首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers-polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.  相似文献   

2.
Three phenylacyl-CoA ligase activities were detected in extracts of Pseudomonas putida CA-3 cells grown with a variety of aromatic carboxylic acids. The three phenylacyl-CoA enzyme activities measured were phenylpropyl-CoA ligase (acting on both phenylpropanoic acid and cinnamic acid), a phenylacetyl-CoA ligase, and a medium chain length phenylalkanoyl-CoA ligase acting on aromatic substrates with 5 or more carbons in the acyl moiety. The rate of each enzyme activity detected in extracts of P. putida CA-3 cells is dependent on the growth substrate supplied. High rates of phenylpropyl-CoA ligase activity were observed with extracts of cells grown on phenylpropanoic acid, cinnamic acid or medium chain length phenylalkanoic acids with an uneven number of carbons in the acyl moiety. Extracts of P. putida CA-3 cells exhibited high rates of phenylacetyl-CoA ligase activity when grown on phenylacetic acid or medium chain length phenylalkanoic acids with an even number of carbons in the acyl moiety. In addition, high rates of medium chain length phenylalkanoyl-CoA ligase activity, towards phenylvaleric acid and phenylhexanoic acid, were exhibited by extracts of cells grown on all medium chain length phenylalkanoic acids. Low levels of the various phenylacyl-CoA ligase activities were found in extracts of cells grown on benzoic acid and glucose. Benzoyl-CoA ligase activity was not detected in any cell free extracts generated in this study.  相似文献   

3.
Pseudomonas putida CA-3 has been shown to accumulate the biodegradable plastic polyhydroxyalkanoate (PHA) when fed styrene or polystyrene pyrolysis oil as the sole carbon and energy source under nitrogen limiting growth conditions (67 mg nitrogen per litre at time 0). Batch fermentation of P. putida CA-3 grown on styrene or polystyrene pyrolysis oil in a stirred tank reactor yields PHA at 30% of the cell dry weight (CDW). The feeding of nitrogen at a rate of 1mg N/l/h resulted in a 1.1-fold increase in the percentage of CDW accumulated as PHA. An increase in the rate of nitrogen feeding up to 1.5mg N/l/h resulted in further increases in the percentage of the cell dry weight composed of PHA. However, feeding rates of 1.75 and 2mg N/l/h resulted in dramatic decreases in the percentage of cell dry weight composed of PHA. Interestingly nitrogen was not detectable in the growth medium after 16 h, in any of the growth conditions tested. A higher cell density was observed in cells supplied with nitrogen and thus further increases in the overall production of PHA were observed through nitrogen feeding. The highest yield of PHA was 0.28 g PHA per g styrene supplied with a nitrogen feeding rate of 1.5mg/l/h.  相似文献   

4.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas putida KT2442 during growth on carbohydrates was studied. PHAs isolated from P. putida cultivated on glucose, fructose, and glycerol were found to have a very similar monomer composition. In addition to the major constituent 3-hydroxydecanoate, six other monomers were found to be present: 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydodecanoate, 3-hydroxydodecenoate, 3-hydroxytetradecanoate, and 3-hydroxytetradecenoate. The identity of all seven 3-hydroxy fatty acids was established by gas chromatography-mass spectrometry, one-dimensional 1H-nuclear magnetic resonance, and two-dimensional double-quantum filtered correlation spectroscopy 1H-nuclear magnetic resonance. The chemical structures of the monomer units are identical to the structure of the acyl moiety of the 3-hydroxyacyl-acyl carrier protein intermediates of de novo fatty acid biosynthesis. Furthermore, the degree of unsaturation of PHA and membrane lipids is similarly influenced by shifts in the cultivation temperature. These results strongly indicate that, during growth on nonrelated substrates, PHA monomers are derived from intermediates of de novo fatty acid biosynthesis. Analysis of a P. putida pha mutant and complementation of this mutant with the cloned pha locus revealed that the PHA polymerase genes necessary for PHA synthesis from octanoate are also responsible for PHA formation from glucose.  相似文献   

