首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The short term effect of NO3 (12 mM) on nitrate reductase (NR. EC 1.6.6.1) activity has been studied in the roots, nodules and leaves of different genotypes of Vicia faba L. at the end of vegetative growth. Root and leaf NR activity responded positively to NO3 while nodule activity, where detected, proved to he strongly inhibited. The withdraw of this NO3 from the solution consistently reduced activity in the roots and leaves but surprising, promoted a significant increase in nodule activity, which matched or surpassed that of control plants On the other hand, nodules developed in the presence of 8 mM NO3 expressed an on average 141% higher level of NR activity than did controls. This effect was observed even in nodules with negligible control activity. In any case, a naturally occurring mutant (VF17) lacking root and nodule NR activity is described. The results indicate that in V. faba. the effects of NO3 and plant genotype on NR activity depended on plant organ and time of NO3 application, hut the distribution of NO3 reduction through the plain was mainly dependent on plant genotype, and to a lesser extent on NO: supply and plant age.  相似文献   

2.
The plant fraction of alfalfa ( Medicago sativa L. cv. Aragon) nodules contained both nitrate reductase (NR) and nitrite reductase (NiR). Specific activity of NADH-NR from the cytosol of nodules not treated with NO3- was about 30 nmol (mg protein)-1-h-1 and was not basically affected by NO3 addition. In contrast, typical specific activity for cytosolic NiR was 1.5 umol (mg protein)-1h-1 using methyl viologen as electron donor. This activity strongly increased with NO3 concentration, probably due to substrate induction. Maximal activity was 3.5 μmol (mg protein)-1h-1 at 50 to 200 mM NO3.
Estimates indicate that the contribution of cytosol to the overall NR and NiR activities of alfalfa nodules is distinctly different: less than 10% and about 70%, respectively. The increasing amounts of NO2 accumulating in the cytosol upon NO3, supply, and the different response to NO3 of bacteroid and cytosolic NRs support the concept that most of this NO2 comes from the bacteroids.  相似文献   

3.
The limitation of symbiotic nitrogen fixation due to P deficiency restricts the development of a sustainable agriculture, particularly in Mediterrancan and tropical soils. Common bean genotypes, APN18, BAT271, PVA846, POT51, G2633 and G12168, were grown in an aerated N-free nutrient solution at low (72 μmol plant-1 week-1) and control P supplies (360 μmol plant-1 week-1). Nitrogenase activity was estimated by in situ measurements of acetylene reduction activity (ARA) in a flow-through system. During the assays, maximum values of ARA (peak ARA) were reached between 20 and 30 min after exposure to C2H2, depending on P treatment and growth stage. Thereafter, a decline in C2H4 evolution was observed. This decline was most pronounced in low-P plants and there was a significant genotypic effect. ARA per plant was decreased by P deficiency, mostly because nodulation was delayed and the number and mass of nodules were reduced. The ARA decrease during pod filling was also activated by P deficiency. ARA per g dry weight nodule was increased by P deficiency in G2633 and G12168, unchanged in APN18, BAT271 and POT51 and decreased in PVA846. Except for the climbing type IV G2633, total N at harvest for all P treatments was correlated with the cumulative value of peak ARA and with peak ARA at early pod-filling which was the highest peak ARA throughout the growth cycle of type III bushy genotypes. We conclude that if phenology and growth habit are carefully considered, peak ARA is a reliable screen of genotypes for N2 fixation tolerance to P deficiency. Selection of lines with early nodulation under P deficiency is also advisable, and the effect of P deficiency on the nodule functioning needs to be considered.  相似文献   

