首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genital tract fluids were collected continuously from conscious ewes through catheters inserted surgically into the uterus and oviducts. Cauda epididymal spermatozoa and fluid were obtained through catheters inserted into the transected vas deferens. The washed spermatozoa were labelled using the surface-specific chloroglycoluril-Na125I procedure. High-resolution electrophoretic analysis of sperm plasma membrane preparations revealed a partial loss of a major surface component (i.e. Mr 97,000) during incubation in uterine and oviduct fluids. This specific loss resulted in a shift in radioactivity distribution toward an Mr 24,000 component which had been previously identified as a sialoglycoprotein. No significant changes in the distribution of radiolabelled surface components were detectable when the spermatozoa were incubated in synthetic medium. Incubation of unlabelled spermatozoa in 125I-labelled uterine fluid showed that adsorption of exogenous fluid components was highly selective; an Mr 16,000 polypeptide was greatly enriched on the sperm surface although it was only a minor component in the incubation fluid. Adsorption of labelled oviduct fluid components was also selective and involved predominantly high molecular weight components (i.e. Mr 140,000, 95,000, 78,000, 53,000). When spermatozoa were incubated in labelled cauda epididymal fluid after exposure to unlabelled uterine and oviduct fluids, several fluid components were incorporated by the plasma membrane, indicating that surface renovation of 'capacitated' spermatozoa may be a more general process rather than a specific event. These results suggest that capacitation of ram spermatozoa involves loss of specific surface proteins as well as selective adsorption of exogenous fluid components and point to a polypeptide in uterine fluid as an active constituent.  相似文献   

2.
Sulfated glycoprotein-2 (SGP-2) is one of the major proteins secreted by rat Sertoli cells and epididymal cells in culture. The disulfide-linked dimeric protein secreted by Sertoli cells and found in seminiferous tubule fluid is composed of monomers of Mr 47 000 and 34 000 whereas the epididymal protein exhibits monomers of Mr 40 000 and 29 000. When both forms were chemically or enzymatically deglycosylated, they yielded proteins of similar molecular weight. No modification of the higher molecular weight testicular form by epididymal cells or fluids could be detected in incubation media. SGP-2 mRNA was localized in epididymal epithelium by in situ hybridization. Northern blot analysis indicated the testicular and epididymal mRNAs were of similar size. These findings suggest that the two forms of the protein occur because of tissue-specific post-translational modifications. The detergent-extracted protein from washed testicular spermatozoa is of the higher molecular weight form while epididymal sperm carry the lower molecular weight form. Immunohistochemical evidence suggests that the testicular form is removed prior to the initial segment of the epididymis and the epididymal form is applied in the proximal caput epididymidis. SGP-2 was immunolocalized to the sperm membrane at the ultrastructural level and was distinctly different from the immunolocalization of outer dense fiber proteins and fibrous sheath proteins.  相似文献   

3.
Localization of epididymal secretory proteins on rat spermatozoa   总被引:4,自引:0,他引:4  
Spermatozoa from the testis and cauda epididymidis of the rat were surface labelled with radioactive iodide. Detergent extracts of radioiodinated spermatozoa immunoprecipitated with antisera against specific epididymal proteins, followed by polyacrylamide gel electrophoresis, revealed two proteins (D and E of Mr 27 000 and 28 000, respectively) which became associated with spermatozoa during epididymal transit. These proteins were observed by immunofluorescence microscopy to be located over a restricted area of the head surface. Proteins with similar molecular weight were labelled on spermatozoa from the cauda epididymidis, but not from the testis, by reaction with sodium boro[3H]hydride in the presence of galactose oxidase. However, failure to immunoprecipitate with antibodies to Proteins D and E and non-coincident migration on two-dimensional gel electrophoresis established the non-identity of these proteins. Compared with Proteins D and E, two other major epididymal secretory proteins (Proteins B and C of Mr 16 000) associated with spermatozoa to a relatively minor extent during epididymal transit.  相似文献   

