首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Caveolin-1 is the principal structural protein of caveolae membranes in fibroblasts and endothelia. Recently, we have shown that the human CAV-1 gene is localized to a suspected tumor suppressor locus, and mutations in Cav-1 have been implicated in human cancer. Here, we created a caveolin-1 null (CAV-1 -/-) mouse model, using standard homologous recombination techniques, to assess the role of caveolin-1 in caveolae biogenesis, endocytosis, cell proliferation, and endothelial nitric-oxide synthase (eNOS) signaling. Surprisingly, Cav-1 null mice are viable. We show that these mice lack caveolin-1 protein expression and plasmalemmal caveolae. In addition, analysis of cultured fibroblasts from Cav-1 null embryos reveals the following: (i) a loss of caveolin-2 protein expression; (ii) defects in the endocytosis of a known caveolar ligand, i.e. fluorescein isothiocyanate-albumin; and (iii) a hyperproliferative phenotype. Importantly, these phenotypic changes are reversed by recombinant expression of the caveolin-1 cDNA. Furthermore, examination of the lung parenchyma (an endothelial-rich tissue) shows hypercellularity with thickened alveolar septa and an increase in the number of vascular endothelial growth factor receptor (Flk-1)-positive endothelial cells. As predicted, endothelial cells from Cav-1 null mice lack caveolae membranes. Finally, we examined eNOS signaling by measuring the physiological response of aortic rings to various stimuli. Our results indicate that eNOS activity is up-regulated in Cav-1 null animals, and this activity can be blunted by using a specific NOS inhibitor, nitro-l-arginine methyl ester. These findings are in accordance with previous in vitro studies showing that caveolin-1 is an endogenous inhibitor of eNOS. Thus, caveolin-1 expression is required to stabilize the caveolin-2 protein product, to mediate the caveolar endocytosis of specific ligands, to negatively regulate the proliferation of certain cell types, and to provide tonic inhibition of eNOS activity in endothelial cells.  相似文献   

2.
The neural cell adhesion molecule (NCAM) plays important roles in development of the nervous system and in synaptic plasticity and memory formation in the adult. The present study sought to further investigate the role of NCAM in learning by testing habituation and footshock sensitization learning of the startle response (SR) in NCAM null mutant (NCAM-/-) and wildtype littermate (NCAM+/+) mice. Whereas habituation is a form of non-associative learning, footshock sensitization is induced by rapid contextual fear conditioning. Habituation was tested by repetitive presentation of acoustic and tactile startle stimuli. Although NCAM-/- mice showed differences in sensitivity in both stimulus modalities, habituation learning was intact in NCAM-/- mice, suggesting that NCAM does not play a role in the mechanisms underlying synaptic plasticity in the startle pathway. Footshock sensitization was elicited by presentation of electric footshocks between two series of acoustic stimuli. In contrast to habituation, footshock sensitization learning was attenuated in NCAM-/- mice: the acoustic SR increase after the footshocks was lower in the mutant than in wildtype mice, indicating that NCAM plays an important role in the relevant brain areas, such as amygdala and/or the hippocampus.  相似文献   

3.
Recently, development ofa caveolin-1-deficient (Cav-1 null) mouse model has allowed thedetailed analysis of caveolin-1's function in the context of awhole animal. Interestingly, we now report that the hearts ofCav-1 null mice are markedly abnormal, despite the fact that caveolin-1is not expressed in cardiac myocytes. However, caveolin-1 is abundantlyexpressed in the nonmyocytic cells of the heart, i.e., cardiacfibroblasts and endothelia. Quantitative imaging studies of Cav-1 nullhearts demonstrate a significantly enlarged right ventricular cavityand a thickened left ventricular wall with decreased systolic function.Histological analysis reveals myocyte hypertrophy withinterstitial/perivascular fibrosis. Because caveolin-1 is thought toact as a negative regulator of the p42/44 MAP kinase cascade, weperformed Western blot analysis with phospho-specific antibodies thatonly recognize activated ERK1/2. As predicted, the p42/44 MAP kinasecascade is hyperactivated in Cav-1 null heart tissue (i.e.,interstitial fibrotic lesions) and isolated cardiac fibroblasts. Inaddition, endothelial and inducible nitric oxide synthase levels aredramatically upregulated. Thus loss of caveolin-1 expression drivesp42/44 MAP kinase activation and cardiac hypertrophy.

