首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The cellular response to oxidative stress includes the release of mitochondrial cytochrome c and the induction of apoptosis. Here we show that treatment of diverse cells with hydrogen peroxide (H2O2) induces the targeting of protein kinase C delta (PKCdelta) to mitochondria. The results demonstrate that H2O2-induced activation of PKCdelta is necessary for translocation of PKCdelta from the cytoplasm to the mitochondria. The results also show that mitochondrial targeting of PKCdelta is associated with the loss of mitochondrial transmembrane potential and release of cytochrome c. The functional importance of this event is also supported by the demonstration that H2O2-induced apoptosis is blocked by the inhibition of PKCdelta activation and translocation to mitochondria. These findings indicate that mitochondrial targeting of PKCdelta is required, at least in part, for the apoptotic response of cells to oxidative stress.  相似文献   

3.
H(2)O(2)-induced apoptosis was enhanced in the CHO cell line overproducing protein kinase C delta (PKCdelta) as judged by DNA fragmentation. In response to the H(2)O(2) treatment, PKCdelta was tyrosine phosphorylated and recovered as a constitutively active form, but its proteolytic fragment was not generated. In contrast, H(2)O(2)-induced apoptosis was suppressed in the CHO cell line overexpressing protein kinase B alpha (PKBalpha). Consistently, phosphorylation of BAD, a pro-apoptotic protein negatively regulated by PKBalpha, was sustained in the cells overproducing PKBalpha, but was not changed in the cells overexpressing PKCdelta. In the CHO cell line overproducing both PKCdelta and PKBalpha, H(2)O(2)-induced tyrosine phosphorylation of PKCdelta was suppressed, and DNA fragmentation was diminished concomitantly. These results suggest that PKCdelta contributes to H(2)O(2)-induced apoptosis by a mechanism independent of BAD and that PKCdelta is a target of PKB for the regulation of cell survival.  相似文献   

4.
Transforming growth factor beta (TGF-beta) induces apoptosis in a variety of cells. We have previously shown that TGF-beta 1 rapidly induces apoptosis in the FaO rat hepatoma cell line. We have now studied the effect of TGF-beta 1 on the expression of different members of the Bcl-2 family in these cells. We observed no detectable changes in the steady-state levels of Bcl-2, Bcl-X(L), and Bax. However, TGF-beta 1 induced caspase-dependent cleavage of BAD at its N terminus to generate a 15-kDa truncated protein. Overexpression of the 15-kDa truncated BAD protein enhanced TGF-beta 1-induced apoptosis, whereas a mutant BAD resistant to caspase 3 cleavage blocked TGF-beta 1-induced apoptosis. Overexpression of Smad3 dramatically enhanced TGF-beta 1-induced cleavage of BAD and apoptosis, whereas antisense Smad3 blocked TGF-beta 1-induced apoptosis and BAD cleavage. These results suggest that TGF-beta 1 induces apoptosis through the cleavage of BAD in a Smad3-dependent mechanism.  相似文献   

5.
Oxidative stress is a key apoptotic stimulus in neuronal cell death and has been implicated in the pathogenesis of many neurodegenerative disorders, including Parkinson disease (PD). Recently, we demonstrated that protein kinase C-delta (PKCdelta) is an oxidative stress-sensitive kinase that can be activated by caspase-3-dependent proteolytic cleavage to induce apoptotic cell death in cell culture models of Parkinson disease (Kaul, S., Kanthasamy, A., Kitazawa, M., Anantharam, V., and Kanthasamy, A. G. (2003) Eur. J. Neurosci. 18, 1387-1401 and Kanthasamy, A. G., Kitazawa, M., Kanthasamy, A., and Anantharam, V. (2003) Antioxid. Redox. Signal. 5, 609-620). Here we showed that the phosphorylation of a tyrosine residue in PKCdelta can regulate the proteolytic activation of the kinase during oxidative stress, which consequently influences the apoptotic cell death in dopaminergic neuronal cells. Exposure of a mesencephalic dopaminergic neuronal cell line (N27 cells) to H(2)O(2)(0-300 microm) induced a dose-dependent increase in cytotoxicity, caspase-3 activation and PKCdelta cleavage. H(2)O(2)-induced proteolytic activation of PKC was delta mediated by the activation of caspase-3. Most interestingly, both the general Src tyrosine kinase inhibitor genistein (25 microm) and the p60(Src) tyrosine-specific kinase inhibitor (TSKI; 5 microm) dramatically inhibited H(2)O(2) and the Parkinsonian toxin 1-methyl-4-phenylpyridinium-induced PKCdelta cleavage, kinase activation, and apoptotic cell death. H(2)O(2) treatment also increased phosphorylation of PKCdelta at tyrosine site 311, which was effectively blocked by co-treatment with TSKI. Furthermore, N27 cells overexpressing a PKCdelta(Y311F) mutant protein exhibited resistance to H(2)O(2)-induced PKCdelta cleavage, caspase activation, and apoptosis. To our knowledge, these data demonstrate for the first time that phosphorylation of Tyr-311 on PKCdelta can regulate the proteolytic activation and proapoptotic function of the kinase in dopaminergic neuronal cells.  相似文献   