4.
To determine sequential surface glycoprotein changes in ram spermatozoa during epididymal maturation, labeling procedures were used that were specific for galactosyl, galactosaminyl, and sialyl residues. Spermatozoa and fluids were collected from the rete testis through surgically inserted catheters or flushed from the lumen of selected regions of the epididymis: i.e., caput, proximal and distal corpus, and cauda epididymidis. Ejaculated spermatozoa were collected by electrical stimulation. Electrophorectic analysis of galactose (GAO)-sodium boro[3H]hydride (NaB3H4)-treated spermatozoa revealed a sharp overall decrease in carbohydrate residue labeling during sperm transport through the efferent ducts and caput epididymidis, whereas several high molecular weight components in the 600K to 250K zone persisted throughout epididymal transit. Preincubation of spermatozoa with neuraminidase (NEUA) exposed galactose residues that had not been labeled with GAO alone (i.e., 97K, 43K, 24K) in both cauda epididymal and ejaculated spermatozoa. Treatment with sodium metaperiodate-NaB3H4 labeled many of the surface components displayed by NEUA-GAO-treated spermatozoa and revealed an overall shift in sialyl residue labeling from high molecular weight components in immature testicular spermatozoa to low molecular weight components in mature cells. The labeling procedures applied allowed only a qualitative interpretation of the results and they presumably represent the minimum possible changes. Nonetheless, our results demonstrate that glycoproteins are a major factor in surface transformations of ram spermatozoa in the epididymis, especially during the initial stages of maturation.  相似文献   

5.
Fluid obtained by stripping dissected seminal vesicles was mixed with phosphate-buffered saline and the soluble proteins were separated by gel filtration on BioRad P150 into 4 fractions. Fractions were collected and concentrated using an Amicon ultrafiltration system using YM2 membranes with a molecular weight cut-off of 1000. Epididymal sperm suspensions were incubated in medium containing one of the 4 fractions or 1 mg BSA/ml, or no added protein. After incubation for 2 h the motility of the spermatozoa in each suspension was assessed by a videomicrographic procedure. Two aspects of motility, velocity and the shape of the swimming path, were monitored. The results indicate that the seminal vesicles produce at least three factors that influence sperm motility. Fraction 3 (Mr 12,000-24,000) was detrimental to motility; after incubation for 2 h almost all the spermatozoa were immotile. Fractions 2 (Mr 25,000-40,000) and 4 (Mr 7000-12,000) both influenced the shape of the swimming path: spermatozoa incubated in Fraction 2 had straighter trajectories while those incubated in Fraction 4 showed more progressive paths with less side-to-side movement of the head about the path. These effects of factors from the seminal vesicle fluid on sperm motility may influence the way in which the spermatozoa move in the female reproductive tract and could help to explain why removal of the seminal vesicles reduces fertility in the mouse.  相似文献   

6.
During the reproductive period (spring) under the control of testosterone the epididymis of the viviparous lizard secretes a group of major proteins with an approximate Mr of 19,000 named L protein(s). These proteins are recognized by a specific immunoserum and bind to the heads of spermatozoa. During spring, translation in reticulocyte lysate of RNA from secreting epididymis (stage 6) produced 5 immunoprecipitable bands with Mr values from 21,500 to 25,000. Such synthesis is undetectable during sexual rest in summer (stage 1). The 5 bands disappear when translation is performed in the presence of dog pancreas microsomes although a new band of Mr 19 000 becomes prominent. This suggests that synthesis of L protein involves two steps, i.e. synthesis of precursors (L preproteins) followed by a maturation process. At least 11 translation products (including L-preproteins) are involved in annual variations that follow the differentiation of the epididymal epithelial cells and their androgen dependency was studied by castration and in-vitro stimulation by testosterone. In these conditions, testosterone is able to control accumulation of RNA corresponding to L preproteins and to a translation product of Mr 29 000.  相似文献   