  相似文献   

4.
The effects of beta-naphthoflavone on the inducibility of hepatic P1-450 and P3-450 mRNA were investigated in male B10.RIII/Sn, C57BL/10Sn, C3H/HeSnJ, and A/WYSn mice. Previous work has shown that the maximum level of aryl hydrocarbon hydroxylase induction in these strains correlates with maximum life span. In this study we found that the maximum inducible levels of P1- and P3-450 RNA were significantly different among the strains, and these levels also correlate with life span. The differences were not due to strain-specific differences in the kinetics of P1- or P3-450 RNA induction. The differences were specific to expression of the P-450 genes, since the levels of hepatic alpha-actin and albumin RNA were not significantly different among the strains, and specific RNA levels were normalized to the level of total polyadenylated RNA. beta-Naphthoflavone was found to induce alpha-actin mRNA approximately 2-fold and to transiently repress albumin RNA about 50% in all mouse strains. Maximum P1- and P3-450 gene expression correlated directly with the 10th deciles of survival of the mouse strains. Longer-lived strains expressed higher combined levels of P1- and P3-450 RNAs. Maximum P1- and P3-450 gene expression also correlated generally with the reported aryl hydrocarbon hydroxylase receptor levels of each strain. It is unlikely that the hepatic P1- and P3-450 genes are ever maximally induced under the sheltered laboratory conditions used to determine maximum life span, as we consistently find very low levels of P-450 expression in uninduced animals. These uninduced levels were not statistically different between the strains. Therefore, the reason for the relationship between maximum life span and maximum P1- and P3-450 inducibility is unclear at present.  相似文献   

5.
E. J. Yunis  M. Salazar 《Genetica》1993,91(1-3):211-223
Thymic involution that occurs earlier in some individuals than others may be the result of complex interactions between genetic factors and the environment. Such interactions may produce defects of thymus-dependent immune regulation associated with susceptibility to developing autoimmune diseases, malignancy, and an increased number of infections associated with aging.The major histocompatibility complex may be important in determining profiles of cause of death and length of life in mice. Genetic influences on life span involve interactions between loci and allelic interactions during life which may change following viral infections or exposure to other environmental factors. We have used different experimental protocols to study the influence of H-2 on life span and found that interactions between genetic regions, are inconsistent, particularly when comparing mice infected or not infected with Sendai virus.Genes important for life span need to be studied against many genetic backgrounds and under differing environmental conditions because of the complexity of the genetics of life span. Several genetic models were used to demonstrate that the MHC is a marker of life span in backcross and intercross male mice of the H-2d and H-2b genotypes in B10 congenic mice. Females lived longer than males in backcross and intercross mice, while males lived longer than females in B10 congenics. H-2d was at a disadvantage for life span in backcross mice of the dilute brown and brown males exposed to Sendai infection, but intercross mice not exposed to Sendai virus of the same genotype were not at a disadvantage. H-2d mice were not disadvantaged when compared to H-2b in B10 congenics that had not been exposed to Sendai virus infection but the reverse was true when they were exposed. Overall, all our studies suggest that genetic influences in life span may involve interactions between loci and many allelic interactions in growing animals or humans. These genetic influences on life span may vary after they are exposed to infections or other environmental conditions. This paper emphasizes the need to use several genetic models, especially animals that have been monitored for infections, to study the genetics of life span.  相似文献   

6.
We have shown that cytokine-like 1 (Cytl1) is a novel autocrine regulatory factor that regulates chondrogenesis of mouse mesenchymal cells (Kim, J. S., Ryoo, Z. Y., and Chun, J. S. (2007) J. Biol. Chem. 282, 29359-29367). In this previous work, we found that Cytl1 expression was very low in mesenchymal cells, increased dramatically during chondrogenesis, and decreased during hypertrophic maturation, both in vivo and in vitro. Moreover, exogenous addition or ectopic expression of Cytl1 caused chondrogenic differentiation of mouse limb bud mesenchymal cells. In the current study, we generated a Cytl1 knock-out (Cytl1(-/-)) mouse to investigate the in vivo role of Cytl1. Deletion of the Cytl1 gene did not affect chondrogenesis or cartilage development. Cytl1(-/-) mice also showed normal endochondral ossification and long bone development. Additionally, ultrastructural features of articular cartilage, such as matrix organization and chondrocyte morphology, were similar in wild-type and Cytl1(-/-) mice. However, Cytl1(-/-) mice were more sensitive to osteoarthritic (OA) cartilage destruction. Compared with wild-type littermates, Cytl1(-/-) mice showed more severe OA cartilage destruction upon destabilization of the medial meniscus of mouse knee joints. In addition, expression levels of Cytl1 were markedly decreased in OA cartilage of humans and experimental mice. Taken together, our results suggest that, rather than regulating cartilage and bone development, Cytl1 is required for the maintenance of cartilage homeostasis, and loss of Cytl1 function is associated with experimental OA cartilage destruction in mice.  相似文献   

