首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylmalonic acid (EMA) accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly known, in the present work we investigated the effects of acute EMA administration on redox status parameters in cerebral cortex and skeletal muscle from 30-day-old rats. Animals received three subcutaneous injections of EMA (6 μmol/g; 90 min interval between injections) and were killed 1 h after the last administration. Control animals received saline in the same volumes. EMA administration significantly increased thiobarbituric acid-reactive substances levels in cerebral cortex and skeletal muscle, indicating increased lipid peroxidation. In addition, carbonyl content was increased in EMA-treated animal skeletal muscle when compared to the saline group. EMA administration also significantly increased 2’,7’-dihydrodichlorofluorescein oxidation and superoxide production (reactive species markers), and decreased glutathione peroxidase activity in cerebral cortex, while glutathione levels were decreased only in skeletal muscle. On the other hand, respiratory chain complex I-III activity was altered by acute EMA administration neither in cerebral cortex nor in skeletal muscle. The present results show that acute EMA administration elicits oxidative stress in rat brain and skeletal muscle, suggesting that oxidative damage may be involved in the pathophysiology of the brain and muscle symptoms found in patients affected by SCADD and ethylmalonic encephalopathy.  相似文献   

2.
We investigated the effects of acute diazepam (DZP) administration on thiobarbituric acid‐reactive substance (TBARS) levels, protein carbonyl content, and on the activities of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase in the brain of rats. Additionally, we investigated the antioxidant role of chronic pretreatment with simvastatin on the effects provoked by DZP. Simvastatin was administered (1 or 10 mg/kg by oral gavage) for 30 days. On the 30th day of treatment, groups were randomized and DZP was administered (0.5 or 1.0 mg/kg by intraperitoneal injection). Control groups received saline. Results showed that DZP enhanced TBARS levels and protein carbonyl content and altered enzymatic activity in the brain of rats. Simvastatin prevented most of the alterations caused by DZP on the oxidative stress parameters. Data indicate that DZP administration causes an oxidative imbalance in the brain areas studied; however, in the presence of simvastatin, some of these alterations in oxidative stress were prevented.  相似文献   

3.
An age-related Ca(2+) dysregulation and increased production of reactive oxygen species (ROS) may contribute to late-onset neurodegenerative disorders. These alterations are often attributed to impaired mitochondrial function yet few studies have directly examined mitochondria isolated from various regions of the aged brain. The purpose of this study was to examine Ca(2+)-buffering and ROS production in mitochondria isolated from Fischer 344 rats ranging in age from 4 to 25 months. Mitchondria isolated from the cortex of the 25 month rat brain exhibited greater rates of ROS production and mitochondrial swelling in response to increasing Ca(2+) loads as compared to mitochondria isolated from younger (4, 13 month) animals. The increased swelling is indicative of opening of the mitochondrial permeability transition pore indicating impaired Ca(2+) buffering/cycling in aged animals. These age-related differences were not observed in mitochondria isolated from cerebellum. Together, these results demonstrate region specific, age-related, alterations in mitochondrial responses to Ca(2+).  相似文献   

4.
Abstract: Dopamine transporters (DATs) from the caudate nucleus of four species (rat, mouse, dog, and human) and four regions of rat brain (striatum, nucleus accumbens, prefrontal cortex, and midbrain) were photoaffinity labeled and analyzed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis for cross-reactivity to four epitope-specific rat antipeptide antibodies. Each of these antibodies varied in its efficiency at recognizing DAT. The DATs from the rat brain regions exhibited the same degree of recognition by each of the four sera, a result compatible with these proteins being the product of a single gene. The DATs from the different species were recognized by all four sera but with different efficiencies, possibly relating to amino acid sequence differences within the immunizing epitope. All of the photolabeled, immunoprecipitated DATs migrated with a molecular mass of ∼80 kDa, and no lower molecular mass forms were found. The DATs from all species and brain regions tested were shown by enzymatic deglycosylation to contain N-linked carbohydrates and sialic acids in amounts comparable with rat striatal DATs. The finding that no photolabeled DAT forms <80 kDa were isolated from membranes indicates that partially or incompletely glycosylated forms are not present, even in the midbrain cell bodies where immature forms might be expected to be found. These findings verify the utility of these anti-rat antibodies as biochemical tools for studying DATs from other species and extend our knowledge of biochemical characteristics of DATs from these species and brain regions.  相似文献   

