首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturable Escherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35 degrees C, individual microcolonies of E. coli were detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targeting P. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other than E. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.  相似文献   

2.
A new fluorescence in situ hybridization (FISH) method using peptide nucleic acid (PNA) probes and an array scanner for rapid detection, identification, and enumeration of Escherichia coli is described. The test utilizes Cy3-labeled peptide nucleic acid (PNA) probes complementary to a specific 16S rRNA sequence of E. coli. Samples were filtered and incubated for 5 h, the membrane filters were then analyzed by fluorescence in situ hybridization and results were visualized with an array scanner. Results were provided as fluorescent spots representing E. coli microcolonies on the membrane filter surface. The number of fluorescent spots correlated to standard colony counts up to 100 colony-forming units per membrane filter. Above this level, better accuracy was obtained with PNA FISH due to the ability of the scanner to resolve neighboring microcolonies, which were not distinguishable as individual colonies once they were visible by eye.  相似文献   

3.
A standardized fluorescent in situ hybridization (FISH) method using Peptide Nucleic Acid (PNA) probes for analysis of gram-negative and gram-positive bacteria, as well as yeast, has been developed. Fluorescently labeled PNA probes targeting specific rRNA sequences of Escherichia coli, Pseudomonas aeruginosa, Staphyloccocus aureus, Salmonella were designed, as well as PNA probes targeting eubacteria and eucarya. These PNA probes were evaluated by PNA FISH using 27 bacterial and 1 yeast species, representing both phylogenetically closely related species, as well as species important to both clinical and industrial settings. The S. aureus and P. aeruginosa PNA probes did not cross react with any of the organisms tested, whereas the E. coli PNA probe, as expected from sequence data, also detected Shigella species. The Salmonella PNA probe reacted with all of the 13 Salmonella strains, representing the 7 subspecies of Salmonella, however, it is also complementary to a few other bacterial species. The eubacteria- and eucarya-specific PNA probes detected all bacterial species and one yeast species, respectively. The general applicability of the PNA FISH method made simultaneous identification of multiple species, both gram-negative and gram-positive, in a mixed population an attractive possibility never accomplished using DNA probes. Four color images using differently labeled PNA probes showed simultaneous identification of E. coli, P. aeruginosa, S. aureus and Salmonella, thereby demonstrating the potential of multiplex FISH for various diagnostic applications within both clinical and industrial microbiology.  相似文献   

4.
A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturable Escherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35°C, individual microcolonies of E. coli were detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targeting P. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other than E. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.  相似文献   

5.
A new chemiluminescent in situ hybridization (CISH) method that provides simultaneous detection, identification, and enumeration of Pseudomonas aeruginosa in bottled water within 1 working day has been developed. Individual micro-colonies of P. aeruginosa were detected directly on membrane filters following 5 h of growth by use of soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeted to a species-specific sequence in P. aeruginosa rRNA. Within each micro-colony, reaction of the peroxidase with a chemiluminescent substrate generated light that was subsequently captured by film or with a digital camera system. Each spot of light represented one micro-colony of P. aeruginosa. Sensitivity and specificity for the identification of P. aeruginosa were 100% as determined by testing 28 P. aeruginosa strains and 17 other bacterial species that included closely related Pseudomonas species. Furthermore, the number of micro-colonies of P. aeruginosa represented by light spots correlated with counts of visible colonies following sustained growth. We conclude that PNA CISH speeds up traditional membrane filtration techniques and adds the specificity of PNA probe technology to generate fast and definitive results.  相似文献   

