首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shortening of telomeres has been hypothesized to contribute to cellular senescence and may play a role in carcinogenesis of human cells. Furthermore, activation of telomerase has frequently been demonstrated in tumor-derived and in vitro immortalized cells. In this study, we have assessed these phenomena during the life span of simian virus 40 (SV40)-transformed preimmortal and immortal human fibroblasts. We observed progressive reduction in telomere length in preimmortal transformed cells with extended proliferative capacity, with the most dramatic shortening at late passage. Telomere lengths became stabilized (or increased) in immortal fibroblasts accompanied, in one case, by the activation of telomerase. However, an independent immortal cell line that displayed stable telomeres did not have detectable telomerase activity. Furthermore, we found significant telomerase activity in two preimmortal derivatives. Our results provide further evidence for maintenance of telomeres in immortalized human fibroblasts, but they suggest a lack of causal relationship between telomerase activation and immortalization. © 1996 Wiley-Liss, Inc.  相似文献   

2.
POT1 is a 3' telomeric single-stranded overhang binding protein that has been implicated in chromosome end protection, the regulation of telomerase function, and defining the 5' chromosome terminus. In human cancer cells that exhibit constitutive hTERT activity, hPOT1 exerts control over telomere length. Primary human fibroblasts express low levels of catalytically active hTERT in an S-phase-restricted manner that fails to counteract telomere attrition with cell division. Here, we show that diploid human fibroblasts in which hPOT1 expression has been suppressed harbor telomeres that are longer than control cells. This difference in telomere length delays the onset of replicative senescence and is dependent on S-phase-restricted hTERT expression. These findings are consistent with the view that hPOT1 promotes a nonextendable telomere state resistant to extension by S-phase-restricted telomerase. Manipulating this function of hPOT1 may thus hasten the cytotoxic effects of telomerase inhibition.  相似文献   

3.
Instead of telomerase, some immortal cells use the alternative lengthening of telomeres pathway (ALT) to maintain their telomeres. There is good evidence that homologous recombination contributes to the ALT mechanism. Using an inducible GFP reporter system to measure the frequency of homologous recombination, we asked whether or not ALT cells exhibited a general change of the recombination machinery. Our results show that the frequency of homologous recombination for non-telomeric sequences in ALT cells is identical to that in telomerase positive cells, irrespective of whether the reporter was present at an intra-chromosomal location or next to a telomeric sequence. We conclude that the underlying recombination defect in ALT cells is restricted to telomeric sequences.  相似文献   

4.
Instead of telomerase, some immortal cells use the alternative lengthening of telomeres pathway (ALT) to maintain their telomeres. There is good evidence that homologous recombination contributes to the ALT mechanism. Using an inducible GFP reporter system to measure the frequency of homologous recombination, we asked whether or not ALT cells exhibited a general change of the recombination machinery. Our results show that the frequency of homologous recombination for non-telomeric sequences in ALT cells is identical to that in telomerase positive cells, irrespective of whether the reporter was present at an intra-chromosomal location or next to a telomeric sequence. We conclude that the underlying recombination defect in ALT cells is restricted to telomeric sequences.  相似文献   

5.
Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization.  相似文献   

6.
Telomere lengths are tightly regulated within a narrow range in normal human cells. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in elongating short telomeres. However, much about the molecular mechanisms of regulating excessively long telomeres is unknown. In this report, we demonstrated that the telomerase enzymatic component, hTERT, plays a dual role in the regulation of telomere length. It shortens excessively long telomeres and elongates short telomeres simultaneously in one cell, maintaining the optimal telomere length at each chromosomal end for efficient protection. This novel hTERT-mediated telomere-shortening mechanism not only exists in cancer cells, but also in primary human cells. The hTERT-mediated telomere shortening requires hTERT’s enzymatic activity, but the telomerase RNA component, hTR, is not involved in that process. We found that expression of hTERT increases telomeric circular DNA formation, suggesting that telomere homologous recombination is involved in the telomere-shortening process. We further demonstrated that shelterin protein TPP1 interacts with hTERT and recruits hTERT onto the telomeres, suggesting that TPP1 might be involved in regulation of telomere shortening. This study reveals a novel function of hTERT in telomere length regulation and adds a new element to the current molecular model of telomere length maintenance.  相似文献   

