首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oligoadenylate synthetase (OAS) enzymes are cytoplasmic dsRNA sensors belonging to the antiviral innate immune system. Upon binding to viral dsRNA, the OAS enzymes synthesize 2′-5′ linked oligoadenylates (2-5As) that initiate an RNA decay pathway to impair viral replication. The human OAS-like (OASL) protein, however, does not harbor the catalytic activity required for synthesizing 2-5As and differs from the other human OAS family members by having two C-terminal ubiquitin-like domains. In spite of its lack of enzymatic activity, human OASL possesses antiviral activity. It was recently demonstrated that the ubiquitin-like domains of OASL could substitute for K63-linked poly-ubiquitin and interact with the CARDs of RIG-I and thereby enhance RIG-I signaling. However, the role of the OAS-like domain of OASL remains unclear. Here we present the crystal structure of the OAS-like domain, which shows a striking similarity with activated OAS1. Furthermore, the structure of the OAS-like domain shows that OASL has a dsRNA binding groove. We demonstrate that the OAS-like domain can bind dsRNA and that mutating key residues in the dsRNA binding site is detrimental to the RIG-I signaling enhancement. Hence, binding to dsRNA is an important feature of OASL that is required for enhancing RIG-I signaling.  相似文献   

2.
The type I interferons (IFN-Is) are critical not only in early viral control but also in prolonged T-cell immune responses. However, chronic viral infections such as those of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in humans and lymphocytic choriomeningitis virus (LCMV) in mice overcome this early IFN-I barrier and induce viral persistence and exhaustion of T-cell function. Although various T-cell-intrinsic and -extrinsic factors are known to contribute to induction of chronic conditions, the roles of IFN-I negative regulators in chronic viral infections have been largely unexplored. Herein, we explored whether 2′–5′ oligoadenylate synthetase-like 1 (OASL1), a recently defined IFN-I negative regulator, plays a key role in the virus-specific T-cell response and viral defense against chronic LCMV. To this end, we infected Oasl1 knockout and wild-type mice with LCMV CL-13 (a chronic virus) and monitored T-cell responses, serum cytokine levels, and viral titers. LCMV CL-13-infected Oasl1 KO mice displayed a sustained level of serum IFN-I, which was primarily produced by splenic plasmacytoid dendritic cells, during the very early phase of infection (2–3 days post-infection). Oasl1 deficiency also led to the accelerated elimination of viremia and induction of a functional antiviral CD8 T-cell response, which critically depended on IFN-I receptor signaling. Together, these results demonstrate that OASL1-mediated negative regulation of IFN-I production at an early phase of infection permits viral persistence and suppresses T-cell function, suggesting that IFN-I negative regulators, including OASL1, could be exciting new targets for preventing chronic viral infection.  相似文献   

3.
A stable hybridoma clone derived by infusion of mouse myeloma cells (cell line Fo) and spleen cells of immunized mice has been isolated which secretes monoclonal antibodies against human fibroblast interferon (interferon-beta). The antibody inhibits the antiviral activity of human fibroblast interferon in an antiviral assay using human FS4 fibroblast, reacts immunologically with interferon-beta separated by sodium dodecylsulfate/polyacrylamide gel electrophoresis and subsequent transfer to nitrocellulose and absorbs interferon-beta immunologically when bound to CNBr-activated Sepharose. It also inhibits the antiviral activity of human fibroblast interferon-beta from which the sugar moiety has been cleaved off by enzymatic treatment. The antibody is therefore probably directed against the protein moiety of the interferon molecules.  相似文献   