6.
AIMS: A method for rapid and simultaneous detection, identification and enumeration of specific micro-organisms using Peptide Nucleic Acid (PNA) probes is presented. METHODS AND RESULTS: The method is based on a membrane filtration technique. The membrane filter was incubated for a short period of time. The microcolonies were analysed by in situ hybridization, using peroxidase-labelled PNA probes targeting a species-specific rRNA sequence, and visualized by a chemiluminescent reaction. Microcolonies were observed as small spots of light on film, thereby providing simultaneous detection, identification and enumeration. The method showed 95-100% correlation to standard plate counts along with definitive identification due to the specificity of the probe. CONCLUSION: Using the same protocol, results were generated approximately three times faster than culture methods for Gram-positive and -negative bacterial species and yeast species. SIGNIFICANCE AND IMPACT OF THE STUDY: The method is an improvement on the current membrane filtration technique, providing rapid determination of the level of specific pathogens, spoilage or indicator micro-organisms.  相似文献   

7.
We have combined ATP-dependent bioluminescence with a novel chemiluminescent in situ hybridization (CISH) method using peroxidase-labeled peptide nucleic acid (PNA) probes targeting species-specific rRNA sequences to provide total counts and subsequent identification of specific microorganisms. Both methods are applied to the same membrane filter following a short incubation time and both methods provide results in the form of spots of light that are captured by the MicroStar detection system. Each spot of light represents individual micro-colonies detected by either ATP bioluminescence or PNA CISH. This new concept is particularly intended for in process and quality control of non-sterile products to rapidly provide total counts as well as presence/absence of specific indicators and/or pathogens in non-sterile, filterable samples.  相似文献   

8.
Patients suffering from cystic fibrosis (CF) develop chronic lung infections because of highly viscous mucus, where bacteria can form biofilms. In this study, we investigated the microorganisms present in the lungs of end-stage and non-end-stage patients using standard culturing techniques and molecular methods. Tissue and sputum samples (n?=?34) from explanted lungs of five end-stage patients were examined along with routine expectorates (n?=?15) from 13 patients with non-end-stage CF, representing earlier stages of chronic lung infections. Previously, using peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH), we have shown that Pseudomonas aeruginosa was the sole pathogen in end-stage CF lungs (Pediatr Pulmonol 2009, 44: 547). In this study, this tendency was supported by the results of real-time PCR, confirming previous results obtained by standard culturing and 16S rRNA gene analysis (J Clin Microbiol 2011, 49: 4352). Conversely, the non-end-stage patients were found to harbor several species by culturing. PNA FISH confirmed heterogeneous microbiota and showed that the bacteria were located in monospecies aggregates with no apparent physical interaction between the different microcolonies. In conclusion, standard culturing identifies the dominating pathogens, which seem to reside in monospecies microcolonies. The possibility of signaling between the distinct microcolonies still has to be verified and elucidated.  相似文献   

9.
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.  相似文献   

10.
A karyotype for the guinea pig (Cavio cambayo) is proposed based on an R-banding pattern. R-bands were obtained by BrdU incorporation into the cells followed by a combined DAPI and propidium iodide staining of the fixed metaphase spreads. In situ hybridization was performed with two biotinylated 18-mer PNA (peptide nucleic acid) probes complementary to sequences within the 5S rRNA gene. The 5S rRNA gene repeats map to chromosomes 7q2. 20q2 and 30q2, respectively.  相似文献   

11.
The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.  相似文献   

12.
Fluorescent DNA and peptide nucleic acid (PNA) probes were used for in situ hybridisations in colonies of Schizophyllum commune and Aspergillus niger. DNA probes for 18S rRNA did not diffuse through the cell wall after mild chemical fixation. After permeabilising the cell wall with lysing enzymes or slow freezing and embedding, hybridisation was still poor and not reproducible. In contrast, PNA probes did diffuse through the cell wall after mild chemical fixation and reproducible fluorescent signals were obtained. The rRNA signal was most intense in the apical compartment of hyphae of S. commune. Within this compartment, the signal was lower at the extreme apex. Apparently, ribosomes are unevenly distributed in hyphae. In S. commune, the mRNA of the SC3 gene was also detected with a PNA probe. The ratio between 18S rRNA and SC3 mRNA signals were variable between hyphae and their compartments. This is the first report of using PNA probes for in situ hybridisation of mRNA in fungi. The method provides a powerful tool to study gene expression.  相似文献   