4.
Nitrate reductase (EC 1.6.6.1–3; NR) activity was evaluated in nodulated lucerne ( Medicago sativa L. cv. Europe) grown aeroponically in both the presence and absence of applied nitrogen. Determination of in vivo NR activity was done with organ pieces in 0.1 M K+-phosphate, pH 7.5, 0.1 M KNO3 and 1% n -propanol. NR activity was detected in all plant parts. Leaves accounted for 40% of the whole plant activity. Root activity was as high as leaf activity. Stem NR activity accounted for 14 to 20% of the total plant activity. NR activity was also detected in symbolically dependent plants grown without combined nitrogen. Nodule NR in symbolically dependent plants accounted for 17% of the tolal plant aclivity. When nitrate was present in the nulrienl medium, NR increased 5-fold as compared lo N2-dependenl plants. Varying levels of nitrale (1.65 to 4 m M ) had no influence on leaf or stem activities. However, root NR activity seemed to be related to the nitrale concentration in the nulrient medium. Throughoul inilial vegelative growth, in vivo NR and nitrogenase (acelylene reduction) increased simultaneously. After shoot harvest, nitrogenase (acetylene reduction) aclivity drastically decreased with reduction of photosynthate supply, whereas NR increased in all organs, especially in N2-dependenl plants.  相似文献   

5.
Nickel and rubidium uptake by whole oat plants in solution culture   总被引:1,自引:0,他引:1  
Nickel and rubidium uptake by oat plants ( Avena sativa L. cv. Victory) were examined in relation to solution temperature, solution concentrations, metabolic inhibitors, anaerobic root conditions, transpiration and time. Over a 4-h period, uptake rates for both Ni2+ and Rb+ remained constant at 23°C. Decreasing temperatures to 2°C, 20 μ M concentrations of 2,4-dinitrophenol (DNP), or anaerobic root conditions decreased Ni2+ and Rb+ uptake rates by 97 to 86% in whole plants. Treatment of excised roots with 20 μ M DNP decreased Ni2+ uptake by 93%. Nickel and Rb+ uptake rates measured as a function of the external solution concentration followed a typical parabolic curve. Km (0.012 m M ) and Vmax [2.72 μmol (g dry weight)-1 h-1] values for Ni2+ were nearly 7 times lower than those for Rb+ [0.09 m M and 19.2 μmol (g dry weight)-1 h-1]. In all experiments, Ni2+ and Rb+ showed qualitatively similar uptake patterns, but Rb+ uptake was quantitatively more sensitive than Ni2+ to experimental manipulations.  相似文献   

6.
Addition of NO3 rapidly induced senescence of root nodules in alfalfa ( Medicago sativa L. cv. Aragon). Loss of nodule dry matter began at the lowest NO3 concentration (10 m M ) but degradation of bacteroid proteins was only detected when nodules were supplied with NO3 concentrations above 20 m M .
Bacteroids from Rhizobium meliloti contained high specific activities of nitrate reductase (NR) and nitrite reductase (NiR). Both enzymes were presumably substrate-induced although substantial enzyme activities were present in the absence of NO3 Typical specific activities for soluble NR and NiR of bacteroids under NO3 free conditions were 1.2 and 1.4 μmol (mg protein)−1h−1, respectively. In the presence of NO3, the specific activity of NR was considerably greater than that of NiR, thus causing NO2 accumulation in bacteroids. Nitrite levels in the bacteroids were linearly correlated with specific activities of NR and NiR, indicating that NO2 is formed by bacteroid NR and that this NO2 in turn, induces bacteroid NiR. Accumulation of NO2 within bacteroids also indicates that NO2 inhibits nodule activity after feeding plants with NO3  相似文献   

7.
Activities of nitrate reduction enzymes, nitrate reductase activity (NRA) and nitrite reductase activity (NiRA) from roots and nodules of 5 mutant genotypes and one commercial cultivar (Alameda) of faba bean ( Vicia faba L. var. minor) grown in the presence of N2 alone or with additional NO3 in the medium have been studied. A naturally occurring mutant (VFM109) with impaired ability to reduce nitrate in its nodules is described. All the other cultivars of V. faba showed nodule NRA, although the range was very wide, from almost negligible (VFM72) up to 2 μmol h−1 (g FW)−1. This activity was entirely of plant origin. Root NRA also ranged widely accross cultivars. However, the level of activity expressed as well as the response of NRA to nitrate followed a pattern opposite to that observed in nodules. Roots and nodules of all cultivars showed very high rates of NiRA, respectively 50 and 150-fold higher than NRA, thus precluding accumulation of nitrite in these tissues. Root enzymes were significantly stimulated by nitrate while negative (NRA) or little effect (NiRA) was found for nodules. Nitrate and nitrite reduction are carried out by inducible enzymes in roots of V. faba and by constitutive enzymes in nodules, indicating that there may be different forms of these enzymes in each tissue. Differences in the plant genotype were a major cause of the variability in nitrate and nitrite reduction by nodulated root systems of V. faba .  相似文献   