7.
During epididymal transit, spermatozoa acquire selected proteins secreted by epithelial cells. We recently showed that P25b, a protein with predictive properties for bull fertility, is transferred from prostasome-like particles present in the cauda epididymal fluid (PLPCd) to the sperm surface. To further characterize the interactions between PLPCd and epididymal spermatozoa, PLPCd were prepared by ultracentrifugation of bull epididymal fluid, then surface-exposed proteins were biotinylated and coincubated in different conditions with caput epididymal spermatozoa. Western blot analysis revealed that only selected proteins are transferred from PLPCd to spermatozoa. MALDI-TOF analysis revealed that these transferred proteins are closely related. The pattern of distribution of the PLPCd transferred varied from one sperm cell to the other, with a bias toward the acrosomal cap. This transfer appeared to be temperature sensitive, being more efficient at 32-37 degrees C than at 22 degrees C. Transfer of PLPCd proteins to spermatozoa was also pH dependant, the optimal pH for transfer being 6.0-6.5. The effect of divalent cations on PLPCd protein transfer to caput spermatozoa was investigated. Whereas Mg(2+) and Ca(2+) have no effect on the amount of proteins remaining associated with spermatozoa following coincubation, Zn(2+) had a beneficial effect. These results are discussed with regard to the function of PLPCd in epididymal sperm maturation.  相似文献   

8.
Modifications in rabbit sperm plasma membranes during epididymal passage and after ejaculation were investigated by used of three lectins: concanavalin A (Con A); Ricinus communis I (RCA(I)); and wheat germ agglutinin (WGA). During sperm passage from caput to cauda epididymis, agglutination by WGA drastically decreased, and agglutination by RCA(I) slightly decreased, although agglutination by Con A remained approximately unchanged. After ejaculation, spermatozoa were agglutinated to a similar degree or slightly less by Con A, WGA, and RCA(I), compared to cauda epididymal spermatozoa. Ultrastructural examination of sperm lectin-binding sites with ferritin- lectin conjugates revealed differences in the densities of lectin receptors in various sperm regions, and changes in the same regions during epididymal passage and after ejaculation. Ferritin-RCA(I) showed abrupt changes in lectin site densities between acrosomal and postacrosomal regions of sperm heads. The relative amounts of ferritin-RCA(I) bound to heads of caput epididymal or ejaculated spermatozoa. Tail regions were labeled by ferritin RCA(I) almost equally on caput and cauda epididymal spermatozoa, but the middle-piece region of ejaculated spermatozoa was slightly more densely labeled than the principal-piece region, and these two regions on ejaculated spermatozoa were labeled less than on caput and cuada epididymal spermatozoa. Ferritin-WGA densely labeled the acrosomal region of caput epididymal spermatozoa, although labeling of cauda epidiymal spermatozoa was relatively sparse except in the apical area of the acrosomal region. Ejaculated spermatozoa bound only a few molecules of ferritin-WGA, even at the highest conjugate concentrations used. Caput epididymal, but not cauda epididymal or ejaculated spermatozoa, bound ferritin-WGA in the tail regions. Dramatic differences in labeling densities during epididymal passage and after ejaculation were not found with ferritin-Con A.  相似文献   

9.
The surface membrane of mammalian spermatozoa is known to undergo considerable conformational and organizational changes during epididymal maturation. However, much less is known about remodelling of intracellular membranes. In this communication we have used specific immunological markers to study the behavior of several antigens both on and within rat spermatozoa as they mature in the epididymis. Four monoclonal antibodies (McAbs) designated 5B1, 1B5, 2D6, and 1B6 were used to probe testicular and caput and cauda epididymal spermatozoa by indirect immunofluorescence and immunogold labeling techniques. None of the McAbs bound to testicular spermatozoa; in all cases, they became reactive only on spermatozoa which had reached the caput epididymis. McAb 5B1 was restricted to the outer acrosomal membrane (OAM) of the acrosomal cap domain. The epitope first appeared on antigen(s) with molecular mass (Mr) of approximately 200 kDa in immature spermatozoa, but later in mature spermatozoa the antigen(s) had Mr of approximately 160 kDa. The antigen(s) recognized by 1B5 McAb on the other hand was initially distributed over the OAM of the entire acrosomal domain (cap + equatorial segment), but during maturation it became progressively more restricted in area until in cauda spermatozoa only the anterior tip of the OAM bound the McAb. McAb 2D6 also bound to the entire OAM and acrosomal contents of caput spermatozoa, but, unlike 5B1 and 1B5 McAbs, reactivity was transient. That is, staining was first detected in caput spermatozoa but then disappeared in corpus and cauda spermatozoa. In contrast to all of the above, 1B6 McAb bound to the surface membrane overlying the entire head domain of caput spermatozoa, but during maturation it became restricted to the postacrosomal domain. These results indicate that, in addition to remodeling of the surface membrane during epididymal maturation, extensive processing of intracellular membrane antigens also takes place and that it is very active within the acrosome. The nature of these intracellular processing events remains to be elucidated, but they may have important consequences for membrane fusion and cell recognition phenomena during fertilization.  相似文献   