4.
5.
2′-5′-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth.  相似文献   

6.
Shih YP  Chen CY  Liu SJ  Chen KH  Lee YM  Chao YC  Chen YM 《Journal of virology》2006,80(21):10315-10324
The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) uses dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) to facilitate cell entry via cellular receptor-angiotensin-converting enzyme 2. For this project, we used recombinant baculoviruses expressing different lengths of SARS-CoV spike (S) protein in a capture assay to deduce the minimal DC-SIGN binding region. Our results identified the region location between amino acid (aa) residues 324 to 386 of the S protein. We then generated nine monoclonal antibodies (MAbs) against the S protein to map the DC-SIGN-binding domain using capture assays with pseudotyped viruses and observed that MAb SIa5 significantly blocked S protein-DC-SIGN interaction. An enhancement assay using the HKU39849 SARS-CoV strain and human immature dendritic cells confirmed our observation. Data from a pepscan analysis and M13 phage peptide display library system mapped the reactive MAb SIa5 epitope to aa residues 363 to 368 of the S protein. Results from a capture assay testing three pseudotyped viruses with mutated N-linked glycosylation sites of the S protein indicate that only two pseudotyped viruses (N330Q and N357Q, both of which lost glycosylation sites near the SIa5 epitope) had diminished DC-SIGN-binding capacity. We also noted that MAb SIb4 exerted a neutralizing effect against HKU39849; its reactive epitope was mapped to aa residues 435 to 439 of the S protein. We offer the data to facilitate the development of therapeutic agents and preventive vaccines against SARS-CoV infection.  相似文献   

7.
8.
Dansako H  Ikeda M  Kato N 《The FEBS journal》2007,274(16):4161-4176
Toll-like receptors and RNA helicase family members [retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene-5 (MDA5)] play important roles in the induction of interferon-beta as a major event in innate immune responses after virus infection. TRIF (adaptor protein of Toll-like receptor 3)-mediated and Cardif (adaptor protein of RIG-I or MDA5)-mediated signaling pathways contribute rapid induction of interferon-beta through the activation of interferon regulatory factor-3 (IRF-3). Previously, it has been reported that the hepatitis C virus NS3-4A serine protease blocks virus-induced activation of IRF-3 in the human hepatoma cell line HuH-7, and that NS3-4A cleaves TRIF and Cardif molecules, resulting in the interruption of antiviral signaling pathways. On the other hand, it has recently been reported that non-neoplastic human hepatocyte PH5CH8 cells retain robust TRIF- and Cardif-mediated pathways, unlike HuH-7 cells, which lack a TRIF-mediated pathway. In the present study, we further investigated the effect of NS3-4A on antiviral signaling pathways. Although we confirmed that PH5CH8 cells were much more effective than HuH-7 cells for the induction of interferon-beta, we obtained the unexpected result that NS3-4A could not suppress the interferon-beta production induced by the TRIF-mediated pathway, although it suppressed the Cardif-mediated pathway by cleaving Cardif at the Cys508 residue. Using PH5CH8, HeLa, and HuH-7-derived cells, we further showed that NS3-4A could not cleave TRIF, in disagreement with a previous report describing the cleavage of TRIF by NS3-4A. Taken together, our findings suggest that the blocking of the interferon production by NS3-4A is not sufficient in HCV-infected hepatocyte cells.  相似文献   

9.
The human interferon (huIFN) delta-4 alpha 2(5-62)/alpha 1(64-166) is a genetically engineered hybrid that consists of residues 5-62 of huIFN alpha 2 and residues 64-166 of huIFN alpha 1. This variant contains four cysteine residues at positions 29, 86, 99 and 139, but does not contain the cysteine at position 1 that is characteristic of naturally occurring huIFN alpha subtypes. This novel recombinant hybrid was purified from Escherichia coli to greater than 95% homogeneity. The purification was based on ethanol extraction of a trichloroacetic acid precipitate and Matrex Gel Blue A chromatography followed by either a selective precipitation or DEAE-Sepharose chromatography. The purified protein that was treated with 2-mercaptoethanol exhibited two closely migrating bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with apparent molecular weight values of 17,800 and 17,100, both of which exhibited antiviral activity. Electrophoresis performed without prior reduction with 2-mercaptoethanol indicated only a minor extent of intermolecular disulfide bonding. The purified protein exhibited a high specific antiviral activity of 7 x 10(7) units/mg when assayed on human fibroblast cells and, in distinction to the parental huIFN alpha 2, it also demonstrated antiviral activity on human fibroblast cells and, in distinction to the parental huIFN alpha 2, it also demonstrated antiviral activity on murine L929 cells. The level of antiproliferative activity of huIFN delta-4 alpha 2(5-62)/alpha 1(64-166) on various cell lines of different histological origin appeared to be more comparable to that of huIFN alpha 1 than huIFN alpha 2. The data suggest that huIFN delta-4 alpha 2(5-62)/alpha 1(64-166) hybrid may be a useful tool for understanding huIFN structure-function relations.  相似文献   