5.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas putida KT2442 during growth on carbohydrates was studied. PHAs isolated from P. putida cultivated on glucose, fructose, and glycerol were found to have a very similar monomer composition. In addition to the major constituent 3-hydroxydecanoate, six other monomers were found to be present: 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydodecanoate, 3-hydroxydodecenoate, 3-hydroxytetradecanoate, and 3-hydroxytetradecenoate. The identity of all seven 3-hydroxy fatty acids was established by gas chromatography-mass spectrometry, one-dimensional 1H-nuclear magnetic resonance, and two-dimensional double-quantum filtered correlation spectroscopy 1H-nuclear magnetic resonance. The chemical structures of the monomer units are identical to the structure of the acyl moiety of the 3-hydroxyacyl-acyl carrier protein intermediates of de novo fatty acid biosynthesis. Furthermore, the degree of unsaturation of PHA and membrane lipids is similarly influenced by shifts in the cultivation temperature. These results strongly indicate that, during growth on nonrelated substrates, PHA monomers are derived from intermediates of de novo fatty acid biosynthesis. Analysis of a P. putida pha mutant and complementation of this mutant with the cloned pha locus revealed that the PHA polymerase genes necessary for PHA synthesis from octanoate are also responsible for PHA formation from glucose.  相似文献   

6.
Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by a wide range of bacteria, including Pseudomonads. These polymers are accumulated in the cytoplasm as carbon and energy storage materials when culture conditions are unbalanced and hence, they have been classically considered to act as sinks for carbon and reducing equivalents when nutrients are limited. Bacteria facing carbon excess and nutrient limitation store the extra carbon as PHAs through the PHA polymerase (PhaC). Thereafter, under starvation conditions, PHA depolymerase (PhaZ) degrades PHA and releases R -hydroxyalkanoic acids, which can be used as carbon and energy sources. To study the influence of a deficient PHA metabolism in the growth of Pseudomonas putida KT2442 we have constructed two mutant strains defective in PHA polymerase ( phaC1 )- and PHA depolymerase ( phaZ )-coding genes respectively. By using these mutants we have demonstrated that PHAs play a fundamental role in balancing the stored carbon/biomass/number of cells as function of carbon availability, suggesting that PHA metabolism allows P. putida to adapt the carbon flux of hydroxyacyl-CoAs to cellular demand. Furthermore, we have established that the coordination of PHA synthesis and mobilization pathways configures a functional PHA turnover cycle in P. putida KT2442. Finally, a new strain able to secrete enantiomerically pure R -hydroxyalkanoic acids to the culture medium during cell growth has been engineering by redirecting the PHA cycle to biopolymer hydrolysis.  相似文献   

7.
Sodium terephthalate (TA) produced from a PET pyrolysis product and waste glycerol (WG) from biodiesel manufacture were supplied to Pseudomonas putida GO16 in a fed-batch bioreactor. Six feeding strategies were employed by altering the sequence of TA and WG feeding. P. putida GO16 reached 8.70 g/l cell dry weight (CDW) and 2.61 g/l PHA in 48 h when grown on TA alone. When TA and WG were supplied in combination, biomass productivity (g/l/h) was increased between 1.3- and 1.7-fold and PHA productivity (g/l/h) was increased 1.8- to 2.2-fold compared to TA supplied alone. The monomer composition of the PHA accumulated from TA or WG was predominantly composed of 3-hydroxydecanoic acid. PHA monomers 3-hydroxytetradeeanoic acid and 3-hydroxytetradecenoic acid were not present in PHA accumulated from TA alone but were present when WG was supplied to the fermentation. When WG was either the sole carbon source or the predominant carbon source supplied to the fermentation the molecular weight of PHA accumulated was lower compared to PHA accumulated when TA was supplied as the sole substrate. Despite similarities in data for the properties of the polymers, PHAs produced with WG present in the PHA accumulation phase were tacky while PHA produced where TA was the sole carbon substrate in the polymer accumulation phase exhibited little or no tackiness at room temperature. The co-feeding of WG to fermentations allows for increased utilisation of TA. The order of feeding of WG and TA has an effect on TA utilisation and polymer properties.  相似文献   