5.
6.
Redox signaling plays a crucial role in the pathogenesis of human immunodeficiency virus type-1 (HIV-1). The majority of HIV redox research relies on measuring redox stress using invasive technologies, which are unreliable and do not provide information about the contributions of subcellular compartments. A major technological leap emerges from the development of genetically encoded redox-sensitive green fluorescent proteins (roGFPs), which provide sensitive and compartment-specific insights into redox homeostasis. Here, we exploited a roGFP-based specific bioprobe of glutathione redox potential (EGSH; Grx1-roGFP2) and measured subcellular changes in EGSH during various phases of HIV-1 infection using U1 monocytic cells (latently infected U937 cells with HIV-1). We show that although U937 and U1 cells demonstrate significantly reduced cytosolic and mitochondrial EGSH (approximately −310 mV), active viral replication induces substantial oxidative stress (EGSH more than −240 mV). Furthermore, exposure to a physiologically relevant oxidant, hydrogen peroxide (H2O2), induces significant deviations in subcellular EGSH between U937 and U1, which distinctly modulates susceptibility to apoptosis. Using Grx1-roGFP2, we demonstrate that a marginal increase of about ∼25 mV in EGSH is sufficient to switch HIV-1 from latency to reactivation, raising the possibility of purging HIV-1 by redox modulators without triggering detrimental changes in cellular physiology. Importantly, we show that bioactive lipids synthesized by clinical drug-resistant isolates of Mycobacterium tuberculosis reactivate HIV-1 through modulation of intracellular EGSH. Finally, the expression analysis of U1 and patient peripheral blood mononuclear cells demonstrated a major recalibration of cellular redox homeostatic pathways during persistence and active replication of HIV.  相似文献   

7.

Background

Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase), causes Leigh syndrome (LS), a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration.

Results

Here we used the Ndufs4(KO) mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient “rest” of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration) with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration) and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue native gels, could explain regional neurodegeneration.

Conclusion

Our data suggests that locally insufficient respiration capacity of the nerve terminals may drive focal neurodegeneration.  相似文献   

8.
DNA fragmentation, mRNA and protein levels of Bcl-XL, Bax and caspase-3 were determined to characterize interrelations between expression of these apoptotic markers in the neonatal brain regions. High DNA fragmentation intensity in the cortex was in consonance with the lowest Bcl-XL/Bax expression ratio, the highest procaspase-3 and active caspase-3 levels. Low and intermediate DNA fragmentation levels in the cerebellum and hippocampus respectively were also in a good agreement with apoptotic proteins expression in these structures. In the cortex, hippocampus and cerebellum DNA fragmentation intensity was proportional to the active caspase-3 level. In contrast to these structures, in the brainstem, the lowest level of this protease was accompanied by the highest intensity of DNA fragmentation among the brain regions studied. The data suggest that cell death normally occurring during early postnatal life could be realized in the developing brainstem via caspase-3-independent pathways in animals that express this protease.  相似文献   

9.
To interrogate why redox homeostasis and glutathione S-transferase P (GSTP) are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs) from both wild type (WT) and knockout (Gstp1/p2−/−) mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2+-ATPase) regulate Ca2+ fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2−/− cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes higher levels of myeloproliferation and migration.  相似文献   

10.

Background

Angiotensin II (AII) plays a central role in vascular remodeling via oxidative stress. However, the interaction between AII and reduced glutathione (GSH) redox status in cardiovascular remodeling remains unknown.