10.
The capacity to undergo the acrosome reaction and subsequent fusion with egg plasma membrane was examined in rete testicular and cauda epididymal spermatozoa from boars. Sperm penetration assay using zona-free hamster eggs demonstrated that the penetration rates for rete testicular spermatozoa preincubated for induction of the acrosome reaction for 2 and 3 h were 55% and 97%, respectively. However, most of the eggs (93%) were penetrated with polyspermy by cauda epididymal cells preincubated for 2 h. Results obtained by the triple-stain technique revealed the percentages of acrosome-reacted spermatozoa in the rete testicular and cauda epididymal samples preincubated for 3 h to be 61% and 74%, respectively. These results indicate that many rete testicular spermatozoa possess the capacity to undergo the acrosome reaction and subsequent fusion with egg plasma membrane in vitro, which appears to be completely established only after sperm transit through at least the proximal part of the epididymis. © 1993 Wiley-Liss, Inc.  相似文献   

11.
A murine monoclonal antibody raised against hamster cauda epididymal spermatozoa was shown to recognize an Mr 34,000 component of epididymal epithelium. Antigen was localized by immunocytochemistry on the surface and in the apical cytoplasm of principal cells in the proximal corpus epididymidis but not in the caput or initial segment regions. Spermatozoa from the corpus epididymidis expressed antigen on their post-acrosomal plasma membrane and annulus. Epididymal principal cells from the proximal corpus region when cultured in vitro bound antibody on their apical surface for at least 5 days. Spermatozoa from the caput epididymidis co-cultured with epithelium expressed antigen after incubation for 8 and 24 h. These results suggest that a surface change to epididymal spermatozoa during maturation in vivo may also be elicited during in-vitro culture.  相似文献   

12.
In five beef bulls spermatogenic cells labelled with (3)H-thymidine were used to estimate the duration of one cycle of the seminiferous epithelium (S.E.) and epididymal passage (E.P.) of spermatozoa after 10 or 20 hr of scrotal insulation designed to increase testicular temperature. From six autoradiographic estimates in three bulls, the mean value for 1 S.E. cycle was 13.4 days (range 12.9 to 13.6 days). Two estimates of E.P. were both 13.5 days. Scrotal insulation altered both semen quality (lowered percentage live and motile spermatozoa, raised percentage abnormal spermatozoa and lowered concentration per ml spermatozoa) and the histological appearance of the seminiferous epithelium. However, the rate of spermatogenesis and epididymal transport was unchanged.  相似文献   

13.
The sequential interactions of epididymal secretory proteins with spermatozoa during epididymal transit were examined. Mice received injections of 35S-methionine, and the radiolabeled luminal fluid and sperm-associated proteins were analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis at various times after injection. The majority of the luminal fluid and sperm-associated proteins were found in the caput epididymidis at 8 h; by 7 days, many of these proteins had been transported to the cauda epididymidis. Two classes of epididymal protein-sperm interactions were distinguished on the basis of regional synthesis and secretion. The major class consisted of proteins that were synthesized, secreted, and bound to spermatozoa in the caput epididymidis. In this class, however, the binding of proteins to the spermatozoa was variable. For example, a protein of 25 kDa remained associated with spermatozoa in substantial amounts during epididymal transit, while proteins of 40 and 35 kDa decreased in amount. Other proteins such as a protein of 18 kDa did not remain associated with spermatozoa. Another class of proteins (54, 44, 29 kDa) were synthesized and secreted from all epididymal regions but bound only to caput spermatozoa. Most of the epididymal proteins appeared to be tightly bound to the spermatozoa since spermatozoa already saturated with the unlabeled protein in the distal epididymis remained so even though the spermatozoa were surrounded by labeled proteins in the luminal fluid. These studies demonstrate that a variety of specific interactions occur between epididymal secretory proteins and spermatozoa as they migrate and mature in the epididymis.  相似文献   

