首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High‐copy transposons have been effectively exploited as mutagens in a variety of organisms. However, their utility for phenotype‐driven forward genetics has been hampered by the difficulty of identifying the specific insertions responsible for phenotypes of interest. We describe a new method that can substantially increase the throughput of linking a disrupted gene to a known phenotype in high‐copy Mutator (Mu) transposon lines in maize. The approach uses the Illumina platform to obtain sequences flanking Mu elements in pooled, bar‐coded DNA samples. Insertion sites are compared among individuals of suitable genotype to identify those that are linked to the mutation of interest. DNA is prepared for sequencing by mechanical shearing, adapter ligation, and selection of DNA fragments harboring Mu flanking sequences by hybridization to a biotinylated oligonucleotide corresponding to the Mu terminal inverted repeat. This method yields dense clusters of sequence reads that tile approximately 400 bp flanking each side of each heritable insertion. The utility of the approach is demonstrated by identifying the causal insertions in four genes whose disruption blocks chloroplast biogenesis at various steps: thylakoid protein targeting (cpSecE), chloroplast gene expression (polynucleotide phosphorylase and PTAC12), and prosthetic group attachment (HCF208/CCB2). This method adds to the tools available for phenotype‐driven Mu tagging in maize, and could be adapted for use with other high‐copy transposons. A by‐product of the approach is the identification of numerous heritable insertions that are unrelated to the targeted phenotype, which can contribute to community insertion resources.  相似文献   

2.
Steady-state transposon mutagenesis in inbred maize   总被引:8,自引:0,他引:8  
We implement a novel strategy for harnessing the power of high-copy transposons for functional analysis of the maize genome, and report behavioral features of the Mutator system in a uniform inbred background. The unique UniformMu population and database facilitate high-throughput molecular analysis of Mu-tagged mutants and gene knockouts. Key features of the population include: (i) high mutation frequencies (7% independent seed mutations) and moderation of copy number (approximately 57 total Mu elements; 1-2 MuDR copies per plant) were maintained by continuous back-crossing into a phenotypically uniform inbred background; (ii) a bz1-mum9 marker enabled selection of stable lines (loss of MuDR), inhibiting further transpositions in lines selected for molecular analysis; (iii) build-up of mutation load was prevented by screening Mu-active parents to exclude plants carrying pre-existing seed mutations. To create a database of genomic sequences flanking Mu insertions, selected mutant lines were analyzed by sequencing of MuTAIL PCR clone libraries. These sequences were annotated and clustered to facilitate bioinformatic subtraction of ancestral elements and identification of insertions unique to mutant lines. New insertions targeted low-copy, gene-rich sequences, and in silico mapping revealed a random distribution of insertions over the genome. Our results indicate that Mu populations differ markedly in the occurrence of Mu insertion hotspots and the frequency of suppressible mutations. We suggest that controlled MuDR copy number in UniformMu lines is a key determinant of these differences. The public database (http://uniformmu.org; http://endosperm.info) includes pedigree and phenotypic data for over 2000 independent seed mutants selected from a population of 31 548 F2 lines and integrated with analyses of 34 255 MuTAIL sequences.  相似文献   

3.
4.
Transposable elements have been utilized as mutagens to create mutant libraries for functional genomics.Isolation of genomic seg-ments flanking the insertion Mutator (Mu) is a key step in insertion mutagenesis studies.Herein,we adopted a modified AFLP method to identify and isolate Mu-flanking fragments from maize.The method consists of the following steps: 1) double-digestion of genomic DNA with Bgl ⅡMsp Ⅰ and ligation of digested fragments to the Bgl Ⅱ- and Msp Ⅰ-adaptors; 2) enrichment of a subset of Bgl Ⅱ/Msp Ⅰ fragments followed by selective amplification of the Mu-flanking fragments; 3) simultaneous display of AFLP bands derived from the flanking re-gions for both insert and native Mu transposons; 4) identification and isolation of AFLP bands resulting from Mu insertions by comparing the banding profiles between Mu-induced mutants and their parental lines; and 5) confirmation of flanking fragments related to these Mu insertions.Using this approach,we have isolated flanking fragment(s) resulting from Mu insertion for every Mu-indueed mutant,and one such fragment,M196-FF,is found to contain a partial sequence of the DNA topoisomerase Ⅰ gene Topl.Moreover,the modified AFLP method including all restriction enzymes,adaptors and primers has been optimized in this study.The modified AFLP method has been proved to be simple and efficient in the isolation of Mu-flanking fragments and will find its usefulness in the functional genomics of maize.  相似文献   