8.
The formation of poly(3-hydroxyalkanoates) (PHAs) in Pseudomonas putida KT2442 from various carbon sources was studied by 13C nuclear magnetic resonance spectroscopy, gas chromatography, and gas chromatography-mass spectroscopy. By using [1-13C]decanoate, the relation between beta-oxidation and PHA formation was confirmed. The labeling pattern in PHAs synthesized from [1-13C]acetate corresponded to the formation of PHAs via de novo fatty acid biosynthesis. Studies with specific inhibitors of the fatty acid metabolic pathways demonstrated that beta-oxidation and de novo fatty acid biosynthesis function independently in PHA formation. Analysis of PHAs derived from [1-13C]hexanoate showed that both fatty acid metabolic routes can function simultaneously in the synthesis of PHA. Furthermore, evidence is presented that during growth on medium-chain-length fatty acids, PHA precursors can be generated by elongation of these fatty acids with an acetyl coenzyme A molecule, presumably by a reverse action of 3-ketothiolase.  相似文献   

9.
Polyhydroxyalkanoates (PHAs) are biopolyesters that generally consist of 3-, 4-, 5-, and 6-hydroxycarboxylic acids, which are accumulated as carbon and energy storage materials in many bacteria in limited growth conditions with excess carbon sources. Due to the diverse substrate specificities of PHA synthases, the key enzymes for PHA biosynthesis, PHAs with different material properties have been synthesized by incorporating different monomer components with differing compositions. Also, engineering PHA synthases using in vitro-directed evolution and site-directed mutagenesis facilitates the synthesis of PHA copolymers with novel material properties by broadening the spectrum of monomers available for PHA biosynthesis. Based on the understanding of metabolism of PHA biosynthesis, recombinant bacteria have been engineered to produce different types of PHAs by expressing heterologous PHA biosynthesis genes, and by creating and enhancing the metabolic pathways to efficiently generate precursors for PHA monomers. Recently, the PHA biosynthesis system has been expanded to produce unnatural biopolyesters containing 2-hydroxyacid monomers such as glycolate, lactate, and 2-hydroxybutyrate by employing natural and engineered PHA synthases. Using this system, polylactic acid (PLA), one of the major commercially-available bioplastics, can be synthesized from renewable resources by direct fermentation of recombinant bacteria. In this review, we discuss recent advances in the development of the PHA biosynthesis system as a platform for tailor-made polyesters with novel material properties.  相似文献   

10.
Pseudomonas putida CA-3 is capable of converting the aromatic hydrocarbon styrene, its metabolite phenylacetic acid, and glucose into polyhydroxyalkanoate (PHA) when a limiting concentration of nitrogen (as sodium ammonium phosphate) is supplied to the growth medium. PHA accumulation occurs to a low level when the nitrogen concentration drops below 26.8 mg/liter and increases rapidly once the nitrogen is no longer detectable in the growth medium. The depletion of nitrogen and the onset of PHA accumulation coincided with a decrease in the rate of substrate utilization and biochemical activity of whole cells grown on styrene, phenylacetic acid, and glucose. However, the efficiency of carbon conversion to PHA dramatically increased once the nitrogen concentration dropped below 26.8 mg/liter in the growth medium. When supplied with 67 mg of nitrogen/liter, the carbon-to-nitrogen (C:N) ratios that result in a maximum yield of PHA (grams of PHA per gram of carbon) for styrene, phenylacetic acid, and glucose are 28:1, 21:1, and 18:1, respectively. In cells grown on styrene and phenylacetic acid, decreasing the carbon-to-nitrogen ratio below 28:1 and 21:1, respectively, by increasing the nitrogen concentration and using a fixed carbon concentration leads to lower levels of PHA per cell and lower levels of PHA per batch of cells. Increasing the carbon-to-nitrogen ratio above 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, by decreasing the nitrogen concentration and using a fixed carbon concentration increases the level of PHA per cell but results in a lower level of PHA per batch of cells. Increasing the carbon and nitrogen concentrations but maintaining the carbon-to-nitrogen ratio of 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, results in an increase in the total PHA per batch of cells. The maximum yields for PHA from styrene, phenylacetic acid, and glucose are 0.11, 0.17, and 0.22 g of PHA per g of carbon, respectively.  相似文献   

