首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the budding yeast,S. cerevisiae, two-dimensional (2D) gel electrophoresis techniques permit mapping of DNA replication origins to short stretches of DNA (±300 bp). In contrast, in mammalian cells andDrosophila, 2D gel techniques do not permit precise origin localization; the results have been interpreted to suggest that replication initiates in broad zones (several kbp or more). However, alternative techniques (replication timing, nascent strand polarity analysis, nascent strand size analysis) suggest that mammalian origins can be mapped to short DNA stretches, just likeS. cerevisiae origins. Because the fission yeast,Schizosaccharomyces pombe, resembles higher organisms in several ways to a greater extent than doesS. cerevisiae, we thought thatS. pombe replication origins might prove to resemble — and thus be helpful models for — animal cell origins. An attempt to test this possibility using 2D gel techiques resulted in identification of a replication origin near theura4 gene on chromosome III ofS. pombe. The 2D gel patterns produced by thisS. pombe origin indeed resemble the patterns produced by animal cell origins and show that theS. pombe origin cannot be precisely located. The data suggest an initiation zone of 3–5 kbp. Some aspects of the 2D gel patterns detected at theS. pombe origin cannot be explained by the rationale of initiation in broad zones, suggesting that future biochemical and genetic studies of this complex origin are likely to provide information useful in helping to understand the apparent conflict between the 2D gel mapping techniques and other mapping techniques at animal cell origins.  相似文献   

2.

Background

In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2).

Results

Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint-mutant cells.

Conclusion

The fact that ~97% of fission yeast replication origins – both early and late – are not significantly affected by replication checkpoint mutations in HU-treated cells suggests that (i) most late-firing origins are restrained from firing in HU-treated cells by at least one checkpoint-independent mechanism, and (ii) checkpoint-dependent slowing of S phase in fission yeast when DNA is damaged may be accomplished primarily by the slowing of replication forks.  相似文献   

3.
A comparison of three fission yeast mitochondrial genomes   总被引:10,自引:3,他引:7       下载免费PDF全文
The fission yeasts are members of the fungal order Schizosaccharomycetales, a candidate deep-diverging group within Ascomycota. Although a great deal of molecular information is available from Schizosaccharomyces pombe, a model eukaryote, very little is available from other members of this group. In order to better characterize mitochondrial genome evolution in this fungal lineage, the mitochondrial DNA (mtDNA) of two additional fission yeasts, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus var. japonicus, was sequenced. Whereas the mtDNA of S.pombe is only 19 431 bp, the mtDNA of S.octosporus is 44 227 bp, and that of S.japonicus var. japonicus is over 80 kb. The size variation of these mtDNAs is due largely to non-coding regions. The gene content in the latter two mtDNAs is almost identical to that of the completely sequenced S.pombe mtDNA, which encodes 25 tRNA species, the large and small mitochondrial ribosomal RNAs (rnl and rns), the RNA component of mitochondrial RNaseP (rnpB), mitochondrial small subunit ribosomal protein 3 (rps3), cytochrome oxidase subunits 1, 2 and 3 (cox1, cox2 and cox3) and ATP-synthase subunits 6, 8 and 9 (atp6, atp8 and atp9). However, trnI2(cau) (C modified to lysidine) is absent in the S.octosporus mtDNA, as are corresponding ATA codons in its protein-coding genes, and rps3 and rnpB are not found in the mtDNA of S.japonicus var. japonicus. The mtDNA of S.octosporus contains five double hairpin elements, the first report of these elements in an ascomycete. This study provides further evidence in favor of the mobility of these elements, and supports their role in mitochondrial genome rearrangement. The results of our phylogenetic analysis support the monophyly of the Schizosaccharomycetales, but question their grouping within the Archiascomycota.  相似文献   

4.
Eukaryotic replication origins are highly variable in their activity and replication timing. The nature and role of cis-acting regulatory sequences that control chromosomal replication timing is not well defined. In the fission yeast, Schizosaccharomyces pombe, a 200-bp late-replication-enforcing element (LRE), has been shown to enforce late replication of ARS elements in plasmids. Here, we show that a short (133-bp) fragment of the LRE (shLRE) is required for causing late replication of adjoining origins in its native as well as in an ectopic early-replicating chromosomal location. Active from both sides of an early-replicating origin, the shLRE is a bona fide cis-acting regulatory element that imposes late replication timing in the chromosome.  相似文献   

5.

