首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is increasing evidence that soluble oligomers of misfolded protein may play a role in the pathogenesis of protein misfolding diseases including the transmissible spongiform encephalopathies (TSE) where the protein involved is the prion protein, PrP. The effect of oxidation on fibrillation tendency and neurotoxicity of different molecular variants of the prion peptide PrP106-126 was investigated. It was found that methionine oxidation significantly reduced amyloid fibril formation and proteinase K resistance, but it did not reduce (but rather increase slightly) the neurotoxicity of the peptides in vivo (electroretinography after intraocular injections in mice) and in vitro (in primary neuronal cultures). We furthermore found that the bovine variant of PrP106-126, containing only one methionine residue, showed both reduced fibril forming capacity and in vivo and in vitro neurotoxicity. The findings imply (I) that there is not a simple relation between the formation of amyloid fibrils and neurotoxicity of PrP106-126 derived peptides, (II) that putative, soluble, non-amyloid protofibrils, presumed to be present in increased proportions in oxidized PrP106-126, could play a role in the pathogenesis of TSE and III) that the number of methionine residues in the PrP106-126 peptide seems to have a pivotal role in determining the physical and biological properties of PrP106-126.  相似文献   

2.
One of the major pathological hallmarks of transmissible spongiform encephalopathies (TSEs) is the accumulation of a pathogenic (scrapie) isoform (PrP(Sc)) of the cellular prion protein (PrP(C)) primarily in the central nervous system. The synthetic prion peptide PrP106-126 shares many characteristics with PrP(Sc) in that it shows PrP(C)-dependent neurotoxicity both in vivo and in vitro. Moreover, PrP106-126 in vitro neurotoxicity has been closely associated with the ability to form fibrils. Here, we studied the in vivo neurotoxicity of molecular variants of PrP106-126 toward retinal neurons using electroretinographic recordings in mice after intraocular injections of the peptides. We found that amidation and structure relaxation of PrP106-126 significantly reduced the neurotoxicity in vivo. This was also found in vitro in primary neuronal cultures from mouse and rat brain. Thioflavin T binding studies showed that amidation and structure relaxation significantly reduced the ability of PrP106-126 to attain fibrillar structures in physiological salt solutions. This study hence supports the assumption that the neurotoxic potential of PrP106-126 is closely related to its ability to attain secondary structure.  相似文献   

3.
Prion diseases are progressive neurodegenerative diseases that are associated with the conversion of normal cellular prion protein (PrP(C)) to abnormal pathogenic prion protein (PrP(SC)) by conformational changes. Prion protein is a metal-binding protein that is suggested to be involved in metal homeostasis. We investigated here the effects of trace elements on the conformational changes and neurotoxicity of synthetic prion peptide (PrP106-126). PrP106-126 exhibited the formation of β-sheet structures and enhanced neurotoxicity during the aging process. The co-existence of Zn(2+) or Cu(2+) during aging inhibited β-sheet formation by PrP106-126 and attenuated its neurotoxicity on primary cultured rat hippocampal neurons. Although PrP106-126 formed amyloid-like fibrils as observed by atomic force microscopy, the height of the fibers was decreased in the presence of Zn(2+) or Cu(2+). Carnosine (β-alanyl histidine) significantly inhibited both the β-sheet formation and the neurotoxicity of PrP106-126. Our results suggested that Zn(2+) and Cu(2+) might be involved in the pathogenesis of prion diseases. It is also possible that carnosine might become a candidate for therapeutic treatments for prion diseases.  相似文献   

4.
Prion diseases are characterised by severe neural lesions linked to the presence of an abnormal protease-resistant isoform of cellular prion protein (PrPc). The peptide PrP(106-126) is widely used as a model of neurotoxicity in prion diseases. Here, we examine in detail the intracellular signalling cascades induced by PrP(106-126) in cortical neurons and the participation of PrPc. We show that PrP(106-126) induces the activation of subsets of intracellular kinases (e.g., ERK1/2), early growth response 1 synthesis and induces caspase-3 activity, all of which are mediated by nicotinamide adenine dinucleotide phosphate hydrogen-oxidase activity and oxidative stress. However, cells lacking PrPc are similarly affected after peptide exposure, and this questions the involvement of PrPc in these effects.  相似文献   