7.
8.
Xu L  Blackburn EH 《Molecular cell》2007,28(2):315-327
Using a modified single telomere length analysis protocol (STELA) to clone and examine the sequence composition of individual human XpYp telomeres, we discovered a distinct class of extremely short telomeres in human cancer cells with active telomerase. We name them "t-stumps," to distinguish them from the well-regulated longer bulk telomeres. T-stumps contained arrangements of telomeric repeat variants and a minimal run of seven canonical telomeric TTAGGG repeats, but all could bind at least one TRF1 or TRF2 in vitro. The abundance of t-stumps was unaffected by ATM alteration but could be changed by manipulating telomerase catalytic subunit (hTERT) levels in cancer cells. We propose that in the setting of active telomerase and compromised checkpoints characteristic of human cancer cells, t-stumps define the minimal telomeric unit that can still be protected by a TRF1/TRF2-capping complex and, further, that hTERT (or telomerase) may have a role in protecting t-stumps.  相似文献   

9.
The protein hPot1 shares homology with telomere-binding proteins in lower eukaryotes and associates with single-stranded telomeric DNA in vitro as well as colocalizing with telomere-binding proteins in vivo. We now show that hPot1 is coimmunoprecipitated with telomeric DNA and that stable expression of this protein in telomerase-positive cells results in telomere elongation, supporting the idea that hPot1 is a bona fide mammalian telomere-binding protein. We previously found that mutations in the N-terminal DAT domain of the hTERT catalytic subunit of telomerase rendered the enzyme catalytically active but unable to elongate telomeres in vivo. This phenotype could be partially rescued by fusion with the double-stranded telomeric protein hTRF2. Given that hPot1 binds to single-stranded DNA in vitro (at the same site that hTERT binds to in vivo), we addressed whether fusion of hPot1 can rescue the DAT mutations more efficiently than that of hTRF2. We now report that a DAT mutant of hTERT is indeed efficiently rescued upon fusion to hPot1. However, this rescue depended on the ability of hPot1 to localize to telomeres rather than binding to DNA per se. These data support a model whereby the DAT domain of hTERT is implicated in telomere-telomerase associations.  相似文献   

10.
Most human cells do not express telomerase and irreversibly arrest proliferation after a finite number of divisions (replicative senescence). Several lines of evidence suggest that replicative senescence is caused by short dysfunctional telomeres, which arise when DNA is replicated in the absence of adequate telomerase activity. We describe a method to reversibly bypass replicative senescence and generate mass cultures that have different average telomere lengths. A retrovirus carrying hTERT flanked by excision sites for Cre recombinase rendered normal human fibroblasts telomerase-positive and replicatively immortal. Superinfection with retroviruses carrying wild-type or mutant forms of TIN2, a negative regulator of telomere length, created telomerase-positive, immortal populations with varying average telomere lengths. Subsequent infection with a Cre-expressing retrovirus abolished telomerase activity, creating mortal cells with varying telomere lengths. Using these cell populations, we show that, after hTERT excision, cells senesce with shorter telomeres than parental cells. Moreover, long telomeres, but not telomerase, protected cells from the loss of division potential caused by ionizing radiation. Finally, although telomerase-negative cells with short telomeres senesced after fewer doublings than those with long telomeres, telomere length per se did not correlate with senescence. Our results support a role for telomere structure, rather than length, in replicative senescence.  相似文献   

11.
Human fibroblasts expressing the catalytic component of human telomerase (hTERT) have been followed for 250-400 population doublings. As expected, telomerase activity declined in long term culture of stable transfectants. Surprisingly, however, clones with average telomere lengths several kilobases shorter than those of senescent parental cells continued to proliferate. Although the longest telomeres shortened, the size of the shortest telomeres was maintained. Cells with subsenescent telomere lengths proliferated for an additional 20 doublings after inhibiting telomerase activity with a dominant-negative hTERT mutant. These results indicate that, under conditions of limiting telomerase activity, cis-acting signals may recruit telomerase to act on the shortest telomeres, argue against the hypothesis that the mortality stage 1 mechanism of cellular senescence is regulated by telomere positional effects (in which subtelomeric loci silenced by long telomeres are expressed when telomeres become short), and suggest that catalytically active telomerase is not required to provide a protein-capping role at the end of very short telomeres.  相似文献   