Background

Chromosomal DNA replication in eukaryotes initiates from multiple origins of replication, and because of this multiplicity, activation of replication origins is likely to be highly coordinated; origins fire at characteristic times, with some origins firing on average earlier (early-firing origins) and others later (late-firing origins) in the S phase of the budding yeast cell cycle. However, the molecular basis for such temporal regulation is poorly understood.

Results

We show that origin association of the low-abundance replication proteins Sld3, Sld7, and Cdc45 is the key to determining the temporal order of origin firing. These proteins form a complex and associate with the early-firing origins in G1 phase in a manner that depends on Dbf4-dependent kinase (DDK), which is essential for the initiation of DNA replication. An increased dosage of Sld3, Sld7, and Cdc45 allows the late-firing origins to fire earlier in S phase. Additionally, an increased dosage of DDK also allows the late-firing origins to fire earlier.

Conclusions

The DDK-dependent limited association between origins and Sld3-Sld7-Cdc45 is a key step for determining the timing of origin firing.  相似文献   

6.
Dimorphic yeasts change between unicellular growth and filamentous growth. Many dimorphic yeasts species are pathogenic for humans and plants, being infectious as invasive hypha. We have studied the determinants of the dimorphic switch in the nonpathogenic fission yeast Schizosaccharomyces japonicus, which is evolutionarily close to the well-characterized fission yeast S. pombe. We report that camptothecin, an inhibitor of topoisomerase I, reversibly induced the unicellular to hyphal transition in S. japonicus at low concentrations of camptothecin that did not induce checkpoint arrest and the transition required the DNA checkpoint kinase Chk1. Furthermore, a mutation of chk1 induced hyphal transition without camptothecin. Thus, we identify a second function for Chk1 distinct from its role in checkpoint arrest. Activation of the switch from single cell bipolar growth to monopolar filamentous growth may assist cells to evade the source of DNA damage.Yeasts and molds are major members of the kingdom Fungi. Molds grow as multicellular filamentous hyphae. On the other hand, yeasts propagate in a unicellular fashion by budding or by binary fission. However, many types of yeast can switch their growth modes, changing from unicellular growth to filamentous branching multicellular hyphae. This hyphal transition can be induced by a wide variety of environmental changes ranging from pH to the nature of the carbon source, and many species of dimorphic yeasts that are pathogenic for humans and plants are infectious in the hyphal form (15, 20).Hyphal transition is a simple mode of cellular differentiation program that is turned on upon environmental changes. The fungi may differentiate to adapt to the environmental challenges. Especially in the case of Candida albicans strains that infect humans, the hyphal transition may function as an action to resist against attack from macrophages or neutrophils. Hyphae are more difficult to phagocytose (16). It can also eventually kill macrophages if hyphal transition is triggered after ingestion by macrophage (14). Indeed, C. albicans cells that cannot form hyphae are avirulent. However, inducing hyphal growth in pathogenic yeasts is not always readily achievable in the laboratory, and genetic analysis of the hyphal growth phase and transition to this phase is often limited by the lack of appropriate tools. Thus, genetically tractable nonpathogenic dimorphic yeasts are attractive models for investigating invasive hypha.The nonpathogenic fission yeast Schizosaccharomyces japonicus is evolutionarily close to the well-characterized fission yeast Schizosaccharomyces pombe (5, 24). S. japonicus is dimorphic, transiting between unicellular and hyphal growth, and thus offers itself as an appropriate model to study this differentiation mechanism and the requirements of hyphal growth (25). In S. japonicus, hyphal growth occurs naturally on most solid medium and can occur over a range of nutrient conditions (26). It has been proposed that a gradient of nitrogen in the substrate is necessary to both initiate and direct hyphal growth in S. japonicus (26). In this report we establish conditions to induce hyphal growth in a microchamber in liquid media. In addition, we show that a low dose of the topoisomerase inhibitor camptothecin (CPT) induces hyphal differentiation under rich nutrient conditions and identify a role for the DNA damage checkpoint response in promoting the CPT-dependent transition from unicellular to hyphal growth. Genetic analysis demonstrates that this role of the checkpoint is distinct from checkpoint arrest, and we suggest it may provide an opportunity for S. japonicus to grow away from sources of genotoxic stress.  相似文献   

7.
We investigated d-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E.?coli displayed oxidase activity to neutral and basic d-amino acids, but not to an l-amino acid or acidic d-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without d-amino acid, and was approximately doubled by adding d-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. l-Alanine also induced the activity, but only by about half of that induced by d-alanine. The induction by d-alanine reached a maximum level at 2?h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was d-alanine, followed by d-proline and then d-serine. Not effective were N-carbamoyl-d,l-alanine (a better inducer of DAO than d-alanine in the yeast Trigonopsis variabilis), and both basic and acidic d-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms.  相似文献   

8.