5.
6.
Gouffi K  Santini CL  Wu LF 《FEBS letters》2002,522(1-3):65-70
Misfolding of the prion protein yields amyloidogenic isoforms, and it shows exacerbating neuronal damage in neurodegenerative disorders including prion diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) potently stimulate neuritogenesis and survival of neuronal cells in the central nervous system. Here, we tested these neuropeptides on neurotoxicity in PC12 cells induced by the prion protein fragment 106-126 [PrP (106-126)]. Concomitant application of neuropeptide with PrP(106-126) (5x10(-5) M) inhibited the delayed death of neuron-like PC12 cells. In particular, PACAP27 inhibited the neurotoxicity of PrP(106-126) at low concentrations (>10(-15) M), characterized by the deactivation of PrP(106-126)-stimulated caspase-3. The neuroprotective effect of PACAP27 was antagonized by the selective PKA inhibitor, H89, or the MAP kinase inhibitor, U0126. These results suggest that PACAP27 attenuates PrP(106-126)-induced delayed neurotoxicity in PC12 cells by activating both PKA and MAP kinases mediated by PAC1 receptor.  相似文献   

7.
The cytotoxicity of aged PrP(106-126) was examined using an immortalized prion protein (PrP) gene-deficient neuronal cell line. The N-terminal half of the hydrophobic region (HR) but not the octapeptide repeat (OR) of PrP was required for aged PrP(106-126) neurotoxicity, suggesting that neurotoxic signals of aged PrP(106-126) are mediated by this region.  相似文献   

8.
The conversion of normal cellular prion protein (PrP) into its pathological isoform, scrapie PrP, may occur at the cell surface or, more probably, in late endosomes. The early events leading to the structural conversion of PrP appear to be related to the presence of more or less stable soluble oligomers, which might mediate neurotoxicity. In the current study, we investigate the interaction of α-rich PrP monomers and β-rich size-exclusion-chromatography-purified PrP oligomers with lipid membranes. We compare their structural properties when associated with lipid bilayers and study their propensities to permeabilize the membrane at physiological pH. We also study the influence of the N-terminal flexible region (residues 24-103) by comparing full-length PrP24-234 and N-terminally truncated PrP104-234 oligomers. We showed that both 12-subunit oligomers cause an immediate and large increase in the permeability of the membrane, whereas equivalent amounts of monomeric forms cause no detectable leakage. Although the two monomeric PrP constructs undergo an α-to-β conformational change when bound to the negatively charged membrane, only the full-length form of monomeric PrP has a weak fusogenic effect. Finally, the oligomers affect the integrity of the membrane differently from the monomers, independently of the presence of the N-terminal flexible domain. As for other forms of amyloidogenesis, a reasonable mechanism for the toxicity arising from PrP fibrillization must be associated with low-molecular-weight oligomeric intermediates, rather than with mature fibrils. Knowledge of the mechanism of action of these soluble oligomers would have a high impact on the development of novel therapeutic targets.  相似文献   

9.
The prion diseases are neurodegenerative disorders characterized by the conversion of the PrPc (normal cellular prion) to the PrPsc (misfolded isoform). The accumulation of PrPsc within the central nervous system (CNS) leads to neurocytotoxicity by increasing oxidative stress. In addition, many neurodegenerative disorders including prion, Parkinson’s and Alzheimer’s diseases may be regulated by cholesterol homeostasis. The effects of cholesterol balance on prion protein-mediated neurotoxicity and ROS (reactive oxygen species) generation were the focus of this study. Cholesterol treatment inhibited PrP (106-126)-induced neuronal cell death and ROS generation in SH-SY5Y neuroblastoma cells. In addition, the PrP (106-126)-mediated increase of p53, p-p38, p-ERK and the decrease of Bcl-2 were blocked by cholesterol treatment. These results indicated that cellular cholesterol enrichment is a key regulator of PrP-106-126-mediated oxidative stress and neurotoxicity. Taken together, the results of this study suggest that modulation of cellular cholesterol appears to prevent the neuronal cell death caused by prion peptides.  相似文献   