5.
Mutator转座子及MULE在植物基因与基因组进化中的作用   总被引:2,自引:0,他引:2  
Mutator(Mu)转座子是植物中已发现的转座最活跃的转座子,其高的转座频率及趋向于单拷贝功能基因转座的特性,使该转座子成为玉米功能基因克隆的主要方法.Mu转座子的同源类似因子广泛存在于被子植物基因组中,而且同一基因组中往往具有多种变异类型.它不仅具有其他DNA转座子在基因和基因组进化中的普遍作用,而且具有能够承载基因组内功能基因和基因片段的载体功能,这种载体Mu转座子(Pack-MuLEs)能够在基因组内移动众多的基因片段,从而对基因和基因组进化产生作用.Mu转座子的同源序列发生在水稻与狗尾草之间的水平转移提供了高等植物核基因水平转移的首个例证.对Mu转座子的了解促进了我们对动态基因组概念的认识.文章对Mutator转座子的发现、转座特征、基因标签应用等的研究进展进行了综述,对Mu转座子家族的同源序列进行了分类,讨论了该转座子在基因组进化中的作用,分析了应加强研究的问题.  相似文献   

6.
Insertional mutagenesis is a cornerstone of functional genomics. High-copy transposable element systems such as Mutator ( Mu ) in maize ( Zea mays ) afford the advantage of high forward mutation rates but pose a challenge for identifying the particular element responsible for a given mutation. Several large mutant collections have been generated in Mu -active genetic stocks, but current methods limit the ability to rapidly identify the causal Mu insertions. Here we present a method to rapidly assay Mu insertions that are genetically linked to a mutation of interest. The method combines elements of MuTAIL (thermal asymmetrically interlaced) and amplification of insertion mutagenized sites (AIMS) protocols and is applicable to the analysis of single mutants or to high-throughput analyses of mutant collections. Briefly, genomic DNA is digested with a restriction enzyme and adapters are ligated. Polymerase chain reaction is performed with TAIL cycling parameters, using a fluorescently labeled Mu primer, which results in the preferential amplification and labeling of Mu -containing genomic fragments. Products from a segregating line are analyzed on a capillary sequencer. To recover a fragment of interest, PCR products are cloned and sequenced. Sequences with lengths matching the size of a band that co-segregates with the mutant phenotype represent candidate linked insertion sites, which are then confirmed by PCR. We demonstrate the utility of the method by identifying Mu insertion sites linked to seed-lethal mutations with a preliminary success rate of nearly 50%.  相似文献   

7.
8.
9.
10.
11.
马燕  邓炜  田惠桥 《广西植物》2011,31(3):338-341
芒果花药发育中,花药药壁体细胞中淀粉粒多糖和脂滴类物质一直很少,仅药室内壁细胞中有零星淀粉粒分布.到二胞花粉早期,花粉营养细胞中的大液泡消失,开始积累淀粉粒.芒果成熟花粉中储存营养物质主要是淀粉粒,而脂类物质一直很少.  相似文献   

12.
13.
The objective of this study was to determine the effect of short-term (4 days) and long-term (8 days) heat stress (35°C) on sink activity of maize (Zea mays L.) kernels. Beginning at 3 days after pollination (DAP) kernels were grown in vitro at 25°C and 24 h later were transferred to 35°C for either 4 or 8 days. Each treatment had a control that was maintained continously at 25°C. Two experiments were designed to examine the uptake and distribution of 14C among hexoses, sucrose and starch in the pedicel placento-chalazal (pedicel/p-c). endosperm, and pericarp tissues of kernels exposed to heat stress for 4 or 8 days. Kernels cultured in vitro were placed in 14C-sucrose medium either during the period of heat stress (experiment 1; 5 to 13 DAP) or immediately following heat-stress treatments (experiment 2; 10 to 22 DAP). In both experiments no significant effect of heat stress was observed on the total radioactivity accumulated in the kernels until about 17 DAP, after which heat-stressed kernels accumulated less 14C than the control. During the linear fill period, the endosperm of kernels exposed to heat stress accumulated more radioactivity associated with hexoses and sucrose and less radioactivity incorporated into starch, as compared to the control. Kernels heat stressed for 4 days showed a partial recovery in starch synthesis by 21 DAP, but to levels of only 65% of that of the control. Kernels heat stressed for 8 days did not recover. When 14C-sucrose was supplied during the heat stress period (5–13 DAP). kernels from all treatments accumulated more hexoses that sucrose in the pedicel/p-c. However, during the period following heat stress (10–22 DAP), pedicel/p-c accumulated sucrose, but only in kernels exposed to long-term heat stress. Soluble invertase activity was inhibited by both short-term and long-term heat stress, whereas the activity of insoluble invertase was affected only by long-term heat stress. These results support the hypothesis that the disruption of kernel growth and more particularly endosperm starch biosynthesis, in response to heat stress, is mainly associated with changes in carbon utilization and partitioning between the different nonstructural carbohydrates within the endosperm rather than with a limitation in carbon supply to the kernel. Therefore, the effect on sink activity does not seem to be attributable to a thermal disruption of kernel uptake of sugars, but rather it is a consequence of heat perturbation of other physiological processes such as endosperm sugar metabolism and starch biosynthesis.  相似文献   