6.
Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.  相似文献   

7.
Activation of protein kinase C delta (PKCdelta) is believed to be pro-apoptotic. PKCdelta is reported to be reduced in colon cancers. Using a colon cancer cell line, COLO 205, we have examined the roles of PKCdelta in apoptosis and of caspase-3 in the activation and inhibition of PKCdelta. PKCdelta activation with bistratene A and its inhibition with rottlerin induced apoptosis. Effects of PKC activators and inhibitors were additive, suggesting that PKCdelta down-regulation was responsible for the effects on apoptosis. Different apoptotic pathways induced PKCdelta cleavage, but the fragment produced was inactive in kinase assays. Caspase-3 inhibition did not block DNA fragmentation or PKCdelta proteolysis despite blocking intracellular caspase-3 activity. Calpain inhibition with calpeptin did not prevent TPA-induced PKCdelta cleavage. We conclude that in colonocytes, inhibition of PKCdelta is sufficient to lead to caspase-3-independent apoptosis. Caspase-3 does not cleave PKCdelta to an active form, nor does caspase-3 inhibition block apoptosis.  相似文献   

8.
Caspase cleavage enhances the apoptosis-inducing effects of BAD   总被引:12,自引:0,他引:12       下载免费PDF全文
The function of BAD, a proapoptotic member of the Bcl-2 family, is regulated primarily by rapid changes in phosphorylation that modulate its protein-protein interactions and subcellular localization. We show here that, during interleukin-3 (IL-3) deprivation-induced apoptosis of 32Dcl3 murine myeloid precursor cells, BAD is cleaved by a caspase(s) at its N terminus to generate a 15-kDa truncated protein. The 15-kDa truncated BAD is a more potent inducer of apoptosis than the wild-type protein, whereas a mutant BAD resistant to caspase 3 cleavage is a weak apoptosis inducer. Truncated BAD is detectable only in the mitochondrial fraction, interacts with BCL-X(L) at least as effectively as the wild-type protein, and is more potent than wild-type BAD in inducing cytochrome c release. Human BAD, which is 43 amino acids shorter than its mouse counterpart, is also cleaved by a caspase(s) upon exposure of Jurkat T cells to anti-FAS antibody, tumor necrosis factor alpha (TNF-alpha), or TRAIL. Moreover, a truncated form of human BAD lacking the N-terminal 28 amino acids is more potent than wild-type BAD in inducing apoptosis. The generation of truncated BAD was blocked by Bcl-2 in IL-3-deprived 32Dcl3 cells but not in Jurkat T cells exposed to anti-FAS antibody, TNF-alpha, or TRAIL. Together, these findings point to a novel and important role for BAD in maintaining the apoptotic phenotype in response to various apoptosis inducers.  相似文献   