10.
Prion diseases are fatal neurodegenerative disorders characterized by the accumulation in the brain of an abnormally misfolded, protease-resistant, and beta-sheet rich pathogenic isoform (PrP(SC)) of the cellular prion protein (PrP(C)). In the present work, we were interested to study the mode of prion protein interaction with the membrane using the 106-126 peptide and small unilamellar lipid vesicles as model. As previously demonstrated, we showed by MTS assay that PrP 106-126 induces alterations in the human neuroblastoma SH-SY5Y cell line. We demonstrated for the first time by lipid-mixing assay and by the liposome vesicle leakage test that PrP 106-126, a non-tilted peptide, induces liposome fusion thus a potential cell membrane destabilization, as supported by membrane integrity assay (LDH). By circular dichroism (CD) analysis we showed that the fusogenic property of PrP 106-126 in the presence of liposome is associated with a predominantly beta-sheet structure. These data suggest that the fusogenic property associated with a predominant beta-sheet structure exhibited by the prion peptides contributes to the neurotoxicity of these peptides by destabilizing cellular membranes. The latter might be attached at the membrane surface in a parallel orientation as shown by molecular modeling.  相似文献   

11.
Transmissible spongiform encephalopathies, also called prion diseases, are characterized by neuronal loss linked to the accumulation of PrP(Sc), a pathologic variant of the cellular prion protein (PrP(C)). Although the molecular and cellular bases of PrP(Sc)-induced neuropathogenesis are not yet fully understood, increasing evidence supports the view that PrP(Sc) accumulation interferes with PrP(C) normal function(s) in neurons. In the present work, we exploit the properties of PrP-(106-126), a synthetic peptide encompassing residues 106-126 of PrP, to investigate into the mechanisms sustaining prion-associated neuronal damage. This peptide shares many physicochemical properties with PrP(Sc) and is neurotoxic in vitro and in vivo. We examined the impact of PrP-(106-126) exposure on 1C11 neuroepithelial cells, their neuronal progenies, and GT1-7 hypothalamic cells. This peptide triggers reactive oxygen species overflow, mitogen-activated protein kinase (ERK1/2), and SAPK (p38 and JNK1/2) sustained activation, and apoptotic signals in 1C11-derived serotonergic and noradrenergic neuronal cells, while having no effect on 1C11 precursor and GT1-7 cells. The neurotoxic action of PrP-(106-126) relies on cell surface expression of PrP(C), recruitment of a PrP(C)-Caveolin-Fyn signaling platform, and overstimulation of NADPH-oxidase activity. Altogether, these findings provide actual evidence that PrP-(106-126)-induced neuronal injury is caused by an amplification of PrP(C)-associated signaling responses, which notably promotes oxidative stress conditions. Distorsion of PrP(C) signaling in neuronal cells could hence represent a causal event in transmissible spongiform encephalopathy pathogenesis.  相似文献   

12.
The abnormal form of the prion protein (PrP) is believed to be responsible for the transmissible spongiform encephalopathies. A peptide encompassing residues 106-126 of human PrP (PrP106-126) is neurotoxic in vitro due its adoption of an amyloidogenic fibril structure. The Alzheimer's disease amyloid beta peptide (Abeta) also undergoes fibrillogenesis to become neurotoxic. Abeta aggregation and toxicity is highly sensitive to copper, zinc, or iron ions. We show that PrP106-126 aggregation, as assessed by turbidometry, is abolished in Chelex-100-treated buffer. ICP-MS analysis showed that the Chelex-100 treatment had reduced Cu(2+) and Zn(2+) levels approximately 3-fold. Restoring Cu(2+) and Zn(2+) to their original levels restored aggregation. Circular dichroism showed that the Chelex-100 treatment reduced the aggregated beta-sheet content of the peptide. Electron paramagnetic resonance spectroscopy identified a 2N1S1O coordination to the Cu(2+) atom, suggesting histidine 111 and methionine 109 or 112 are involved. Nuclear magnetic resonance confirmed Cu(2+) and Zn(2+) binding to His-111 and weaker binding to Met-112. An N-terminally acetylated PrP106-126 peptide did not bind Cu(2+), implicating the free amino group in metal binding. Mutagenesis of either His-111, Met-109, or Met-112 abolished PrP106-126 neurotoxicity and its ability to form fibrils. Therefore, Cu(2+) and/or Zn(2+) binding is critical for PrP106-126 aggregation and neurotoxicity.  相似文献   