Background

Eukaryotic cells seem unable to monitor replication completion during normal S phase, yet must ensure a reliable replication completion time. This is an acute problem in early Xenopus embryos since DNA replication origins are located and activated stochastically, leading to the random completion problem. DNA combing, kinetic modelling and other studies using Xenopus egg extracts have suggested that potential origins are much more abundant than actual initiation events and that the time-dependent rate of initiation, I(t), markedly increases through S phase to ensure the rapid completion of unreplicated gaps and a narrow distribution of completion times. However, the molecular mechanism that underlies this increase has remained obscure.

Methodology/Principal Findings

Using both previous and novel DNA combing data we have confirmed that I(t) increases through S phase but have also established that it progressively decreases before the end of S phase. To explore plausible biochemical scenarios that might explain these features, we have performed comparisons between numerical simulations and DNA combing data. Several simple models were tested: i) recycling of a limiting replication fork component from completed replicons; ii) time-dependent increase in origin efficiency; iii) time-dependent increase in availability of an initially limiting factor, e.g. by nuclear import. None of these potential mechanisms could on its own account for the data. We propose a model that combines time-dependent changes in availability of a replication factor and a fork-density dependent affinity of this factor for potential origins. This novel model quantitatively and robustly accounted for the observed changes in initiation rate and fork density.

Conclusions/Significance

This work provides a refined temporal profile of replication initiation rates and a robust, dynamic model that quantitatively explains replication origin usage during early embryonic S phase. These results have significant implications for the organisation of replication origins in higher eukaryotes.  相似文献   

9.
10.

Background

The first two steps in the capping of cellular mRNAs are catalyzed by the enzymes RNA triphosphatase and RNA guanylyltransferase. Although structural and mechanistic differences between fungal and mammalian RNA triphosphatases recommend this enzyme as a potential antifungal target, it has not been determined if RNA triphosphatase is essential for the growth of fungal species that cause human disease.

Results

We show by classical genetic methods that the triphosphatase (Pct1) and guanylyltransferase (Pce1) components of the capping apparatus in the fission yeast Schizosaccharomyces pombe are essential for growth. We were unable to disrupt both alleles of the Candida albicans RNA triphosphatase gene CaCET1, implying that the RNA triphosphatase enzyme is also essential for growth of C. albicans, a human fungal pathogen.

Conclusions

Our results provide the first genetic evidence that cap synthesis is essential for growth of an organism other than Saccharomyces cerevisiae and they validate RNA triphosphatase as a target for antifungal drug discovery.  相似文献   

11.

Objectives

To use permeabilized cells of the fission yeast, Schizosaccharomyces pombe, that expresses human UDP-glucose 6-dehydrogenase (UGDH, EC 1.1.1.22), for the production of UDP-glucuronic acid from UDP-glucose.

Results

In cell extracts no activity was detected. Therefore, cells were permeabilized with 0.3 % (v/v) Triton X-100. After washing away all low molecular weight metabolites, the permeabilized cells were directly used as whole cell biocatalyst. Substrates were 5 mM UDP-glucose and 10 mM NAD+. Divalent cations were not added to the reaction medium as they promoted UDP-glucose hydrolysis. With this reaction system 5 mM UDP-glucose were converted into 5 mM UDP-glucuronic acid within 3 h.

Conclusions

Recombinant permeabilized cells of S. pombe can be used to synthesize UDP-glucuronic acid with 100 % yield and selectivity.
  相似文献   