11.
An efficient method to prepare enantiomerically pure (R)-3-hydroxycarboxylic acids from bacterial polyhydroxyalkanoates (PHAs) accumulated by Pseudomonas putida GPo1 is reported in this study. (R)-3-Hydroxycarboxylic acids from whole cells were obtained when conditions were provided to promote in vivo depolymerization of intracellular PHA. The monomers were secreted into the extracellular environment. They were separated and purified by acidic precipitation, preparative reversed-phase column chromatography, and subsequent solvent extraction. Eight (R)-3-hydroxycarboxylic acids were isolated: (R)-3-hydroxyoctanoic acid, (R)-3-hydroxyhexanoic acid, (R)-3-hydroxy-10-undecenoic acid, (R)-3-hydroxy-8-nonenoic acid, (R)-3-hydroxy-6-heptenoic acid, (R)-3-hydroxyundecanoic acid, (R)-3-hydroxynonanoic acid, and (R)-3-hydroxyheptanoic acid. The overall yield based on released monomers was around 78 wt % for (R)-3-hydroxyoctanoic acid. All obtained monomers had a purity of over 95 wt %. The physical properties of the purified monomers and their antimicrobial activities were also investigated.  相似文献   

12.
Five Pseudomonas strains capable of growth with the aromatic carboxylic acid phenylacetic acid were investigated with a view to improving PHA accumulation. The overexpression of (R)-3-hydroxyacyl-ACP-CoA transferase (PhaG) from Pseudomonas putida CA-3 increased PHA accumulation in only one of the five strains tested, namely Pseudomonas jessenii C8. Recombinant P. jessenii C8 harbouring the phaG gene showed a 4.1-fold increase (9.6-39% cell dry weight) in PHA accumulation when grown on phenylacetic acid (15 mM) compared with the wild-type strain. This is the highest reported level of PHA accumulation from phenylacetic acid. This is also the first time the heterologous expression of phaG has resulted in improved PHA accumulation from an aromatic carbon source. The growth patterns of the wild type and recombinant strains were very similar, with no significant differences observed in carbon and nitrogen utilization.  相似文献   

13.
Pseudomonas putida CA-3 is capable of accumulating medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when growing on the toxic pollutant styrene as the sole source of carbon and energy. In this study, we report on the molecular characterization of the metabolic pathways involved in this novel bioconversion. With a mini-Tn5 random mutagenesis approach, acetyl-coenzyme A (CoA) was identified as the end product of styrene metabolism in P. putida CA-3. Amplified flanking-region PCR was used to clone functionally expressed phenylacetyl-CoA catabolon genes upstream from the sty operon in P. putida CA-3, previously reported to generate acetyl-CoA moieties from the styrene catabolic intermediate, phenylacetyl-CoA. However, the essential involvement of a (non-phenylacetyl-CoA) catabolon-encoded 3-hydroxyacyl-CoA dehydrogenase is also reported. The link between de novo fatty acid synthesis and PHA monomer accumulation was investigated, and a functionally expressed 3-hydroxyacyl-acyl carrier protein-CoA transacylase (phaG) gene in P. putida CA-3 was identified. The deduced PhaG amino acid sequence shared >99% identity with a transacylase from P. putida KT2440, involved in 3-hydroxyacyl-CoA MCL-PHA monomer sequestration from de novo fatty acid synthesis under inorganic nutrient-limited conditions. Similarly, with P. putida CA-3, maximal phaG expression was observed only under nitrogen limitation, with concomitant PHA accumulation. Thus, beta-oxidation and fatty acid de novo synthesis appear to converge in the generation of MCL-PHA monomers from styrene in P. putida CA-3. Cloning and functional characterization of the pha locus, responsible for PHA polymerization/depolymerization is also reported and the significance and future prospects of this novel bioconversion are discussed.  相似文献   