13.
Prion diseases are neurodegenerative disorders characterized by the aggregation of an abnormal form of prion protein. The interaction of prion protein and cellular membrane is crucial to elucidate the occurrence and development of prion diseases. Its fragment, residues 106–126, has been proven to maintain the pathological properties of misfolded prion and was used as a model peptide. In this study, explicit solvent molecular dynamics (MD) simulations were carried out to investigate the adsorption, folding and aggregation of PrP106–126 with different sizes (2-peptides, 4-peptides and 6-peptides) on the surface of both pure neutral POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and negatively charged POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) (3:1) lipids. MD simulation results show that PrP106–126 display strong affinity with POPC/POPG but does not interact with pure POPC. The positively charged and polar residues participating hydrogen bonding with membrane promote the adsorption of PrP106–126. The presence of POPC and POPC/POPG exert limited influence on the secondary structures of PrP106–126 and random coil structures are predominant in all simulation systems. Upon the adsorption on the POPC/POPG surface, the aggregation states of PrP106–126 have been changed and more small oligomers were observed. This work provides insights into the interactions of PrP106–126 and membranes with different compositions in atomic level, which expand our understanding the role membrane plays in the development of prion diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

14.
The fibrillogenic peptide corresponding to the residues 106-126 of the prion protein sequence (PrP 106-126) is largely used to explore the neurotoxic mechanisms underlying the prion disease. However, whether the neuronal toxicity of PrP 106-126 is caused by a soluble or fibrillar form of this peptide is still unknown. The aim of this study was to correlate the structural state of this peptide with its neurotoxicity. Here we show that the two conserved Gly114 and Gly119 residues, in force of their intrinsic flexibility, prevent the peptide assuming a structured conformation, favouring its aggregation in amyloid fibrils. The substitution of both Gly114 and Gly119 with alanine residues (PrP 106-126 AA mutated peptide) reduces the flexibility of this prion fragment and results in a soluble, beta-structured peptide. Moreover, PrP 106-126 AA fragment was highly toxic when incubated with neuroblastoma cells, likely behaving as a neurotoxic protofibrillar intermediate of the wild-type PrP 106-126. These data further confirm that the fibrillar aggregation is not necessary for the induction of the toxic effects of PrP 106-126.  相似文献   

15.
Prion diseases are fatal neurodegenerative disorders associated with conformational conversion of the cellular prion protein, PrP(C), into a misfolded, protease-resistant form, PrP(Sc). Here we show, for the first time, the oligomerization and fibrillization of the C-terminal domain of murine PrP, mPrP-(121-231), which lacks the entire unstructured N-terminal domain of the protein. In particular, the construct we used lacks amino acid residues 106-120 from the so-called amyloidogenic core of PrP (residues 106-126). Amyloid formation was accompanied by acquisition of resistance to proteinase K digestion. Aggregation of mPrP-(121-231) was investigated using a combination of biophysical and biochemical techniques at pH 4.0, 5.5, and 7.0 and at 37 and 65 degrees C. Under partially denaturing conditions (65 degrees C), aggregates of different morphologies ranging from soluble oligomers to mature amyloid fibrils of mPrP-(121-231) were formed. Transmission electron microscopy analysis showed that roughly spherical aggregates were readily formed when the protein was incubated at pH 5.5 and 65 degrees C for 1 h, whereas prolonged incubation led to the formation of mature amyloid fibrils. Samples incubated at 65 degrees C at pH 4.0 or 7.0 presented an initial mixture of oligomers and protofibrils or fibrils. Electrophoretic analysis of samples incubated at 65 degrees C revealed formation of sodium dodecyl sulfate-resistant oligomers (dimers, trimers, and tetramers) and higher molecular weight aggregates of mPrP-(121-231). These results demonstrate that formation of an amyloid form with physical properties of PrP(Sc) can be achieved in the absence of the flexible N-terminal domain and, in particular, of residues 106-120 of PrP and does not require other cellular factors or a PrP(Sc) template.  相似文献   