10.
The expression of class I HLA genes was measured during the in vitro differentiation of human U937 lymphoma cells towards macrophages. Following the onset of differentiation by phorbol myristate acetate the levels of cytoplasmic mRNA that hybridized with a [32P]HLA-B cDNA probe increased by a factor of nine. Elevation in HLA mRNA accumulation was followed by an increase in the rate of synthesis of HLA proteins and also by a dramatic increase in class I HLA cell surface antigen expression, as shown by cytofluorimetric analysis. The elevation in HLA mRNA and surface antigens could be prevented by adding antibodies against human interferon-beta (IFN-beta) to the culture medium at the onset of differentiation. Interferon antiviral activity was detected in the medium of differentiated U937 cells. The same anti-IFN-beta antibodies prevented the increase in (2'-5')oligo(A) synthetase activity which also takes place in differentiating U937 cells. Accumulation of the IFN-induced (2'-5')oligo(A) synthetase in U937 cells is preceded by an increase in its specific 1.6-kb mRNA as shown by hybridization to cloned (2'-5')-oligo(A) synthetase cDNA. The enzyme was preferentially found in the nuclear fraction of differentiating U937 cells. We suggest that an autogenous production of interferon-beta by the differentiating cells, switches on expression of the class I HLA genes as well as that of the (2'-5')oligo(A) synthetase.  相似文献   

11.
12.
Lung cancer is one of the most common malignancies worldwide. Actinidia chinensis Planch root extract (acRoots) was found to have the capacity of the anti-tumor, although the molecular mechanisms remain unclear. The present study aims to investigate the molecular mechanisms by which lung cancer cells sense to inhibitory effects of acRoots with a special focus on immune-associated gene profiles. We firstly provide a preclinical evidence that acRoots can significantly inhibit lung cancer cell proliferation and apoptosis via the PI3K-OASL signal pathway. The heterogeneous alterations of immune-associated gene profiles of lung cancer cell types were measured after treatment with various doses of acRoots. The OASL gene was identified as the key regulator in molecular networks of acRoots-treated lung cancer cells and validated. The OASL gene plays an important role in the regulation of lung cancer cell sensitivity to acRoots, which modulated by the PI3K signal pathway. Thus, our data indicate that OASL can be one of the decisive regulators to maintain lung cancer cell susceptibility to acRoots and may be associated with the development of drug resistance. The regulation of OASL can be an alternative strategy to improve drug efficacy during cancer therapies.  相似文献   

13.
14.
15.
Pax6 functions as a pleiotropic regulator in eye development and neurogenesis. Its splice variant Pax6 5a has been cloned in many vertebrate species including human and mouse, but never in rat. This study focused on the cloning and characterization of the Pax6 5a orthologous splicing variant in rat. It was cloned from Sprague–Dawley rats 10 days post coitum (E10) by RT-PCR and was sequenced for comparison with Pax6 sequences in the GenBank by BLAST. The rat Pax6 5a was revealed to contain an additional 42 bp insertion at the paired domain. At the nucleotide level, the rat Pax6 5a coding sequence (1311 bp) had a higher degree of homology to the mouse (96% identical) than to the human (93% identical) sequence. At the amino acid (aa) level, rat PAX6 5a shares 99.8% identity with the mouse sequence and 99.5% with the human sequence. The splice variant is preferentially expressed in the rat E10 embryonic headfolds and not in the trunk of neurula. Its effects on the proliferation of rat mesenchymal stem cells (rMSCs) were preliminarily evaluated by the MTT assay. Both pLEGFP-Pax6 5a-transfected cells and pLEGFP-Pax6-transfected cells exhibited a similar growth curve (P > 0.05), suggesting that the Pax6 5a has a similar effect on the proliferation of rMSCs as Pax6.  相似文献   