9.
Zhang Y  Venugopal SK  He S  Liu P  Wu J  Zern MA 《Cellular signalling》2007,19(11):2339-2350
Ethanol abuse is one of the major etiologies of cirrhosis. Ethanol has been shown to induce apoptosis via activation of oxidative stress, mitogen-activated protein kinases (MAPK), and tyrosine kinases. However, there is a paucity of data that examine the interplay among these molecules. In the present study we have systematically elucidated the role of novel protein kinase C isoforms (nPKC; PKCdelta and PKCepsilon) in ethanol-induced apoptosis in hepatocytes. Ethanol enhanced membrane translocation of PKCdelta and PKCepsilon, which was associated with the phosphorylation of p38MAPK, p42/44MAPK and JNK1/2, and the nuclear translocation of NF-kappaB and AP-1. This resulted in increased apoptosis in primary rat hepatocytes. Inhibition of both PKCdelta and PKCepsilon resulted in a decreased MAPK activation, decreased nuclear translocation of NF-kappaB and AP-1, and inhibition of apoptosis. In addition, ethanol activated the tyrosine phosphorylation of PKCdelta via tyrosine kinase in hepatocytes. The tyrosine phosphorylated PKCdelta was cleaved by caspase-3 and these fragments were translocated to the nucleus. Inhibition of ethanol-induced oxidative stress blocked the membrane translocation of PKCdelta and PKCepsilon, and the tyrosine phosphorylation of PKCdelta in hepatocytes. Inhibition of oxidative stress, tyrosine kinase or caspase-3 activity caused a decreased nuclear translocation of PKCdelta in response to ethanol, and was associated with less apoptosis. Conclusion: These results provide a newly-described mechanism by which ethanol induces apoptosis via activation of nPKC isoforms in hepatocytes.  相似文献   

10.
An inexorable loss of terminally differentiated heart muscle cells is a crucial causal factor for heart failure. Here, we have provided several lines of evidence to demonstrate that mitofusin-2 (Mfn-2; also called hyperplasia suppressor gene), a member of the mitofusin family, is a major determinant of oxidative stress-mediated cardiomyocyte apoptosis. First, oxidative stress with H(2)O(2) led to concurrent increases in Mfn-2 expression and apoptosis in cultured neonatal rat cardiomyocytes. Second, overexpression of Mfn-2 to a level similar to that induced by H(2)O(2) was sufficient to trigger myocyte apoptosis, which is associated with profound inhibition of Akt activation without altering ERK1/2 signaling. Third, Mfn-2 silencing inhibited oxidative stress-induced apoptosis in H9C2 cells, a cardiac muscle cell line. Furthermore, Mfn-2-induced myocyte apoptosis was abrogated by inhibition of caspase-9 (but not caspase-8) and by overexpression of Bcl-x(L) or enhanced activation of phosphatidylinositol 3-kinase-Akt, suggesting that inhibition of Akt signaling and activation of the mitochondrial death pathway are essentially involved in Mfn-2-induced heart muscle cell apoptosis. These results indicate that increased cardiac Mfn-2 expression is both necessary and sufficient for oxidative stress-induced heart muscle cell apoptosis, suggesting that Mfn-2 deregulation may be a crucial pathogenic element and a potential therapeutic target for heart failure.  相似文献   

11.
12.
The tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL or Apo2L) and its receptors are members of the tumor necrosis factor superfamily. TRAIL triggers apoptosis by binding to its two proapoptotic receptors DR4 and DR5, a process which is negatively regulated by binding of TRAIL to its two decoy receptors TRID and TRUNDD. Here, we show that TRAIL effectively induces apoptosis in H460 human non-small-cell lung carcinoma cells via cleavage of caspases 8, 9, 7, 3, and BID, release of cytochrome c from the mitochondria, and cleavage of poly (ADP-ribose) polymerase (PARP). However, overexpression of Bcl2 blocked TRAIL-induced apoptosis in H460 cells, which correlated with the Bcl2 protein levels. Importantly, the release of cytochrome c and cleavage of caspase 7 triggered by TRAIL were considerably blocked in Bcl2 overexpressing cells as compared to vector control cells. Moreover, inhibition of TRAIL-mediated cytochrome c release and caspase 7 activation by Bcl2 correlated with the inability of PARP to be cleaved and the inability of the Bcl2 transfectants to undergo apoptosis. Thus, these results suggest that Bcl2 can serve an anti-apoptotic function during TRAIL-dependent apoptosis by inhibiting the release of cytochrome c and activation of caspase 7, thereby blocking caspase 7-dependent cleavage of cellular substrates.  相似文献   