8.
Barley plants were grown in nutrient solutions, which were maintained at either 0 (-P) or 15 μ M orthophosphate (+P). After 11 days phosphate influx into the intact roots of the -P plants began to increase by comparison with +P plants. During this period differences became apparent between the treatments in absolute growth rates, as well as in the root:shoot ratios. Phosphate influx in the -P plants continued to increase as a function of time, to a maximum value of 2.4 μmol (g fresh wt)-1h-1 at 16 days after germination. This rate was 6 times higher than influx values for +P plants of the same age. During the period of enhanced uptake phosphate was strongly correlated (r2= 0.77) with root organic phosphate concentration. – The enhancement of inorganic phosphate influx into intact roots of -P plants was rapidly reduced by the provision of 15 μ M orthophosphate. Typically, within 4 h of exposure to this concentration of phosphate, influx values fell from 1.80 ± 0.20 to 0.75 ± 0.03 μmol (g fresh wt)-1 h-1, while inorganic phosphate concentrations of the roots increased from 0.12 to 1.15 μmol (g fresh wt)-1 during the same period. Hill plots of the influx data obtained during this period, treating root inorganic phosphate as an inhibitor of influx, gave Hill coefficients close to 2. The rapidity of the reduction of influx associated with increased root inorganic phosphate together with the Hill plot data provide evidence for an allosteric inhibition of influx by internal inorganic phosphate.  相似文献   

9.
Alfalfa ( Medicago sativa L.) plants were grown in the absence or presence of the steroidal estrogens, estrone and 17β-estradiol, under varying conditions. Plants were analysed for the following parameters: plant weight, estrogen content, phytoestrogen content, degree of nodulation and nitrogen fixation activity. It was found that under controlled greenhouse conditions: (1) Treatment with estrogens in the range of 0.005 to 0.5 μg 1−1 increases both shoot and root dry weitht. In contrast, estrogen in concentrations of 50 to 500 μg 1−1 decreases plant growth. (2) The effect of estrogen of growth is most marked in the absence of nitrogen. (3) Estrone is more effective in increasing growth than 17 β-estradiol. (4) In the plants where estrogen induced growth there was no significant increase in nitrogen fixation activity and nodule number. (5) Endogenous estrogen content of the plant did not increase at concentrations (0.005-0.5 μg 1−1) which increased vegetative growth. (6) Endogenous estrogen content of the plant did increase at concentrations of estrogen (50-500 μg 1−1 which inhibited vegetative growth and nodule weight. It can be concluded that estrogen in concentrations found in sewage water (0.3 μg estrogen 1−1) can affect the vegetative growth of alfalfa plants.  相似文献   

10.
Enzyme activities involved in nitrate assimilation were analyzed from crude leaf extracts of wild-type (cv. Williams) and mutant ( nr1 ) soybean [ Glycine max (L.) Merr.] plants lacking constitutive nitrate reductase (NR) activity. The nr1 soybean mutant (formerly LNR-2), had decreased NADH-NR, FMNH2-NR and cytochrome c reductase activities, all of which were associated with the loss of constitutive NR activity. Measurement of FMNH2-NR activity, by nitrite determination, was accurate since nitrite reductase could not use FMNH2 as a reductant source. Nitrite reductase activity was normal in the nr1 plant type in the presence of reduced methyl viologen. Assuming that constitutive NR is similar in structure to nitrate reductases from other plants, presence of xanthine dehydrogenase activity and loss of cytochrome c reductase activity indicated that the apoprotein and not the molybdenum cofactor had been affected in the constitutive enzyme of the mutant. Constitutive NR from urea-grown wild-type plants had 1) greater ability to use FMNH2 as an electron donor, 2) a lower pH optimum, and 3) decreased ability to distinguish between NO3 and HCO3, compared with inducible NR from NO3-grown nr1 plants. The presence in soybean leaves of a nitrate reductase with a pH optimum of 7.5 is contrary to previous reports and indicates that soybean is not an exception among higher plants for this activity.  相似文献   