7.
Several lines of evidence suggest that a functional relationship exists between caveolin-1 and insulin signaling. However, it remains unknown whether caveolin-1 is normally required for proper insulin receptor signaling in vivo. To address this issue, we examined the status of insulin receptor signaling in caveolin-1 (–/–)-deficient (Cav-1 null) mice. Here, we show that Cav-1 null mice placed on a high-fat diet for 9 mo develop postprandial hyperinsulinemia. An insulin tolerance test (ITT) revealed that young Cav-1 null mice on a normal chow diet are significantly unresponsive to insulin, compared with their wild-type counterparts. This insulin resistance is due to a primary defect in adipose tissue, as evidenced by drastically reduced insulin receptor protein levels (>90%), without any changes in insulin receptor mRNA levels. These data suggest that caveolin-1 acts as a molecular chaperone that is necessary for the proper stabilization of the insulin receptor in adipocytes in vivo. In support of this notion, we demonstrate that recombinant expression of caveolin-1 in Cav-1 null mouse embryo fibroblasts rescues insulin receptor protein expression. These data provide evidence that the lean body phenotype observed in the Cav-1 knockout mice is due, at least in part, to a defect in insulin-regulated lipogenesis. caveolae; caveolin; insulin signaling; protein stabilization; knockout mice  相似文献   

8.
Calcific aortic valve disease (CAVD) is the most common indication for valve surgery in the USA. This study hypothesizes that CAVD develops secondary to Wnt3a/Lrp5 activation via oxidative‐mechanical stress in eNOS null mice. eNOS?/? mice were tested with experimental diets including a control (n = 20), cholesterol (n = 20), cholesterol + Atorvastatin (n = 20). After 23 weeks the mice were tested for the development of aortic stenosis by Echo, Histology, MicroCT, and RTPCR for bone markers. In vitro studies measured Wnt3a secretion from aortic valve endothelial cells and confirmed oxidative stress via eNOS activity. Anion exchange chromatography was performed to isolate the mitogenic protein. Myofibroblast cells were tested to induce bone formation. Cholesterol treated eNOS mice develop severe stenosis with an increase in Wnt3a, Lrp5, Runx2 (threefold increase (P < 0.0001) in the bicuspid versus tricuspid aortic valves. Secretion of Wnt3a from aortic valve endothelium in the presence of abnormal oxidative stress was correlated with diminished eNOS enzymatic activity and tissue nitrite levels. Initial characterization of the architecture for a stem cell nice was determined by protein isolation using anion‐exchange chromatography and cell proliferation via thymidine incorporation. Osteoblastogenesis in the myofibroblast cell occurred via Lrp5 receptor upregulation in the presence of osteogenic media. Targeting the Wnt3a/Lrp5 pathway in valve calcification and activation of osteogenesis is via an oxidative‐mechanical stress in CAVD. These findings provide a foundation for treating this disease process by targeting the cross talk mechanism in a resident stem cell niche. J. Cell. Biochem. 113: 1623–1634, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cells. Recently, we identified a novel autosomal dominant form of limb-girdle muscular dystrophy (LGMD-1C) in humans that is due to mutations within the coding sequence of the human caveolin-3 gene (3p25). These LGMD-1C mutations lead to an approximately 95% reduction in caveolin-3 protein expression, i.e. a caveolin-3 deficiency. Here, we created a caveolin-3 null (CAV3 -/-) mouse model, using standard homologous recombination techniques, to mimic a caveolin-3 deficiency. We show that these mice lack caveolin-3 protein expression and sarcolemmal caveolae membranes. In addition, analysis of skeletal muscle tissue from these caveolin-3 null mice reveals: (i) mild myopathic changes; (ii) an exclusion of the dystrophin-glycoprotein complex from lipid raft domains; and (iii) abnormalities in the organization of the T-tubule system, with dilated and longitudinally oriented T-tubules. These results have clear mechanistic implications for understanding the pathogenesis of LGMD-1C at a molecular level.  相似文献   

