首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In vivo inhibition of bacteriophage phiX174 DNA methylation by nicotinamide resulted in the accumulation of replicative intermediates with multiple-genome length single-stranded "tails". These abnormal replicative intermediates could not be chased into viral single-stranded circular DNA. The effect of nicotinamide on phage maturation and accumulation of abnormal replicative intermediates could be reversed by washing out the inhibitor. The results suggest that the single methyl group present in the viral DNA serves as a recognition site for a specific endonuclease, probably the gene A protein product, that is responsible for the excision of the single-stranded one-genome long viral DNA, before final maturation of the virus occurs.  相似文献   

3.
Accumulation of replicative intermediates of the bacteriophage phi X174 was observed in E. coli C infected cells when phage DNA methylation has been inhibited by nicotinamide or when cells were infected with a temperature-sensitive mutant in gene A. Analysis of the accumulating replicative intermediates by electron microscopy revealed that these molecules are composed of double-stranded DNA rings with multiple-genome length single-stranded "tails". These results suggest that the single 5-methylcytosine residue present in the phage DNA serves as a recognition site for the gene A protein mediating the excision of one-genome long phage DNA. This excision process is oligatory for the final maturation of the phage.  相似文献   

4.
A mutant (designated mec(-)) has been isolated from Escherichia coli C which has lost DNA-cytosine methylase activity and the ability to protect phage lambda against in vivo restriction by the RII endonuclease. This situation is analogous to that observed with an E. coli K-12 mec(-) mutant; thus, the E. coli C methylase appears to have overlapping sequence specificity with the K-12 and RII enzymes; (the latter methylases have been shown previously to recognize the same sequence). Covalently closed, supertwisted double-standed DNA (RFI) was isolated from C mec(+) and C mec(-) cells infected with bacteriophage phiX174. phiX. mec(-) RFI is sensitive to in vitro cleavage by R.EcoRII and is cut twice to produce two fragments of almost equal size. In contrast, phiX.mec(+) RFI is relatively resistant to in vitro cleavage by R.EcoRII. R.BstI, which cleaves mec(+)/RII sites independent of the presence or absence of 5-methylcytosine, cleaves both forms of the RFI and produces two fragments similar in size to those observed with R. EcoRII. These results demonstrate that phiX.mec(+) RFI is methylated in vivo by the host mec(+) enzyme and that this methylation protects the DNA against cleavage by R.EcoRII. This is consistent with the known location of two mec(+)/ RII sequences (viz., [Formula: see text]) on the phiX174 map. Mature singlestranded virion DNA was isolated from phiX174 propagated in C mec(+) or C mec(-) in the presence of l-[methyl-(3)H]methionine. Paper chromatographic analyses of acid hydrolysates revealed that phiX.mec(+) DNA had a 10-fold-higher ratio of [(3)H]5-methylcytosine to [(3)H]cytosine compared to phiX.mec(-). Since phiX.mec(+) contains, on the average, approximately 1 5-methylcytosine residue per viral DNA, we conclude that methylation of phiX174 is mediated by the host mec(+) enzyme only. These results are not consistent with the conclusions of previous reports that phiX174 methylation is mediated by a phage-induced enzyme and that methylation is essential for normal phage development.  相似文献   

5.
The distribution of the methylatable sites GATC and CCATGG was studied by analyzing the molecular average size of restriction fragments of E. coli DNA. Both sites were found to be randomly distributed, reflecting a random pattern of methylation. The methylation pattern of specific sequences such as the origin of replication and rRNA genes has been studied in wild type E. coli and a methylation deficient (dam- dcm-) mutant. These sequences were found to be methylated in wild type cells and unmethylated in the mutant indicating that there is no effect of the state of methylation of these sequences on their expression. Analysis of the state of methylation of GATC sites in newly replicating DNA using the restriction enzyme Dpn I (cleaves only when both strands are methylated) revealed no detectable hemimethylated DNA suggesting that methylation occurs at the replication fork. Taking together the results presented here and previously published data (5), we arrive at the conclusion that the most likely function of E. coli DNA methylations is probably in preventing nuclease activity.  相似文献   