16.
Expression of host genes in influenza virus infected cells   总被引:2,自引:0,他引:2  
Shimizu K  Kuroda K 《Uirusu》2004,54(2):189-196
The NS1 protein of influenza virus shuts off host gene expression by inhibiting the polyadenylation-site cleavage of host pre-mRNAs, resulting in a general decline in cellular protein synthesis. On the other hand, an activation of several host genes related to host antiviral defense such as interferon- alpha/beta, MxA, 2',5'-oligoadenylate synthetase, and Fas occures upon infection. Therefore, balance of the shut-off and the activation of cellular genes during virus growth may be crucial in determining the outcome of infection. To obtain a comprehensive view of the global effects of influenza virus infection on human respiratory epithelial cells at the cytoplasmic mRNA level, we performed oligo DNA microarray analysis using GeneChip arrays (Affymetrix). In NCl-H292 cells infected with A/Udorn/72 virus, more than 4-fold increase of expression level was observed for 164 genes at 12 h pi. Approximately 60% of the virus-stimulated genes (VSGs) were also stimulated with interferon-beta treatment and contained the genes known to possess antiviral activity. Interestingly, majority of the VSGs were stimulated before induction of interferons, suggesting that the stimulation of the VSGs during early phase of infection is not mediated by interferons, but it is triggered from within by the virus infection.  相似文献   

17.
Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted to humans by their common vector, Aedes mosquitoes. DENV infection represents one of the most widely spread mosquito‐borne diseases whereas ZIKV infection occasionally re‐emerged in the past causing outbreaks. Although there have been considerable advances in understanding the pathophysiology of these viruses, no effective vaccines or antiviral drugs are currently available. In this study, we evaluated the antiviral activity of carnosine, an endogenous dipeptide (β‐alanyl‐l ‐histidine), against DENV serotype 2 (DENV2) and ZIKV infection in human liver cells (Huh7). Computational studies were performed to predict the potential interactions between carnosine and viral proteins. Biochemical and cell‐based assays were performed to validate the computational results. Mode‐of‐inhibition, plaque reduction, and immunostaining assays were performed to determine the antiviral activity of carnosine. Exogenous carnosine showed minimal cytotoxicity in Huh7 cells and rescued the viability of infected cells with EC50 values of 52.3 and 59.5 μM for DENV2 and ZIKV infection, respectively. Based on the mode‐of‐inhibition assays, carnosine inhibited DENV2 mainly by inhibiting viral genome replication and interfering with virus entry. Carnosine antiviral activity was verified with immunostaining assay where carnosine treatment diminished viral fluorescence signal. In conclusion, carnosine exhibited significant inhibitory effects against DENV2 and ZIKV replication in human liver cells and could be utilized as a lead peptide for the development of effective and safe antiviral agents against DENV and ZIKV.  相似文献   

18.
19.
20.
Canine hepacivirus (CHV) was recently identified in domestic dogs and horses. The finding that CHV is genetically the virus most closely related to hepatitis C virus (HCV) has raised the question of whether HCV might have evolved as the result of close contact between dogs and/or horses and humans. The aim of this study was to investigate whether the NS3/4A serine protease of CHV specifically cleaves human mitochondrial antiviral signaling protein (MAVS) and Toll-IL-1 receptor domain-containing adaptor inducing interferon-beta (TRIF). The proteolytic activity of CHV NS3/4A was evaluated using a bacteriophage lambda genetic screen. Human MAVS- and TRIF-specific cleavage sites were engineered into the lambda cI repressor. Upon infection of Escherichia coli cells coexpressing these repressors and a CHV NS3/4A construct, lambda phage replicated up to 2000-fold more efficiently than in cells expressing a CHV protease variant carrying the inactivating substitution S139A. Comparable results were obtained when several HCV NS3/4A constructs of genotype 1b were assayed. This indicates that CHV can disrupt the human innate antiviral defense signaling pathway and suggests a possible evolutionary relationship between CHV and HCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号