10.
11.
In a previous study, we demonstrated that humanized NOD/SCID/IL2Rγnull (hNOG) mice constructed with human hematopoietic stem cells (HSCs) allow efficient human immunodeficiency virus type 1 (HIV-1) infection. However, HIV-1 infection could be monitored for only 43 days in the animals due to their short life spans. By transplanting HSCs without any myeloablation methods, the mice successfully survived longer than 300 days with stable engraftment of human cells. The mice showed high viremia state for more than the 3 months examined, with systemic HIV-1 infection and gradual decrease of CD4+ T cells analogous to that in humans. These capacities of the hNOG mice are very attractive for modeling mechanisms of AIDS progression and therapeutic strategy.  相似文献   

12.
Microvascular permeability is mediated by (i) the caveolar transcytosis of molecules across endothelial cells and (ii) the paracellular movement of ions and nutrients. Recently, we derived Cav-1 (-/-) knock-out mice using standard homologous recombination techniques. These mice are viable but show a loss of endothelial cell caveolae and striking defects in caveolae-mediated endocytosis. Thus, a compensatory mechanism must be operating in these mice. One possible compensatory response would be an increase in the paracellular pathway, resulting in increased microvascular permeability. To test this hypothesis directly, we studied the microvascular permeability of Cav-1 null mice using a variety of complementary in vivo approaches. Radio-iodinated bovine serum albumin was injected into Cav-1-deficient mice, and its rate of clearance from the circulatory system was compared with that of wild type control mice. Our results indicate that iodinated bovine serum albumin is removed from the circulatory system of Cav-1-deficient mice at a substantially faster rate. To determine whether this defect is restricted to the paracellular movement of albumin, lungs from Cav-1-deficient mice were next perfused with the electron dense dye Ruthenium Red. Micrographs of lung endothelial cells from Cav-1-deficient mice demonstrate that the paracellular movement of Ruthenium Red is dramatically increased. In addition, electron micrographs of Cav-1-deficient lung capillaries reveal defects in tight junction morphology and abnormalities in capillary endothelial cell adhesion to the basement membrane. This defect in cell-substrate attachment is consistent with the postulated role of caveolin-1 in positively regulating integrin signaling. Because loss of caveolin-1 expression results in constitutive activation of eNOS activity, we also examined whether these increases in microvascular permeability are NO-dependent. Interestingly, treatment with l-NAME (a well established nitric-oxide synthase inhibitor) successfully reversed the microvascular hyperpermeability phenotype of Cav-1 knock-out mice. Thus, caveolin-1 plays a dual regulatory role in controlling microvascular permeability: (i) as a structural protein that is required for caveolae formation and caveolar transcytosis and (ii) as a tonic inhibitor of eNOS activity to negatively regulate the paracellular pathway.  相似文献   

13.
The strength and duration of mitogen-activated protein kinase signaling is regulated through phosphorylation and dephosphorylation by dedicated dual-specificity kinases and phosphatases, respectively. Here we investigated the physiological role that extracellular signal-regulated kinases 1/2 (ERK1/2) dephosphorylation plays in vivo through targeted disruption of the gene encoding dual-specificity phosphatase 6 (Dusp6) in the mouse. Dusp6(-/-) mice, which were viable, fertile, and otherwise overtly normal, showed an increase in basal ERK1/2 phosphorylation in the heart, spleen, kidney, brain, and fibroblasts, but no change in ERK5, p38, or c-Jun N-terminal kinases activation. However, loss of Dusp6 did not increase or prolong ERK1/2 activation after stimulation, suggesting that its function is more dedicated to basal ERK1/2 signaling tone. In-depth analysis of the physiological effect associated with increased baseline ERK1/2 signaling was performed in cultured mouse embryonic fibroblasts (MEFs) and the heart. Interestingly, mice lacking Dusp6 had larger hearts at every age examined, which was associated with greater rates of myocyte proliferation during embryonic development and in the early postnatal period, resulting in cardiac hypercellularity. This increase in myocyte content in the heart was protective against decompensation and hypertrophic cardiomyopathy following long term pressure overload and myocardial infarction injury in adult mice. Dusp6(-/-) MEFs also showed reduced apoptosis rates compared with wild-type MEFs. These results demonstrate that ERK1/2 signaling is physiologically restrained by DUSP6 in coordinating cellular development and survival characteristics, directly impacting disease-responsiveness in adulthood.  相似文献   

14.

Background

Transgenic mice with low levels of global insulin-like growth factor-I (IGF-I) throughout their life span, including pre- and postnatal development, have increased longevity. This study investigated whether specific deficiency of liver-derived, endocrine IGF-I is of importance for life span.