Methods

In vivo: The cuff-induced vascular injury model was applied to Sprague Dawley rats. Then we administered saline or a GSH inhibitor, buthionine sulfoximine (BSO, 30 mmol/L in drinking water) for a week, subsequently administered 4 more weeks by osmotic pump with saline or AII (200 ng/kg/minute) to the rats. In vitro: Incorporation of bromodeoxyuridine (BrdU) was measured to determine DNA synthesis in cultured rat vascular smooth muscle cells (VSMCs).

Results

BSO reduced whole blood GSH levels. Systolic blood pressure was increased up to 215±4 mmHg by AII at 4 weeks (p<0.01), which was not affected by BSO. Superoxide production in vascular wall was increased by AII and BSO alone, and was markedly enhanced by AII+BSO. The left ventricular weight to body weight ratio was significantly increased in AII and AII+BSO as compared to controls (2.52±0.08, 2.50±0.09 and 2.10±0.07 mg/g respectively, p<0.05). Surprisingly, the co-treatment of BSO totally abolished these morphological changes. Although the vascular circumferential wall stress was well compensated in AII, significantly increased in AII+BSO. The anti-single-stranded DNA staining revealed increasing apoptotic cells in the neointima of injured arteries in BSO groups. BrdU incorporation in cultured VSMCs with AII was increased dose-dependently. Furthermore it was totally abolished by BSO and was reversed by GSH monoethyl ester.

Conclusions

We demonstrated that a vast oxidative stress in impaired GSH redox system totally abolished AII-induced vascular, not cardiac remodeling via enhancement of apoptosis in the neointima and suppression of cell growth in the media. The drastic suppression of remodeling may result in fragile vasculature intolerable to mechanical stress by AII.  相似文献   

11.
Maintaining redox balance is critical for the production of heterologous secondary metabolites, whereas on various occasions the native cofactor balance does not match the needs in engineered microorganisms. In this study, 7-dehydrocholesterol (7-DHC, a crucial precursor of vitamin D3) biosynthesis pathway was constructed in Saccharomyces cerevisiae BY4742 with endogenous ergosterol synthesis pathway blocked by knocking out the erg5 gene (encoding C-22 desaturase). The deletion of erg5 led to redox imbalance with higher ratio of cytosolic free NADH/NAD+ and more glycerol and ethanol accumulation. To alleviate the redox imbalance, a water-forming NADH oxidase (NOX) and an alternative oxidase (AOX1) were employed in our system based on cofactor regeneration strategy. Consequently, the production of 7-dehydrocholesterol was increased by 74.4% in shake flask culture. In the meanwhile, the ratio of free NADH/NAD+ and the concentration of glycerol and ethanol were reduced by 78.0%, 50.7% and 7.9% respectively. In a 5-L bioreactor, the optimal production of 7-DHC reached 44.49(±9.63) mg/L. This study provides a reference to increase the production of some desired compounds that are restricted by redox imbalance.  相似文献   

12.
Epidemiologic studies have shown that foods rich in polyphenols, such as flavonoids, can lower the risk of ischemic disease; however, the mechanism of protection has not been clearly investigated. In this study, we hypothesized that pretreatment effect of catechin hydrate (CH) on functional outcome, neuronal damage and on secondary injuries in the ischemic brain of rats. To test this hypothesis, male Wistar rats were pretreated with CH (20 mg/kg b.wt) for 21 days and then subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. After 2 h MCAO/22 h reperfusion, neurological deficit, infarct sizes, activities of antioxidant enzymes and cytokines level were measured. Immunohistochemistry and western blot were used to analyse the expression of glial fibrillary acidic protein (GFAP), inducible nitric oxide (iNOS) and NF-kB in ischemic brain. The administration of CH showed marked reduction in infarct size, reduced the neurological deficits, suppressed neuronal loss and downregulate the iNOS, GFAP and NF-kB expression in MCAO rats. A significantly depleted activity of antioxidant enzymes and content of glutathione in MCAO group were protected significantly in MCAO group pretreated with CH. Conversely, the elevated level of thiobarbituric acid reactive species and cytokines in MCAO group was attenuated significantly in CH pretreated group when compared with MCAO group. The results indicated that CH protected the brain from damage caused by MCAO, and this effect may be through downregulation of NF-kB expression.  相似文献   