14.
Pseudomonas putida CA-3 is capable of converting the aromatic hydrocarbon styrene, its metabolite phenylacetic acid, and glucose into polyhydroxyalkanoate (PHA) when a limiting concentration of nitrogen (as sodium ammonium phosphate) is supplied to the growth medium. PHA accumulation occurs to a low level when the nitrogen concentration drops below 26.8 mg/liter and increases rapidly once the nitrogen is no longer detectable in the growth medium. The depletion of nitrogen and the onset of PHA accumulation coincided with a decrease in the rate of substrate utilization and biochemical activity of whole cells grown on styrene, phenylacetic acid, and glucose. However, the efficiency of carbon conversion to PHA dramatically increased once the nitrogen concentration dropped below 26.8 mg/liter in the growth medium. When supplied with 67 mg of nitrogen/liter, the carbon-to-nitrogen (C:N) ratios that result in a maximum yield of PHA (grams of PHA per gram of carbon) for styrene, phenylacetic acid, and glucose are 28:1, 21:1, and 18:1, respectively. In cells grown on styrene and phenylacetic acid, decreasing the carbon-to-nitrogen ratio below 28:1 and 21:1, respectively, by increasing the nitrogen concentration and using a fixed carbon concentration leads to lower levels of PHA per cell and lower levels of PHA per batch of cells. Increasing the carbon-to-nitrogen ratio above 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, by decreasing the nitrogen concentration and using a fixed carbon concentration increases the level of PHA per cell but results in a lower level of PHA per batch of cells. Increasing the carbon and nitrogen concentrations but maintaining the carbon-to-nitrogen ratio of 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, results in an increase in the total PHA per batch of cells. The maximum yields for PHA from styrene, phenylacetic acid, and glucose are 0.11, 0.17, and 0.22 g of PHA per g of carbon, respectively.  相似文献   

15.
Comamonas testosteroni has been studied for its ability to synthesize and accumulate medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) during cultivation on vegetable oils available in the local market. Castor seed oil, coconut oil, mustard oil, cotton seed oil, groundnut oil, olive oil and sesame oil were supplemented in the mineral medium as a sole source of carbon for growth and PHAs accumulation. The composition of PHAs was analysed by a coupled gas chromatography/mass spectroscopy (GC/MS). PHAs contained C6 to C14 3-hydroxy acids, with a strong presence of 3-hydroxyoctanoate when coconut oil, mustard oil, cotton seed oil and groundnut oil were supplied. 3-hydroxydecanoate was incorporated at higher concentrations when castor seed oil, olive oil and sesame oil were the substrates. Purified PHAs samples were characterized by Fourier Transform Infrared (FTIR) and 13C NMR analysis. During cultivation on various vegetable oils, C. testosteroni accumulated PHAs up to 78.5-87.5% of the cellular dry material (CDM). The efficiency of the culture to convert oil to PHAs ranged from 53.1% to 58.3% for different vegetable oils. Further more, the composition of the PHAs formed was not found to be substrate dependent as PHAs obtained from C. testosteroni during growth on variety of vegetable oils showed similar compositions; 3-hydroxyoctanoic acid and/or 3-hydroxydecanoic acid being always predominant. The polymerizing system of C. testosteroni showed higher preference for C8 and C10 monomers as longer and smaller monomers were incorporated less efficiently.  相似文献   

16.
Polyhydroxyalkanoates (PHA) are polyesters of various hydroxyalkanoates accumulated in numerous bacteria. All of the monomeric units of PHA are enantiomerically pure and in R-configuration. R-Hydroxyalkanoic acids can be widely used as chiral starting materials in fine chemical, pharmaceutical and medical industries. In this study, we established an efficient method for the production of chiral hydroxyalkanoic acid monomers from PHA. Pseudomonas putida cells containing PHA were resuspended in phosphate buffer at different pH. We observed that the optimal initial pH for intracellular PHA degradation and monomer release was at pH 8-11 with pH 11 as the best. At initial pH 11, PHA containing 3-hydroxyoctanoic acid and 3-hydroxyhexanoic acid was degraded with an efficiency of over 90% (w/w) in 9 h, and the yield of the corresponding monomers was also over 90%. Under the same conditions, unsaturated monomers were also effectively produced from PHA containing 3-hydroxy-6-heptenoic acid, 3-hydroxy-8-nonenoic acid, and 3-hydroxy-10-undecenoic acid. The monomers (e.g., 3-hydroxyoctanoic acid) were further isolated using solid phase extraction and purified on reversed phase semipreparative liquid chromatography. We confirmed that the purified 3-hydroxyoctanoic acid monomer has exclusively the R-configuration.  相似文献   