Methods and Findings

Serum IGF-I was reduced by approximately 80% in mice with adult, liver-specific IGF-I inactivation (LI-IGF-I-/- mice), and body weight decreased due to reduced body fat. The mean life span of LI-IGF-I-/- mice (n = 84) increased 10% vs. control mice (n = 137) (Cox''s test, p<0.01), mainly due to increased life span (16%) of female mice [LI-IGF-I-/- mice (n = 31): 26.7±1.1 vs. control (n = 67): 23.0±0.7 months, p<0.001]. Male LI-IGF-I-/- mice showed only a tendency for increased longevity (p = 0.10). Energy expenditure, measured as oxygen consumption during and after submaximal exercise, was increased in the LI-IGF-I-/- mice. Moreover, microarray and RT-PCR analyses showed consistent regulation of three genes (heat shock protein 1A and 1B and connective tissue growth factor) in several body organs in the LI-IGF-I-/- mice.

Conclusions

Adult inactivation of liver-derived, endocrine IGF-I resulted in moderately increased mean life span. Body weight and body fat decreased in LI-IGF-I-/- mice, possibly due to increased energy expenditure during exercise. Genes earlier reported to modulate stress response and collagen aging showed consistent regulation, providing mechanisms that could underlie the increased mean life span in the LI-IGF-I-/- mice.  相似文献   

15.
We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.  相似文献   

16.
It remains controversial whether deficiency of the Niemann-Pick C1 (npc1) protein results in altered cholesterol signaling at the endoplasmic reticulum (ER). In this report, we have measured the processed, nuclear form of sterol regulatory element binding protein (SREBP)-1 in livers of npc1 wild-type, heterozygous, and homozygous deficient mice, alone, and in combination with deficiencies of the low density lipoprotein receptor (LDLR) or the multiple drug resistant (mdr)1a, P-glycoprotein. Cleavage of SREBPs to activated forms normally occurs when the ER is deficient in cholesterol. A large decrease in processed SREBP-1 was evident in fasted npc1(-/-) mice and npc1(-/-), mdr1a(-/-) mice, with no decrease evident in npc1(-/-), LDLR(-/-) mice. These results suggest that the increase in cellular cholesterol which occurs in npc1(-/-) and in npc1(-/-), mdr1a(-/-) mice includes the sites responsible for cholesterol signaling, while the similar increase in cholesterol found in npc1(-/-), LDLR(-/-) mice does not.  相似文献   

17.
Duttaroy A  Paul A  Kundu M  Belton A 《Genetics》2003,165(4):2295-2299
A null mutation for the Sod2 gene, Sod2n283, was obtained in Drosophila melanogaster. Homozygous Sod2 null (Sodn283/Sodn283) adult flies survive up to 24 hr following eclosion, a phenotype reminiscent of mice, where Sod2-/- progeny suffer neonatal lethality. Sodn283/+ heterozygotes are sensitive to oxidative stress induced by paraquat treatment.  相似文献   

18.
19.
Summary: Fraser syndrome (FS) is an autosomal recessive disease characterized by skin lesions and kidney and upper airway malformations. Fraser syndrome 1 (FRAS1) is an extracellular matrix protein, and FRAS1 homozygous mutations occur in some FS individuals. FRAS1is expressed at the epithelial‐mesenchymal interface in embryonic skin and kidney. blebbed mice have a null Fras1 mutation and phenocopy human FS. Like humans with FS, they exhibit a high fetal and neonatal mortality, precluding studies of FRAS1 functions in later life. We generated conditional Fras1 null allele mice. Cre‐mediated generalized deletion of this allele generated embryonic skin blisters and renal agenesis characteristic of blebbed mice and human FS. Targeted deletion of Fras1 in kidney podocytes circumvented skin blistering, renal agenesis, and early death. FRAS1 expression was downregulated in maturing glomeruli which then became sclerotic. The data are consistent with the hypothesis that locally produced FRAS1 has roles in glomerular maturation and integrity. This conditional allele will facilitate study of possible role for FRAS1 in other tissues such as the skin. genesis 50:892–898, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The patched gene (Ptc) is a member of the hedgehog signaling pathway which plays a central role in the development of many invertebrate and vertebrate tissues. In addition, Ptc and a number of other pathway members are mutated in some common human cancers. Patched is the receptor for the hedgehog ligand and in the mouse ablation of the Ptc gene leads to developmental defects and an embryonic lethal phenotype. Here we describe a conditional Ptc allele in mice which will have utility for the temporospatial ablation of Ptc function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号