16.
A major hallmark of prion diseases is the cerebral amyloid accumulation of the pathogenic PrP(Sc), an abnormally misfolded, protease-resistant, and beta-sheet rich protein. PrP106-126 is the key domain responsible for the conformational conversion and aggregation of PrP. It shares important physicochemical characteristics with PrP(Sc) and presents similar neurotoxicity as PrP(Sc). By combination of fluorescence polarization, dye release assay and in situ time-lapse atomic force microscopy (AFM), we investigated the PrP106-126 amide interacting with the large unilamellar vesicles (LUVs) and the supported lipid bilayers (SLBs). The results suggest that the interactions involve a poration-mediated process: firstly, the peptide binding results in the formation of pores in the membranes, which penetrate only half of the membranes; subsequently, PrP106-126 amide undergoes the poration-mediated diffusion in the SLBs, represented by the formation and expansion of the flat high-rise domains (FHDs). The possible mechanisms of the interactions between PrP106-126 amide and lipid membranes are proposed based on our observations.  相似文献   

17.
Prion-related encephalopathies are associated with the conversion of a normal cellular isoform of prion protein (PrP(c)) to an abnormal pathologic scrapie isoform (PrP(Sc)). The conversion of this single polypeptide chain involves a reduction in the alpha-helices and an increase in beta-sheet content. This change in the content ratio of alpha-helices to beta-sheets may explain the diversity in the proposed mechanisms of action. Many of the pathogenic properties of PrP(Sc), such as neurotoxicity, proteinase-resistant properties and induction of hypertrophy and proliferation of astrocytes, have been attributed to the peptide fragment corresponding to residues 106-126 of prion (PrP[106-126]). In particular, the amyloidogenic and hydrophobic core AGAAAAGA has been implicated in modulation of neurotoxicity and the secondary structure of PrP[106-126]. Because of some similarities between the properties of PrP[106-126] and PrP(Sc), the former is used as a useful tool to characterize the pharmacological and biophysical properties of PrP(Sc) in general and of that domain in particular, by various laboratories. However, it is important to note that by no means can PrP[106-126] be considered a complete equivalent to PrP(Sc) in function. Several hypotheses have been proposed to explain prion-induced neurodegenerative diseases. These non-exclusive hypotheses include: (i) changes in the membrane microviscosity; (ii) changes in the intracellular Ca(2+) homeostasis; (iii) superoxide dismutase and Cu(2+) homeostasis; and (iv) changes in the immune system. The prion-induced modification in Ca(2+) homeostasis is the result of: (1) prion interaction with intrinsic ion transport proteins, e.g. L-type Ca(2+) channels in the surface membrane, and IP(3)-modulated Ca(2+) channels in the internal membranes, and/or (2) formation of cation channels. These two mechanisms of action lead to changes in Ca(2+) homeostasis that further augment the abnormal electrical activity and the distortion of signal transduction causing cell death. It is concluded that the hypothesis of the interaction of PrP[106-126] with membranes and formation of redox-sensitive and pH-modulated heterogeneous ion channels is consistent with: (a) PrP-induced changes in membrane fluidity and viscosity; (b) PrP-induced changes in Ca(2+) homeostasis (and does not exclude changes in endogenous Ca(2+) transport pathways and Cu(2+) homeostasis); (c) PrP role as an antioxidant; and (d) the PrP structural properties, i.e. beta sheets, protein aggregation, hydrophobicity, functional significance of specific amino acids (e.g. methionine, histidine) and regulation with low pH.  相似文献   