13.
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.  相似文献   

14.
We have previously shown that lovastatin induces apoptosis in spontaneously immortalized rat brain neuroblasts. Focal adhesion proteins and protein kinase Cdelta (PKCdelta) have been implicated in the regulation of apoptosis. We found that lovastatin exposure induced focal adhesion kinase, Crk-associated substrate (p130(Cas)), PKCdelta cleavage and caspase-3 activation in a concentration-dependent manner. Lovastatin effects were fully prevented by mevalonate. The cleavage of p130(Cas) was almost completely inhibited by z-DEVD-fmk, a specific caspase-3 inhibitor, and z-VAD-fmk, a broad spectrum caspase inhibitor, indicating that cleavage is mediated by caspase-3. In contrast, the lovastatin-induced cleavage of PKCdelta was only blocked by z-VAD-fmk suggesting that PKCdelta cleavage is caspase-dependent but caspase-3-independent. Additionally, z-VAD-fmk partially prevented lovastatin-induced neuroblast apoptosis. The present data show that lovastatin may induce neuroblast apoptosis by both caspase-dependent and independent pathways. These findings may suggest that the caspase-dependent component leading to the neuroblast cell death is likely to involve the cleavage of focal adhesion proteins and PKCdelta, which may be partially responsible for some biochemical features of neuroblast apoptosis induced by lovastatin.  相似文献   

15.
Heart attacks caused by occlusion of coronary arteries are often treated by mechanical or enzymatic removal of the occlusion and reperfusion of the ischemic heart. It is now recognized that reperfusion per se contributes to myocardial damage, and there is a great interest in identifying the molecular basis of this damage. We recently showed that inhibiting protein kinase Cdelta (PKCdelta) protects the heart from ischemia and reperfusion-induced damage. Here, we demonstrate that PKCdelta activity and mitochondrial translocation at the onset of reperfusion mediates apoptosis by facilitating the accumulation and dephosphorylation of the pro-apoptotic BAD (Bcl-2-associated death promoter), dephosphorylation of Akt, cytochrome c release, PARP (poly(ADP-ribose) polymerase) cleavage, and DNA laddering. Our data suggest that PKCdelta activation has a critical proapoptotic role in cardiac responses following ischemia and reperfusion.  相似文献   

16.
Decreases in cardiac Na/K-ATPase have been documented in patients with heart failure. Reduction of Na/K-ATPase α1 also contributes to the deficiency in cardiac contractility in animal models. Our previous studies demonstrate that reduction of cellular Na/K-ATPase causes cell growth inhibition and cell death in renal proximal tubule cells. To test whether reduction of Na/K-ATPase in combination with increased cardiotonic steroids causes cardiac myocyte death and cardiac dysfunction, we examined heart function in Na/K-ATPase α1 heterozygote knock-out mice (α1(+/-)) in comparison to wild type (WT) littermates after infusion of marinobufagenin (MBG). Adult cardiac myocytes were also isolated from both WT and α1(+/-) mice for in vitro experiments. The results demonstrated that MBG infusion increased myocyte apoptosis and induced significant left ventricle dilation in α1(+/-) mice but not in their WT littermates. Mechanistically, it was found that in WT myocytes MBG activated the Src/Akt/mTOR signaling pathway, which further increased phosphorylation of ribosome S6 kinase (S6K) and BAD (Bcl-2-associated death promoter) and protected cells from apoptosis. In α1(+/-) myocytes, the basal level of phospho-BAD is higher compared with WT myocytes, but MBG failed to induce further activation of the mTOR pathway. Reduction of Na/K-ATPase also caused the activation of caspase 9 but not caspase 8 in these cells. Using cultures of neonatal cardiac myocytes, we demonstrated that inhibition of the mTOR pathway by rapamycin also enabled MBG to activate caspase 9 and induce myocyte apoptosis.  相似文献   

17.
The induction of apoptosis in human keratinocytes by UV radiation involves caspase-mediated cleavage and activation of protein kinase C delta (PKCdelta). Here we examined the role of PKC activation in caspase activation and disruption of mitochondria function by UV radiation. Inhibition of PKC partially blocked UV radiation-induced cleavage of PKCdelta, pro-caspase-3, and pro-caspase-8, and the activation of these caspases. PKC inhibition also blocked the UV-induced loss of mitochondria membrane potential, but did not block the release of cytochrome c from mitochondria. Expression of the active catalytic domain of PKCdelta was sufficient to induce apoptosis and disrupt mitochondrial membrane potential, however a kinase inactive PKCdelta catalytic domain did not. Furthermore, the PKCdelta catalytic fragment generated following UV radiation localized to the mitochondria fraction, as did ectopically expressed PKCdelta catalytic domain. These results identify a functional role for PKC activation in potentiating caspase activation and disrupting mitochondrial function during UV-induced apoptosis.  相似文献   