17.
A fatty acyl coenzyme A synthetase (FadD) from Pseudomonas putida CA-3 is capable of activating a wide range of phenylalkanoic and alkanoic acids. It exhibits the highest rates of reaction and catalytic efficiency with long-chain aromatic and aliphatic substrates. FadD exhibits higher kcat and Km values for aromatic substrates than for the aliphatic equivalents (e.g., 15-phenylpentadecanoic acid versus pentadecanoic acid). FadD is inhibited noncompetitively by both acrylic acid and 2-bromooctanoic acid. The deletion of the fadD gene from P. putida CA-3 resulted in no detectable growth or polyhydroxyalkanoate (PHA) accumulation with 10-phenyldecanoic acid, decanoic acid, and longer-chain substrates. The results suggest that FadD is solely responsible for the activation of long-chain phenylalkanoic and alkanoic acids. While the CA-3ΔfadD mutant could grow on medium-chain substrates, a decrease in growth yield and PHA accumulation was observed. The PHA accumulated by CA-3ΔfadD contained a greater proportion of short-chain monomers than did wild-type PHA. Growth of CA-3ΔfadD was unaffected, but PHA accumulation decreased modestly with shorter-chain substrates. The complemented mutant regained 70% to 90% of the growth and PHA-accumulating ability of the wild-type strain depending on the substrate. The expression of an extra copy of fadD in P. putida CA-3 resulted in increased levels of PHA accumulation (up to 1.6-fold) and an increase in the incorporation of longer-monomer units into the PHA polymer.Fatty acyl coenzyme A (CoA) synthetases (FACS; fatty acid:CoA ligases; EC 6.2.1.3) are ATP-, CoA-, and Mg2+-dependent enzymes that activate alkanoic acids to CoA esters for β oxidation (Fig. (Fig.11 ) (2, 17). FACS are widely distributed in both prokaryotic and eukaryotic organisms and exhibit a broad substrate specificity (34). FadD is a cytoplasmic membrane-associated FACS (7), with sizes ranging from 47 kDa to 62 kDa (2, 14). There is a lack of biochemical information on FadD with a preference for long-chain aromatic and aliphatic substrates. In the current study we purify and characterize for the first time a true long-chain FadD with activity toward both phenylalkanoic and alkanoic acids.Open in a separate windowFIG. 1.FadD activation of fatty acids to their CoA derivatives proceeds through ATP-dependent covalent binding of AMP to fatty acid with the release of inorganic pyrophosphate, followed by C-S bond formation to obtain fatty acyl-CoA ester and subsequent release of AMP. FadD requires the presence of Mg2+ ions to be active (2, 17).It is known that bacteria such as Pseudomonas putida can accumulate the biological polyester polyhydroxyalkanoate (PHA) from aromatic as well as aliphatic alkanoic acids (5, 6, 42, 45). The presence of aromatic monomers in the PHA polymer suggests that a FadD with activity toward aromatic substrates is present in these PHA-accumulating strains. Garcia et al. knocked out an acyl-CoA synthetase in P. putida U with a high homology to long-chain fadD products from Escherichia coli and Pseudomonas fragi (6). Garcia et al. also showed that the mutant was not capable of growth or PHA accumulation with aromatic and aliphatic substrates having between 5 and 10 carbons in their acyl chain, indicating that it is a general and not a long-chain acyl-CoA ligase (6). In a follow-up study, Olivera et al. showed that the fadD mutants reverted to wild-type characteristics within 3 days of incubation, indicating that fadD could be replaced by the activity of a second enzyme (25). Indeed, two fadD gene homologues have been identified in P. putida U, namely, fadD1 and fadD2, with fadD2 being expressed only when fadD1 is inactivated (25). A putative FadD in P. putida KT2440 is encoded by PP_4549 (24), but the protein has not been studied nor has the effect of fadD (PP_4549) expression/disruption been examined. In the current study the knockout and complementation of fadD from P. putida CA-3 demonstrated that its activity is critical for growth and PHA accumulation with long-chain aromatic and aliphatic alkanoic acids and that the activity is not replaced by a second enzyme. While reports have shown that PHA polymerase greatly affects PHA monomer composition (30, 40), no evidence of the specific effect of FACS on PHA accumulation so far exists.We describe here the purification, kinetic characterization, gene deletion, and homologous expression of FadD from P. putida CA-3. This is a fundamental study of the activity and physiological role of FACS activity in aromatic and aliphatic alkanoic acid activation and PHA accumulation.  相似文献   