6.
In vivo methylation of replicating bacteriophage phi chi174 DNA   总被引:4,自引:0,他引:4  
The pattern of DNA methylation during the infection of Escherichia coli C cells with bacteriophage φX174, has been studied. In vivo methylated DNA was isolated and analyzed using the following techniques: velocity sedimentation through neutral and alkaline sucrose gradients, isopycnic analysis, chromatography on benzoylated DBAE-cellulose columns and specific enzymatic digestion. All these analytical methods indicated that the DNA molecules that are methylated during the process of phage φX DNA replication are the replicating intermediates composed of a circular complementary strand and a viral strand larger than one genome length. It is concluded that methylation occurs on the nascent DNA strand of the replicating intermediates involved in the synthesis of progeny single-stranded DNA.  相似文献   

7.
Two pairs of restriction enzyme isoschizomers were used to study in vivo methylation of E. coli and extrachromosomal DNA. By use of the restriction enzymes MboI (which cleaves only the unmethylated GATC sequence) and its isoschizomer Sau3A (indifferent to methylated adenine at this sequence), we found that all the GATC sites in E. coli and in extrachromosomal DNAs are symmetrically methylated on both strands. The calculated number of GATC sites in E. coli DNA can account for all its m6Ade residues. Foreign DNA, like mouse mtDNA, which is not methylated at GATC sites became fully methylated at these sequences when introduced by transfection into E. coli cells. This experiment provides the first evidence for the operation of a de novo methylation mechanism for E. coli methylases not involved in restriction modification. When the two restriction enzyme isoschizomers, EcoRII and ApyI, were used to analyze the methylation pattern of CCTAGG sequences in E. coli C and phi X174 DNA, it was found that all these sites are methylated. The number of CCTAGG sites in E. coli C DNA does not account for all m5Cyt residues.  相似文献   

8.
We have studied parent-to-progeny transfer of bacteriophage φX174 DNA during infection of Escherichia coli with isotopically-labeled, lysis-defective phage. After 60 minutes of infection at low multiplicities, 25 to 30% of the input viral DNA is transferred from the double-stranded replicative form into progeny phage; another 10 to 20% is transferred into the progeny single-stranded DNA pool. Thus, at times beyond the normal time of lysis, about 35 to 50% of the parental deoxyribonucleotides are found in progeny single-stranded DNA. Three quarters of the parental label found in the progeny phage is transferred by a dispersive process and one-quarter is transferred by a conservative, or non-dispersive, process such that the parental strand remains intact. At high multiplicities of infection the fraction of parental label transferred decreases.  相似文献   

9.
10.
11.
phiX RF DNA was cleaved by restriction enzymes from Haemophilus influenzae Rf (Hinf I) and Haemophilus haemolyticus (Hha. I). Twenty one fragments of approximately 25 to 730 base pairs were produced by Hinf I and seventeen fragments of approximately 40 to 1560 base pairs by Hha I. The order of these fragments has been established by digestion on Haemophilus awgyptius (Hae III) and Arthrobacter luteus (Alu I) endonuclease fragments of phiX RF with Hinf I and Hha1. By this method of reciprocal digestion a detailed cleavage map of phiX RF DNA was constructed, which includes also the previously determined Hind II, Hae III and Alu I cleavage maps of phiX 174 RF DNA (1, 2). Moreover, 28 conditional lethal mutants of bacteriophage phiX174 were placed in this map using the genetic fragment assay (3).  相似文献   

12.
A highly efficient and much more reproducible system for the heterologous transfection of several kinds of Gram-negative bacterial spheroplasts with bacteriophage phiX174 DNA was established. By mild washing of the speroplasts, the efficiency of transfection of all non-host heterologous bacterial species tested increased one or more orders of magnitude in producing the progeny phages and/or the infectious intermediates. Using the improved heterologous transfection systems, it has become clearer that a strong suppression system operates on the processes of phiX174 progeny phage production and not on those of phiX174 dougle-stranded replicative form DNA synthesis in the heterologous bacterial cells. Similar stimulatory effects of this washing procedure were observed in the homologous transfection. With this improved assay system, even less than 100 molecules of phage phiX174 DNA can be detected and the number of molecules can be determined with accuracy.  相似文献   