12.
13.
14.
We have measured telomere length and telomerase activity throughout the life span of clones of human B lymphocytes transformed by Epstein-Barr virus. Shortening of telomeres occurred at similar rates in all populations and persisted until chromosomes had little telomeric DNA remaining. At this stage, some of the clones entered a proliferative crisis and died. Only clones in which telomeres were stabilized, apparently by activation of telomerase, continued to proliferate indefinitely, i.e., became immortal. Since loss of telomeres impairs chromosome function, and may thus affect cell survival, we propose that telomerase activity is required for immortality. We have now detected this enzyme in a variety of immortal human cells transformed by different viruses, indicating that telomerase activation may be a common step in immortalization.  相似文献   

15.
Telomere directed fragmentation of mammalian chromosomes.   总被引:27,自引:3,他引:24       下载免费PDF全文
Cloned human telomeric DNA can integrate into mammalian chromosomes and seed the formation of new telomeres. This process occurs efficiently in three established human cell lines and in a mouse embryonic stem cell line. The newly seeded telomeres appear to be healed by telomerase. The seeding of new telomeres by cloned telomeric DNA is either undetectable or very inefficient in non-tumourigenic mouse or human somatic cell lines. The cytogenetic consequences of the seeding of new telomeres include large chromosome truncations but most of the telomere seeding events occur close to the pre-existing ends of natural chromosomes.  相似文献   

16.
It has been proposed that telomeres shorten with every cell cycle because the normal mechanism of DNA replication cannot replicate the end sequences of the lagging DNA strand. Telomerase, a ribonucleoprotein enzyme that synthesizes telomeric DNA repeats at the DNA 3′ ends of eukaryotic chromosomes, can compensate for such shortening, by extending the template of the lagging strand. Telomerase activity has been identified in human germline cells and in neoplastic immortal somatic cells, but not in most normal somatic cells, which senesce after a certain number of cell divisions. We and others have found that telomerase activity is present in normal human lymphocytes and is upregulated when the cells are activated. But, unlike the immortal cell lines, presence of telomerase activity is not sufficient to make T cells immortal and telomeres from these cells shorten continuously duringin vitroculture. After senescence, telomerase activity, as detected by the TRAP technique, was downregulated. A cytotoxic T lymphocyte (CTL) cell line that was established in the laboratory has very short terminal restriction fragments (TRFs). Telomerase activity in this cell line is induced during activation and this activity is tightly correlated with cell proliferation. The level of telomerase activity in activated peripheral blood T cells, the CTL cell line, and two leukemia cell lines does not correlate with the average TRF length, suggesting that other factors besides telomerase activity are involved in the regulation of telomere length.  相似文献   

17.
Immortal cell populations are able to proliferate indefinitely. Immortalization is associated with activation of processes that compensate for the telomeric shortening that accompanies cell division in normal somatic cells. In many immortal cell lines, telomere maintenance is provided by the action of the ribonucleoprotein enzyme complex, telomerase. Some immortal cell lines have undetectable or very low levels of telomerase activity and there is evidence that these cells maintain their telomeres by an alternative mechanism.  相似文献   

18.
19.
20.
Telomere length maintenance, an activity essential for chromosome stability and genome integrity, is regulated by telomerase- and telomere-associated factors. The DNA repair protein Ku (a heterodimer of Ku70 and Ku80 subunits) associates with mammalian telomeres and contributes to telomere maintenance. Here, we analyzed the physical association of Ku with human telomerase both in vivo and in vitro. Antibodies specific to human Ku proteins precipitated human telomerase in extracts from tumor cells, as well as from telomerase-immortalized normal cells, regardless of the presence of DNA-dependent protein kinase catalytic subunit. The same Ku antibodies also precipitated in vitro reconstituted telomerase, suggesting that this association does not require telomeric DNA. Moreover, Ku associated with the in vitro translated catalytic subunit of telomerase (hTERT) in the absence of telomerase RNA (hTR) or telomeric DNA. The results presented here are the first to report that Ku associates with hTERT, and this interaction may function to regulate the access of telomerase to telomeric DNA ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号