18.
Prion diseases are transmissible and fatal neurodegenerative disorders which involve infiltration and activation of mononuclear phagocytes at the brain lesions. A 20-aa acid fragment of the human cellular prion protein, PrP(106-126), was reported to mimic the biological activity of the pathologic isoform of prion and activates mononuclear phagocytes. The cell surface receptor(s) mediating the activity of PrP(106-126) is unknown. In this study, we show that PrP(106-126) is chemotactic for human monocytes through the use of a G protein-coupled receptor formyl peptide receptor-like 1 (FPRL1), which has been reported to interact with a diverse array of exogenous or endogenous ligands. Upon stimulation by PrP(106-126), FPRL1 underwent a rapid internalization and, furthermore, PrP(106-126) enhanced monocyte production of proinflammatory cytokines, which was inhibited by pertussis toxin. Thus, FPRL1 may act as a "pattern recognition" receptor that interacts with multiple pathologic agents and may be involved in the proinflammatory process of prion diseases.  相似文献   

19.
Prion Protein Peptide Neurotoxicity Can Be Mediated by Astrocytes   总被引:1,自引:0,他引:1  
A peptide based on amino acids 106-126 of the sequence of human prion protein (PrP106-126) is neurotoxic in culture. A role for astrocytes mediating PrP106-126 toxicity was investigated. The toxicity of PrP106-126 to cerebellar cell cultures was reduced by aminoadipate, a gliotoxin. Normally, PrP106-126 is not toxic to cultures containing neurones deficient in the cellular isoform of prion protein (PrPc). However, PrP106-126 was toxic to cerebellar cells derived from Prnp(0/0) mice (deficient in PrPc expression) when those cerebellar cells were cocultured with astrocytes. This toxicity was found to occur only in the presence of PrPc-positive astrocytes and to be mediated by glutamate. Furthermore, PrPc-positive astrocytes were shown to protect Prnp(0/0) cerebellar cells from glutamate toxicity. This effect could be inhibited by PrP106-126. PrP106-126 did not enhance the toxicity of glutamate to neurones directly. When cerebellar cells were cocultured with astrocytes, the neurones became dependent on astrocytes for protection from glutamate toxicity and expressed an increased sensitivity to glutamate. In such a system, the protective effects of astrocytes against glutamate toxicity to neurones were inhibited by PrP106-126, resulting in a greater reduction in neuronal survival than would have been caused by PrP106-126 when astrocytes were not present. This new model provides a possible mechanism by which the gliosis in prion disease may accelerate the neurodegeneration seen in the later stages of the disease.  相似文献   

20.
Amyloid-like fibrils have been associated with the pathogenesis of human prion diseases. Prion peptide of aa 106-126 (PrP106-126) exhibits many PrP(Sc)-like biochemical features, forming amyloid-like fibrils in vitro. Here, we found that the recombinant yeast-derived molecular chaperon Hsp104 inhibited significantly the fibril assembly of the synthetic PrP106-126 peptide by dynamic ThT assays in vitro. EM assays revealed almost no fibril-like structure after incubation of the synthetic PrP106-126 peptides with Hsp104 for 12h. Circular dichroism assays identified that treatment of Hsp104 shifted the secondary structure of PrP106-126 fibrils from β-sheet to a random coil. MTT tests confirmed that interaction of PrP106-126 with Hsp104 maintained the toxicity of PrP106-126 on human neuroblastoma cell line SK-N-SH. Additionally, Hsp104 was able to disassemble the mature PrP106-126 fibrils in vitro, leading to recovering the cytotoxicity of PrP106-126 on SK-N-SH cells. Our study provides the molecular evidences that the yeast-derived Hsp104 can interfere in the fibril assembly and disassembly of human PrP106-126 segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号