14.
15.
A cold pretreatment is usually applied to induce maize androgenesis. Peroxidase activity, including indole-3-acetic acid (IAA) oxidase activity, and endogenous IAA concentrations were followed during a cold pretreatment (14 days, 7°C) in anthers of two maize genotypes, Seneca 60 and DH5×DH7, respectively with a low or high androgenetic response. The most prominent result was the absence of a detectable IAA oxidase activity in DH5×DH7. Adding effectors of IAA-oxidase activity or IAA transport did not affect significantly the crude peroxidase activity of DH5×DH7 anthers while inducing a clear inhibition of androgenesis at higher concentrations. No strict correlation was found between IAA level and physiological response, the low responding variety having as much IAA as DH5×DH7. However, for DH5×DH7, every treatment that lowered the IAA level after 14 days of cold resulted in a decrease in androgenetic response.  相似文献   

16.
The histochemical localization of ascorbic acid and RNA was studied during developmental stages ofDatura anthers. The concentration of ascorbic acid and RNA was high in primary parietal and primary sporogenous layers, sporogenous cells and pollen grains. The connective of young anther showed remarkably high concentration of ascorbic acid. The high peaks of ascorbic acid and RNA concentration correlated with the growth phases of anther. The connective and anther wall layers act as reservoirs of energy needed for developing sporogenous cells.  相似文献   

17.
18.
玉米早期花药蛋白质组和磷酸化蛋白质组分析   总被引:1,自引:0,他引:1  
蛋白质磷酸化修饰是调控其功能的一种重要方式。植物有性生殖过程在农作物产量形成和物种繁衍过程中起着重要作用。作为植物雄性生殖器官的花药,其正常生长发育对于保证形成功能性配子(花粉)以及完成双受精过程至关重要。本研究以重要农作物玉米(B73)为材料,利用Nano UHPLC-MS/MS质谱技术对玉米早期发育的花药在蛋白质组和磷酸化蛋白质组水平进行全面分析,以探究玉米花药发育过程中的蛋白调控网络和磷酸化修饰调控网络。在蛋白质组学分析中,共鉴定到了3 016个多肽,匹配到1 032个蛋白质上。通过Map Man分析,预测到了一些和花药发育相关的蛋白质,例如受体激酶(GRMZM2G082823_P01、GRMZM5G805485_P01等)。另外,在磷酸化蛋白质组学研究中,通过对Ti O2亲和层析富集到的磷酸化多肽进行质谱分析,检测到了257个磷酸化多肽,匹配到210个蛋白质上。我们的数据揭示了玉米花药发育过程中的223个磷酸化位点。与已发现的玉米中的86个磷酸化蛋白质(植物蛋白磷酸化数据库(P3DB):http://www.p3db.org/organism.php)相比,其中203个磷酸化蛋白和218个磷酸化位点为首次揭示。进一步生物信息学分析表明:磷酸化在14-3-3蛋白质、激酶、磷酸酶、转录因子、细胞周期和染色质结构相关的蛋白质介导的玉米早期花药发育过程中起着重要的调控作用。总之,本研究首次在蛋白质组学和磷酸化蛋白质组学水平研究了玉米早期花药发育的蛋白质调控网络,不仅丰富了玉米蛋白质和磷酸化修饰蛋白质数据库,并为利用遗传学和生物化学手段深入研究玉米花药发育的分子调控机理提供了基础。  相似文献   

19.
To understand the molecular events that occur during reproductive organ development and to provide genetic resources for molecular breeding, we generated 328 expressed sequence tags (ESTs) from randomly selected clones of four watermelon cDNA libraries. These libraries were prepared from young and mature anthers, as well as the seed coat and inner seed tissues. EST clones found in the young anthers and inner seed tissues showed similarity with genes related to development and signal transduction. We could deduce that, especially in the developing inner seed tissues, important morphological processes were associated exclusively with seed and embryo development In addition, seed metabolism was tailored toward the accumulation of economically valuable storage compounds such as lipids. In the seed coat, EST clones showed similarity with genes that influence the transport or conversion of nutrients such as porin, sucrose synthase, L-asparaginase, and arginine decarboxylase. We also selected two cDNA clones from each of the four classes of ESTs for studying expression levels and patterns in the various organs. Among those eight clones, three (An88, Is124, and Sc68) were expressed preferentially in their particular organ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号