18.
The fluorescent pseudomonads are classified as a group, one characteristic of which is that they do not accumulate poly-3-hydroxybutyrate (PHB) during nutrient starvation in the presence of excess carbon source. In this paper we show that prototype strains from this subclass, such as Pseudomonas aeruginosa, Pseudomonas putida, and Pseudomonas fluorescens, do accumulate poly-3-hydroxyalkanoates (PHA) when grown on fatty acids. These PHAs are composed of medium-chain-length (C6 to C12) 3-hydroxy fatty acids. The ability to form these polyesters does not depend on the presence of plasmids. A specificity profile of the enzymes involved in the biosynthesis of PHA was determined by growing Pseudomonas oleovorans on fatty acids ranging from C4 to C18. In all cases, PHAs were formed which contained C6 to C12 3-hydroxy fatty acids, with a strong preference for 3-hydroxyoctanoate when Ceven fatty acids were supplied and 3-hydroxynonanoate when Codd fatty acids were the substrate. These results indicate that the formation of PHAs depends on a specific enzyme system which is distinct from that responsible for the synthesis of PHB. While the fluorescent pseudomonads are characterized by their inability to make PHB, they appear to share the capacity to produce PHAs. This characteristic may be helpful in classifying pseudomonads. It may also be useful in the optimization of PHA production for biopolymer applications.  相似文献   

19.
The ability of Pseudomonas putida to synthesize polyhydroxyalkanoate (PHA) from 36 different carboxylic acids containing various functional groups was examined. This bacterium did not utilize short carboxylic acids (C(4)-C(6)) containing bromine, methoxy, ethoxy, cyclohexyl, phenoxy, and olefin groups as the sole carbon substrate. No polymer was isolated from the cells grown with carboxylic acids bearing hydroxyl, amino, para-methoxyphenoxy, and para-ethoxyphenoxy groups regardless of the carbon substrate chain lengths used even when they were cofed with nonanoic acid. Of all the carbon substrates evaluated, only 6-para-methylphenoxyhexanoic acid, 8-para-methylphenoxyoctanoic acid, 8-meta-methylphenoxyoctanoic acid, 10-undecenoic acid, and 10-undecynoic acid supported both growth and the production of PHA containing the corresponding functional groups by P. putida. The present results indicate that the carbon availability of P. putida for growth and PHA production is significantly different from that of P. oleovorans.  相似文献   

20.
Pseudomonas aeruginosa produced medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) when grown on substrates containing very long chain fatty acids (VLCFA, C>20). Looking for low cost carbon sources, we tested Brassica carinata oil (erucic acid content 35-48%) as an intact triglyceride containing VLCFA. Oleic (C18:1), erucic (C22:1), and nervonic (C24:1) acids were also employed for mcl-PHA production as model substrates. The polymers obtained were analyzed by GC of methanolyzed samples, GPC, 1H and 13C NMR, ESI MS of partially pyrolyzed samples, and DSC. The repeating units of such polymers were saturated and unsaturated, with a higher content of the latter in the case of the PHA obtained from B. carinata oil. Statistical analysis of the ion intensity in the ESI mass spectra showed that the PHAs from pure fatty acids are random copolymers, while the PHA from B. carinata oil is either a pure polymer or a mixture of polymers. Weight-average molecular weight varied from ca. 56,000 g/mol for the PHA from B. carinata oil and oleic acid, to about 120,000 g/mol for those from erucic and nervonic acids. The PHAs from erucic and nervonic acids were partially crystalline, with rubbery characteristics and a melting point (Tm) of 50°C, while the PHAs from oleic acid and from B. carinata oil afforded totally amorphous materials, with glass transition temperatures (Tg) of -52°C and -47°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号