13.
14.
The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This property was used to study morphogenesis and to analyse the signals for initiation and termination of the rolling circle DNA replication in vivo. It is shown that the size of the DNA had a strong effect on the encapsidation by the phage coats and the infectivity of the particle. Termination was analysed by using plasmids with two phi X (+) origins either in the same orientation or in opposite orientation. Both origins were used with equal frequency. Initiation at one origin resulted in very efficient termination (greater than 96%) at the second origin in the case of two origins in the same orientation. When the two (+) origins have opposite orientations, no correct termination was observed. The second origin in the opposite strand effectively inhibits (greater than 98%) the normal DNA synthesis; i.e. the covalently bound A protein present in the replication fork interacts with the (+) origin sequence in the opposite strand.  相似文献   

15.
The insertion of a particular phi X DNA sequence in the plasmid pACYC177 strongly decreased the capacity of Escherichia coli cells containing such a plasmid to propagate bacteriophage phi X174. The smallest DNA sequence tested that showed the effect was the HindII fragment R4. This fragment does not code for a complete protein. It contains the sequence specifying the C-terminal part of the gene H protein and the N-terminal part of the gene A protein, as well as the noncoding region between these genes. Analysis of cells that contain plasmids with the "reduction sequence" showed that (i) the adsorption of the phages to the host cells is normal, (ii) in a single infection cycle much less phage is formed, (iii) only 10% of the infecting viral single-stranded DNA is converted to double-stranded replicative-form DNA, and (iv) less progeny replicative form DNA is synthesized. The reduction process is phi X174 specific, since the growth of the related G4 and St-1 phages was not affected in these cells. The effect of the recombinant plasmids on infecting phage DNA shows similarity to the process of superinfection exclusion.  相似文献   

16.
The role of the infecting viral strand in the replication of bacteriophage φX174 replicative form DNA was studied by [3H]thymidine pulse-labeling Escherichia coli cells infected with 2H15N density-labeled phage. The products of a round of semi-conservative replicative form replication (in light medium) do not contain the original heavy viral strand by 15 minutes after infection or later in the presence of chloramphenicol. Similar results were obtained at earlier times in the absence of chloramphenicol. We conclude that the parental viral strand need not be conserved in the replicating DNA structure in succeeding rounds of replication.  相似文献   

17.
The Escherichia coli dnaC protein is not absolutely required in vivo for bacteriophage phiX174 parental replicative-form synthesis (Kranias and Dumas, 1974). However, when rifampin is present at a concentration that inhibits DNA-dependent RNA polymerase, phiX174 parental replicative-form synthesis is dependent on the dnaC protein activity. We conclude that E. coli DNA-dependent RNA polymerase can substitute for the dnaC protein in phiX174 parental replicative-form DNA synthesis, presumably in its initiation. The implications of this result with respect to the in vitro synthesis of the complementary strand of phiX174 DNA are discussed.  相似文献   

18.
Studies on the maturation of the head of bacteriophage T4.   总被引:2,自引:0,他引:2  
The presentation focuses on the structural rearrangements of the subunits and the processing of the various protein constituents which accompany the maturation events of the head of bacteriophage T4. The major features of the maturation steps of the head are the following: (a) the viral DNA is pulled into an empty head in a series of events; (b) cleavage of two core proteins, P22 (mol. mass = 31000), to small fragments and the internal protein IPIII (mol. mass = 23000) to IPIII (mol. mass = 21000) appears to be intimately linked to the DNA packaging event, whereas the cleavage of the major head protein of the viral coat, P23 (mol. mass = 55000), to P23 (mol. mass = 45000) precedes the DNA packaging event. Recently, we have obtained information about the mechanism by which the viral DNA is pulled into a preformed empty head. Our evidence suggests that the DNA becomes attached to the inside of the empty head and is subsequently collapsed in the interior by the so-called internal peptides. These are highly acidic and derived from a large precursor protein by cleavage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号