12.
Most sexually reproducing organisms have the ability to recognize individuals of the same species. In ascomycete fungi including yeasts, mating between cells of opposite mating type depends on the molecular recognition of two peptidyl mating pheromones by their corresponding G-protein coupled receptors (GPCRs). Although such pheromone/receptor systems are likely to function in both mate choice and prezygotic isolation, very few studies have focused on the stringency of pheromone receptors. The fission yeast Schizosaccharomyces pombe has two mating types, Plus (P) and Minus (M). Here, we investigated the stringency of the two GPCRs, Mam2 and Map3, for their respective pheromones, P-factor and M-factor, in fission yeast. First, we switched GPCRs between S. pombe and the closely related species Schizosaccharomyces octosporus, which showed that SoMam2 (Mam2 of S. octosporus) is partially functional in S. pombe, whereas SoMap3 (Map3 of S. octosporus) is not interchangeable. Next, we swapped individual domains of Mam2 and Map3 with the respective domains in SoMam2 and SoMap3, which revealed differences between the receptors both in the intracellular regions that regulate the downstream signaling of pheromones and in the activation by the pheromone. In particular, we demonstrated that two amino acid residues of Map3, F214 and F215, are key residues important for discrimination of closely related M-factors. Thus, the differences in these two GPCRs might reflect the significantly distinct stringency/flexibility of their respective pheromone/receptor systems; nevertheless, species-specific pheromone recognition remains incomplete.  相似文献   

13.
The fission yeast Schizosaccharomyces japonicus has recently emerged as a powerful system for studying the evolution of essential cellular processes, drawing on similarities as well as key differences between S. japonicus and the related, well-established model Schizosaccharomyces pombe. We have deployed the open-source, modular code and tools originally developed for PomBase, the S. pombe model organism database (MOD), to create JaponicusDB (www.japonicusdb.org), a new MOD dedicated to S. japonicus. By providing a central resource with ready access to a growing body of experimental data, ontology-based curation, seamless browsing and querying, and the ability to integrate new data with existing knowledge, JaponicusDB supports fission yeast biologists to a far greater extent than any other source of S. japonicus data. JaponicusDB thus enables S. japonicus researchers to realize the full potential of studying a newly emerging model species and illustrates the widely applicable power and utility of harnessing reusable PomBase code to build a comprehensive, community-maintainable repository of species-relevant knowledge.  相似文献   

14.
15.
16.
17.

Background and Aims

This study was conducted to reveal the genetic diversity of common bean (Phaseolus vulgaris L.) nodulating rhizobia in various agroecological regions in Nepal.

Method

A total of 63 strains were isolated from common bean grown in the soils collected from seven bean fields in Nepal and characterized based on the partial sequences of 16S–23S internal transcribed spacer (ITS) regions, 16S rDNA, nodC, and nifH. Symbiotic properties of some representative strains with host plants were examined to elucidate their characteristics in relation to genotype and their origin.

Results

The isolated strains belonged to Rhizobium leguminosarum, Rhizobium etli, Rhizobium phaseoli, and one unknown Rhizobium lineage, all belonging to a common symbiovar (sv.) phaseoli. Nine ITS genotypes were detected mainly corresponding to a single site, including a dominant group at three sites harboring highly diverse multiple ITS sequences. Three symbiotic genotypes corresponded to a geographical region, not to the ribosomal DNA group, suggesting horizontal transfer of symbiotic genes separately in each region. Great differences in nitrogenase activity and nodule forming ability among the strains irrespective of their species and origin were observed.

Conclusions

Nepalese Himalaya harbor phylogenetically highly diverse and site-specific strains of common bean rhizobia, some of which could have high potential of symbiotic nitrogen fixation.  相似文献   

18.
19.
The putative replication origin of Azotobacter vinelandii was cloned as an autonomously replicating fragment after ligation to an antibiotic resistance cartridge. The resulting plasmids could be isolated and labelled by Southern hybridisation with the antibiotic resistance cartridge as probe and also visualised by electron microscopy. These plasmids integrated into the chromosome after a few generations, even in the recA mutant of A. vinelandii. The integrated copy of the plasmid was re-isolated from the chromosome and the DNA and its subfragments were cloned in the plasmid vector pBR322. A 200-bp DNA fragment was sufficient to allow the replication of pBR322 in an Escherichia coli polA strain. Electron microscopic analysis of this plasmid showed that replication initiated mostly within the A. vinelandii DNA fragment. The nucleotide sequence of the putative replication origin and its flanking regions was determined. In the sequence of the 200-bp fragment many of the distinctive features found in other replication origins are lacking. A greater variation from the consensus DnaA binding sequence was observed in A. vinelandii. Direct sequencing of the relevant genomic fragment was also carried after amplifying it from A. vinelandii chromosomal DNA by PCR. This confirmed that no rearrangements had taken place while the cloned fragment was resident in E. coli. It was shown by hybridisation that the 200-bp chromosomal origin fragment of A. vinelandii was present in three other field strains of Azotobacter spp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号