13.
BackgroundAutism is a common neurodevelopmental syndrome. Numerous rare genetic etiologies are reported; most cases are idiopathic.Conclusions/SignificanceThis work highlights two largely unrecognized molecular pathophysiological themes in autism and suggests differing molecular bases for autism behavioral endophenotypes.  相似文献   

14.
Many hereditary diseases are characterized by region-specific toxicity, despite the fact that disease-linked proteins are generally ubiquitously expressed. The underlying basis of the region-specific vulnerability remains enigmatic. Here, we evaluate the fundamental features of mitochondrial and glucose metabolism in synaptosomes from four brain regions in basal and stressed states. Although the brain has an absolute need for glucose in vivo, we find that synaptosomes prefer to respire on non-glycolytic substrates, even when glucose is present. Moreover, glucose is metabolized differently in each brain region, resulting in region-specific “signature” pools of non-glycolytic substrates. The use of non-glycolytic resources increases and dominates during energy crisis, and triggers a marked region-specific metabolic response. We envision that disease-linked proteins confer stress on all relevant brain cells, but region-specific susceptibility stems from metabolism of non-glycolytic substrates, which limits how and to what extent neurons respond to the stress.  相似文献   

15.
Autism spectrum disorder (ASD) is one of the most prevalent and highly heritable neurodevelopmental disorders in humans. There is significant evidence that the onset and severity of ASD is governed in part by complex genetic mechanisms affecting the normal development of the brain. To date, a number of genes have been associated with ASD. However, the temporal and spatial co-expression of these genes in the brain remain unclear. To address this issue, we examined the co-expression network of 26 autism genes from AutDB (http://mindspec.org/autdb.html), in the framework of 3,041 genes whose expression energies have the highest correlation between the coronal and sagittal images from the Allen Mouse Brain Atlas database (http://mouse.brain-map.org). These data were derived from in situ hybridization experiments conducted on male, 56-day old C57BL/6J mice co-registered to the Allen Reference Atlas, and were used to generate a normalized co-expression matrix indicating the cosine similarity between expression vectors of genes in this database. The network formed by the autism-associated genes showed a higher degree of co-expression connectivity than seen for the other genes in this dataset (Kolmogorov–Smirnov P = 5×10−28). Using Monte Carlo simulations, we identified two cliques of co-expressed genes that were significantly enriched with autism genes (A Bonferroni corrected P<0.05). Genes in both these cliques were significantly over-expressed in the cerebellar cortex (P = 1×10−5) suggesting possible implication of this brain region in autism. In conclusion, our study provides a detailed profiling of co-expression patterns of autism genes in the mouse brain, and suggests specific brain regions and new candidate genes that could be involved in autism etiology.  相似文献   

