related to surfactant structure. Therefore, the electrostatic interaction, H-bonding and sugar head size should be important for BSA transfer.  相似文献   

20.
Chen WY  Lee YW  Lin SC  Ho CW 《Biotechnology progress》2002,18(6):1443-1446
This study extended works on effects of solute on the percolation of reverse micelles to the effects of interactions between protein and surfactants on protein refolding by reverse micelles. The changes in percolation behavior were identified and attributed to the position of solutes in the core aqueous phase and the interaction between the solute and the surfactants. The percolation behavior of reverse micelles with solutes was related to protein renaturation and the reverse micelle. This study aims to highlight the involvement of the interface and the interaction of the protein with the surfactant during protein refolding. Ribonuclease A and AOT reverse micelles together constitute a model system considered here. The systemic parameters of the reverse micelle, water content (W(o)) and pH value, were applied to modify the interaction between the denatured protein molecules and the surfactant interface. The interactions and the locations of the protein molecules were determined from changes in percolation temperature measured by conductivity. The percolation and protein activity show that a stronger interaction of the protein molecules with surfactant corresponds to superior recovery of protein activity. The investigation concludes that the refolding of protein by reverse micelles is not only facilitated by the isolation of reverse micelles but also by the interaction due to the interface of the reverse micelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号