11.
12.
In vivo nitrate reductase (NR, EC 1.6.6.1.) activity was measured in leaves, branches and trunk of field-grown Alnus glutinosa (L.) Gaertn. All of the assayed tissues enzymatically reduced nitrate with a decreasing activity [μmol NO2 (g dry weight)−1 h−1] in the order: leaves > branch bark > inner branch tissues > trunk xylem. The NR activity of the various tissues of excised branches was inhibited by tungstate added to the transpiration stream. Part of the nitrate added to the feeding solution (0.2, 0.5 or 1 m M KNO3) of excised branches disappeared during its transport via the transpiration stream in the perennial tissues. This disappearance was enzymatic since it was decreased by tungstate.
No evidence was obtained for the presence of nitrate in natural xylem sap nor for a significant correlation between nitrate content of soil and leaf NR activity. These results indicate that in the field-grown black alder, the nitrate not reduced in the roots could be reduced in the perennial tissues of aerial parts. Since the leaf NR activity does not reflect the actual in situ nitrate reduction, the existence of a constitutive NR activity in Alnus leaves is suggested.  相似文献   

13.
Occurrence and activity of the hydrogen uptake enzyme were studied in root nodule homogenates made from plants of Alnus incana (L.) Moench collected from field sites in the northern part of Sweden. Nitrogenase (EC 1.7.99.2) activity (estimated by acetylene reduction) and hydrogen evolution were studied in excised nodules. All Frankia sources showed acetylene reduction activity, and possessed a hydrogen uptake system. Hydrogen uptake in nodule homogenates from the Frankia sources measured at 23.8 μM H2 ranged from 0.04 to 5.0 μmol H2 (g fresh weight nodule)−1 h−1. The H2 uptake capacity of nodule homogenates from one of the Frankia sources was almost 8 times higher than the hydrogen evolution from nitrogenase, both expressed on a nodule fresh weight basis. Frankia sources from field sites 6 and 11 showed Km for H2 of 13.0 and 23.6 μM H2, respectively. This indicates similarities in the hydrogen uptake enzymes in the two Frankia sources. It is concluded that hydrogen uptake is a common characteristic in Frankia.  相似文献   

14.
Spinach plants ( Spinacia oleracea L. cv. Subito) were grown in a complete nutrient solution under ample light intensity (14 h day−1 at 660 μmol m−2 s−1) before being transferred either to a minus-N solution (experiment 1), or to limiting light conditions (6 h day−1 at 220 μmol m−2 s−1; experiment 2). Shoot growth in experiment 1 decreased significantly from 0.24 day−1 to 0.07 day−1 after the fourth day of transfer. Root relative growth rate increased after 1 day from 0.25 to 0.31 day−1, but decreased on the fifth day after transfer to 0.11 day−1. Shoot growth in experiment 2 decreased significantly from 0.25 to 0.17 day−1 after the fourth day of transfer, while root growth decreased to half of its original level (0.25 day−1) already on the second day. Growth substrate levels in the plants (free sugars, free amino acids) and starch levels depended on the plant age, the moment in the diurnal cycle, and the imposed treatment. Fluctuations in shoot growth or root growth resulting from the light or N limitation could not be explained by a correspondent increase or decrease in the levels of growth substrates. The hypotheses underlying the functional equilibrium theory, assuming shoot and root growth to be controlled by N- and C-containing substrates respectively, and several other growth and partitioning models are therefore questioned. A neglect of the osmotic role of the free sugars in these models might be the explanation for this.  相似文献   