16.
The case is made for the potential importance of compartmentalization in redox signaling with new data on the transporters that may be involved.The nucleophilic properties of reduced glutathione (GSH) can be harnessed to produce glutathione S- (GS) conjugates or to reduce oxidants such as peroxides or dehydroascorbate (Dixon et al., 2009). When GSH is used as a reductant, glutathione disulfide (GSSG) is produced as a stable product from which the reduced form can be regenerated by NADPH-dependent glutathione reductase. In plants and some fungi, GS conjugates are imported into vacuoles, where they are degraded (Rea, 2007). Structurally, GSSG can be considered to be a glutathione S-autoconjugate, and this compound could also be transported into vacuoles. Indeed, in vitro studies show that isolated barley (Hordeum vulgare) vacuoles can take up GSSG and that certain Arabidopsis (Arabidopsis thaliana) tonoplast-localized proteins are competent in both GS conjugate and GSSG transport when expressed in yeast (Martinoia et al., 1993; Tommasini et al., 1993; Lu et al., 1997, 1998).Despite these observations, it remained unclear whether GSSG accumulation in the vacuole is ever a significant phenomenon in vivo. Evidence that this is the case comes from a study of a catalase-deficient Arabidopsis mutant (cat2; Queval et al., 2011). In this system, the decreased capacity for catalase-dependent hydrogen peroxide (H2O2) metabolism increases the oxidative burden on the cellular reducing system, triggering well-defined changes in tissue glutathione status that are qualitatively similar to those that can be driven by certain external stresses. In cat2 leaf extracts, the GSH-GSSG ratio is close to 1 (compared with over 20 in wild-type leaves) and glutathione is typically increased about 3-fold, so that leaf GSSG contents are much higher than in the wild type (Mhamdi et al., 2010). To date, in plants, as in other organisms, the cytosolic redox potential of glutathione, estimated using thiol-dependent redox-sensitive green fluorescent protein (roGFP), implies a very low concentration of GSSG in optimal conditions. Here, we propose that compartmentalization of GSSG can explain some of these apparently conflicting observations. Although the cytosolic glutathione pool is significantly increased in cat2, much more marked changes are observed in the chloroplast and, especially, the vacuole, where concentrations are increased at least 10 times compared with ecotype Columbia (Col-0; Queval et al., 2011).  相似文献   

17.
18.
Abstract: In vitro studies indicate that p42/p44MAPK phosphorylate both nuclear and cytoplasmic proteins. However, the functional targets of p42/p44MAPK activation in vivo remain unclear. To address this question, we localized activated p42/p44MAPK in hippocampus and cortex and determined their signaling effects after electroconvulsive shock treatment (ECT) in rats. Phosphorylated p42/p44MAPK content increased in the cytoplasm of hippocampal neurons in response to ECT. Consistent with this cytoplasmic localization, inhibition of ECT-induced p42/p44MAPK activation by the extracellular signal-regulated kinase kinase inhibitor PD098059 blocked phosphorylation of the cytoplasmic protein microtubule-associated protein 2c (MAP2c), but failed to inhibit the induction of the nuclear protein c-Fos in response to ECT. In contrast to hippocampal neurons, cortical neurons exhibited an increase in amount of phosphorylated p42/p44MAPK in both the nucleus and cytoplasm after ECT. Accordingly, PD098059 blocked the induction of Fos-like immunoreactivity in the nuclei of cortical neurons as well as MAP2c phosphorylation in the cytoplasm. Our data indicate that both nuclear and cytoplasmic substrates can be activated by p42/p44MAPK in vivo. However, the functional targets of p42/p44MAPK signaling depend on the precise location of p42/p44MAPK within different subcellular compartments of brain regions. These results indicate unique functional pathways of p42/p44MAPK-mediated signal transduction within different brain regions in vivo.  相似文献   

19.
Martinez  G.  Carnazza  M. L.  Campisi  A.  Sorrenti  V.  Di Giacomo  C.  Perez-Polo  J. R.  Vanella  A. 《Neurochemical research》1998,23(7):961-968
The present paper reports the effects of GSH depletion (diethylmaleate induced) on partial cerebral ischemia and reperfusion for 7 and 20 days. Our results confirm that there is a paradoxical protective effect of the GSH-depletor and suggest an improved neuronal trophism induced by diethylmaleate treatment.  相似文献   

20.
Regional Distribution of Glutathione Peroxidase in the Adult Rat Brain   总被引:1,自引:8,他引:1  
Glutathione peroxidase activity was measured in 10 areas of perfused adult rat brain with the use of a fluorometric assay coupled to NADPH oxidation. The caudate-putamen and the substantia nigra had the highest activities. Cortical areas and several nuclear areas had somewhat lower activity. Activity was lowest in a white matter structure (corpus callosum). High activity of glutathione peroxidase may be related to the need to reduce hydrogen peroxide arising in the course of monoamine metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号