13.
A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.  相似文献   

14.
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.  相似文献   

15.
DNA and peptide nucleic acid (PNA) molecular beacons were successfully used to detect rRNA in solution. In addition, PNA molecular beacon hybridizations were found to be useful for the quantification of rRNA: hybridization signals increased in a linear fashion with the 16S rRNA concentrations used in this experiment (between 0.39 and 25 nM) in the presence of 50 nM PNA MB. DNA and PNA molecular beacons were successfully used to detect whole cells in fluorescence in situ hybridization (FISH) experiments without a wash step. The FISH results with the PNA molecular beacons were superior to those with the DNA molecular beacons: the hybridization kinetics were much faster, the signal-to-noise ratio was much higher, and the specificity was much better for the PNA molecular beacons. Finally, it was demonstrated that the combination of the use of PNA molecular beacons in FISH and flow cytometry makes it possible to rapidly collect quantitative FISH data. Thus, PNA molecular beacons might provide a solution for limitations of traditional FISH methods, such as variable target site accessibility, poor sensitivity for target cells with low rRNA content, background fluorescence, and applications of FISH in microfluidic devices.  相似文献   

16.
DNA and peptide nucleic acid (PNA) molecular beacons were successfully used to detect rRNA in solution. In addition, PNA molecular beacon hybridizations were found to be useful for the quantification of rRNA: hybridization signals increased in a linear fashion with the 16S rRNA concentrations used in this experiment (between 0.39 and 25 nM) in the presence of 50 nM PNA MB. DNA and PNA molecular beacons were successfully used to detect whole cells in fluorescence in situ hybridization (FISH) experiments without a wash step. The FISH results with the PNA molecular beacons were superior to those with the DNA molecular beacons: the hybridization kinetics were much faster, the signal-to-noise ratio was much higher, and the specificity was much better for the PNA molecular beacons. Finally, it was demonstrated that the combination of the use of PNA molecular beacons in FISH and flow cytometry makes it possible to rapidly collect quantitative FISH data. Thus, PNA molecular beacons might provide a solution for limitations of traditional FISH methods, such as variable target site accessibility, poor sensitivity for target cells with low rRNA content, background fluorescence, and applications of FISH in microfluidic devices.  相似文献   

17.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

18.
A karyotype for the Syrian hamster is proposed based on an R-banding pattern. R-bands were obtained by BrdU incorporation into the cells followed by a combined DAPI and propidium iodide staining of the fixed metaphase spreads. In situ hybridisation was performed with two biotinylated 18-mer PNA (peptide nucleic acid) probes complementary to sequences within the 5S rRNA gene. The 5S rRNA gene repeats map to chromosome 6q2. The present PNA-FISH procedure is an abbreviated and simpler version of that previously published.  相似文献   

19.
A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.  相似文献   

20.
Traditionally fluorescence in situ hybridization (FISH) has been performed with labeled DNA oligonucleotide probes. Here we present for the first time a high affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting thermotolerant Campylobacter spp. using FISH. Thermotolerant Campylobacter spp, including the species Campylobacter coli, Campylobacter jejuni and Campylobacter lari, are important food and water borne pathogens. The designed PNA probe (CJE195) bound with higher affinity to a previously reported low affinity site on the 16S rRNA than the corresponding DNA probe. PNA also overcame the problem of the lack of affinity due to the location of the binding site and the variation of the target sequence within species. The PNA probe specificity was tested with several bacterial species, including other Campylobacter spp. and their close relatives. All tested C. coli, C. jejuni and C. lari strains were hybridized successfully. Aging of the Campylobacter cultures caused the formation of coccoid forms, which did not hybridize as well as bacteria in the active growth phase, indicating that the probe could be used to assess the physiological status of targeted cells. The PNA FISH methodology detected C. coli by membrane filtration method from C. coli spiked drinking water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号