15.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

16.
Purification and characterization of soybean nodule nitrite reductase   总被引:1,自引:0,他引:1  
A nodule cytosol nitrite reductase was isolated from soybean [ Glyine max (L.) Mer. cv. Tracy] grown in the presence of nitrate. Enzyme activity increased when increased amounts of nitrate were supplied to the plant. A purification procedure involving ammonium sulfate precipitation, gel filtration, DEAE Sephadex and Blue Sepharose chromatography resulted in an activity capable of forming 6.7 μmol ammonia (mg protein)−1 min−1. This represented a 235-fold increase in specific activity. The molecular weight, estimated by gel filtration, was 55 000. The pH optimum for activity was 7.1. Ammonia formed stoichiometrically as nitrice was consumed. From Lineweaver-Burk plots, Km values of 0.5m M for nitrite and 0.2m M for methyl viologen were calculated. Spectral data suggest the association of a heme chromophore with the enzyme.  相似文献   

17.
The nitrate reductase (NR, EC 1.6.6.1) activity in root nodules formed by hydrogenase positive (Hup+) and hydrogenase negative (Hup) Rhizobium leguminosarum strains was examined in symbioses with the pea cultivar Alaska ( Pisum sativum L.), Rates of activity were determined by the in vivo assay in nodules from plants that were only N2-dependent or grown in the presence of 2 m M KNO3. The rates varied widely among strains, regardless of the Hup phenotype of the R. leguminosarum strain used for inoculation, but the overall results indicated that nodules formed by Hup strains accumulated more nitrite in the incubation medium than did those with Hup phenotypes. Total plant dry weight and reduced nitrogen content of pea plants grown in the presence of 2 m M KNO3 and inoculated with single Hup+ and Hup R. leguminosarum strains were statistically different among some strains. These observations suggest that the possible advantages derived from the presence of the Hup system on whole plant growth may be counteracted by the higher rates of NR activity in the Hup strains in the R. leguminosarum -pea symbiosis.  相似文献   

18.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   

19.
Oxygen consumption rates during embryonic and the first 38 days of larval development of the striped mullet were measured at 24° C by differential respirometry. Measurements were obtained at the blastula, gastrula and four embryonic stages, and at the yolk-sac, preflexion, flexion and post-flexion larval stages.
Oxygen uptake rates of eggs increased linearly from 0.024 μl O2 per egg h-1 (0·323 μl O2 mg-1 dry wt h-1) by blastulae to 0·177 μlO2 per egg h-1 (2·516 μlO2mg 1dry wth-1) by embryos prior to hatching. Respiration rates did not vary significantly among four salinities (20,25, 30, 35%0).
Larval oxygen consumption increased in a curvilinear manner from 0·243 μl O2 per larva h-1 shortly after hatching to 18·880 μl O2 per larva h-1 on day 38. Oxygen consumption varied in direct proportion to dry weight. Mass-specific oxygen consumption rates of preflexion, flexion, and postflexion larvae did not change with age (10·838 μl O2 mg 1dry wt h-1).
Larval oxygen consumption rates did not vary significantly among salinities 10–35%. Acute temperature increases elicited significant increases in oxygen consumption, these being relatively greater in yolk-sac larvae ( Q10 = 2·75) than in postflexion larvae ( Q10 = 1·40).  相似文献   

20.
Soybean [ Glycine max (L.) Merr. cv. Hobbit] plants nodulated by Bradyhizobium japonicum strain USDA 110 were grown in pot cultures in severely P- and N-deficient soil and either colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or fertilized with a high (HP) or low (LP) level of KH2PO4 (0.6 or 0.3 m M , respectively), After 7 weeks of growth, nodule and chloroplast activities (C2H2 reduction and CO2 exchange rate) were determined. Photosynthetic P-use efficiency of CO2 fixation was significantly higher in VAM than in HP plants, while that of nitrogenase activity was lower. The LP plants were intermediate in both respects. The ratio of nodule to chloroplast activity [mol C2H2 reduced (mol CO2 fixed)−1] was highest in HP and lowest in VAM plants. Root colonization by the VAM fungus significantly increased nodule number and dry weight and reduced nodule specific mass and activity in comparison to HP plants. In spite of lower nodule activity, VAM plants were significantly larger and had higher N concentrations than the HP plants. The results suggest nonnutritional. VAM-elicited and host-mediated effects on the symbiotic functions of the legume association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号