18.
Regulation of Bcl-xL expression by H2O2 in cardiac myocytes   总被引:7,自引:0,他引:7  
Oxidative stress promotes cardiac myocyte apoptosis through the mitochondrial death pathway. Since Bcl-2 family proteins are key regulators of apoptosis, we examined the effects of H2O2 on the expression of principal Bcl-2 family proteins (Bcl-2, Bcl-xL, Bax, Bad) in neonatal rat cardiac myocytes. Protein expression was assessed by immunoblotting. Bcl-2, Bax, and Bad were all down-regulated in myocytes exposed to 0.2 mm H2O2, a concentration that induces apoptosis. In contrast, although Bcl-xL levels initially declined, the protein was re-expressed from 4-6 h. Bcl-xL mRNA was up-regulated from 2 to 4 h in neonatal rat or mouse cardiac myocytes exposed to H2O2, consistent with the re-expression of protein. Four different untranslated first exons have been identified for the Bcl-x gene (exons 1, 1B, 1C, and 1D, where exon 1 is the most proximal and exon 1D the most distal to the coding region). All were detected in mouse or rat neonatal cardiac myocytes, but exon 1D was not expressed in adult mouse hearts. In neonatal mouse or rat cardiac myocytes, H2O2 induced the expression of exons 1B, 1C, and 1D, but not exon 1. These data demonstrate that the Bcl-x gene is selectively responsive to oxidative stress, and the response is mediated through distal promoter regions.  相似文献   

19.
We have shown previously that protein kinase Cdelta (PKCdelta) is required for mitochondrial-dependent apoptosis. Here we show that PKCdelta is imported into the nucleus of etoposide-treated cells, that nuclear import is required for apoptosis and that it is mediated by a nuclear localization signal (NLS) in the C-terminus of PKCdelta. Mutation of the caspase cleavage site of PKCdelta inhibits nuclear accumulation in apoptotic cells, indicating that caspase cleavage facilitates this process. Expression of the PKCdelta catalytic fragment (CFdelta) in transfected cells results in nuclear localization and apoptosis. We show that the PKCdelta NLS is required for nuclear import of both full-length PKCdelta and CFdelta, and drives nuclear localization of a multimeric green fluorescent protein. Mutations within the NLS of CFdelta prevent nuclear accumulation and block apoptosis. Conversely, nuclear expression of a kinase-negative catalytic fragment (KN-CFdelta) protects cells from etoposide-induced apoptosis. Mutation of the NLS blocks the ability of KN-CFdelta to protect against etoposide-induced apoptosis. These results indicate that PKCdelta regulates an essential nuclear event(s) that is required for initiation of the apoptotic pathway.  相似文献   

20.
Neuregulin (NRG)-1beta has a prosurvival effect on cardiac myocytes via the phosphatidylinositol-3-kinase/Akt pathway, but the physiological regulators of this system in the intact heart are unknown. In this study, we tested the hypothesis that reactive oxygen species regulate NRG/erbB signaling. We used isolated adult rat ventricular myocytes (ARVMs) or cardiac microvascular endothelial cells (CMECs) in monoculture, or together in coculture. H2O2 induced NRG-1beta release from CMECs in a concentration-dependent manner, and conditioned medium from H2O2-treated CMEC activated ARVM erbB4. NRG-1beta release occurred via proteolytic cleavage of 115-kDa transmembrane NRG-1beta and was inhibited by the metalloproteinase inhibitor 1,10-phenanthroline. In myocyte monoculture, H2O2 induced erbB4-dependent, but NRG-independent, activation of Akt. To elucidate the bioactivity of CMEC-derived NRG-1beta on ARVMs, we examined H2O2-induced myocyte apoptosis in co-culture using an antibody to NRG-1beta. The percentages of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were significantly higher in the anti-NRG-1beta group than in the control group. The change in apoptosis induced by anti-NRG-1beta in co-culture was similar in magnitude to the protection of myocytes by addition of recombinant NRG-1beta to ARVM monocultures. Activation of NRG/erbB paracrine signaling was also seen in the intact heart subjected to oxidative stress by ischemia-reperfusion injury. Isolated perfused mouse hearts subjected to 15 min of ischemia, followed by 30 min of reperfusion, showed complete proteolytic cleavage of 115-kDa NRG-1beta, with concomitant erbB4 phosphorylation. These results demonstrate that reactive oxygen species activate NRG-1beta/erbB4 paracrine signaling in the heart and suggest that this system is involved in cardiac adaptation to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号