14.
Ram spermatozoa taken from the epididymal head, body, or tail or from the ejaculate were examined by microspectrometry after incubation in vitro with ewe uterine fluids at 37°C for 20 hours. Compared with incubation in Ringer's solution, uterine fluid incubation resulted in a decrease in nuclear Feulgen-DNA content. This decrease was greater for more immature spermatozoa (29.0 and 47.3% for spermatozoa from head and body, respectively) than for more mature spermatozoa (17.7 and 4.0% for spermatozoa from the tail and the ejaculate, respectively). In parallel with this decrease, there was a condensation of the chromatin which resulted in a decreased nuclear surface area, especially in spermatozoa taken from the epididymal body. Therefore, it would appear that, during epididymal maturation, changes in the ability of spermatozoa to maintain embryonic development as the spermatozoa mature are due to changes in chromatin structure.  相似文献   

15.
An obstacle to the study of protein phosphorylation in mammalian spermatozoa has been the inability to incorporate sufficient amounts of 32Pi into cellular adenosine triphosphate (ATP) (Babcock et al., 1975). We report conditions under which 32Pi is effectively incorporated into the ATP of intact bovine spermatozoa. In the presence of a bicarbonate-buffered medium containing glucose, spermatozoa incorporated 32P into intracellular ATP in a time-dependent manner; after 2 h of incubation, the specific activity of [gamma-32P]ATP (2.3 X 10(4) cpm/nmol ATP) was estimated to be 50-65% of the specific activity of the intracellular phosphate pool. In the absence of glucose or other added substrates, the specific activity of [gamma-32P]ATP was 10-25% that of the specific activity observed in the presence of glucose. Washed spermatozoa incubated in carrier-free 32Pi for 2 h at 37 degrees C, and solubilized in a solution containing final concentrations of 6.8 M urea, 6% NP4O, and 5% beta-mercaptoethanol contained in excess of 40 32Pi-labeled proteins as assessed by two-dimensional polyacrylamide gel electrophoresis. Major phosphoproteins had approximate molecular weights of 93,000, 40,000, and 22,000. A different two-dimensional gel pattern was observed when cells were extracted with a solution containing 38.5 mM 2[N-cyclohexylamino] ethanesulfonic acid (CHES), pH 9.5/1.5% sodium dodecyl sulphate (SDS) at 100 degrees C. In contrast to the urea/Nonidet P-40 (NP40)/beta-mercaptoethanol extract, a 56,000 Mr phosphoprotein represented a major component while the 40,000 Mr and several of the 22,000 Mr polypeptides were markedly reduced in radioactive intensity. The 56,000 Mr species present in the CHES/SDS extract comigrated with the purified, phosphorylated regulatory subunit (RII) of cyclic adenosine 3',5'-monophosphate-dependent protein kinase from bovine heart. Antibodies to RII immunoprecipitated a 56,000 Mr, 32P-labeled polypeptide from the CHES/SDS extract that comigrated with purified, [32P] RII after two-dimensional electrophoresis. RII, then, appears to represent one of the endogenous phosphoproteins of intact bovine epididymal spermatozoa.  相似文献   

16.
Enhancement of sperm transport through the rat epididymis after castration   总被引:1,自引:0,他引:1  
Transport of spermatozoa through different regions of the epididymis has been followed by labelling testicular spermatozoa with [3H]thymidine in intact rats and in rats in which the efferent ducts were ligated or the testes were removed. In intact rats, the transit times of epididymal spermatozoa from the initial segment to the caput, from the caput to the corpus, and from the corpus to the cauda were 2, 4 and 2 days, respectively, giving a total transit time of 8 days. After bilateral castration, labelled spermatozoa were transferred from the initial segment into the proximal cauda by 2 days and appeared in the ductus deferens by 4 days. This effect was prevented by a daily subcutaneous injection of testosterone propionate (0.2 mg/kg). Bilateral efferent duct ligation had only a slight effect on the passage of epididymal spermatozoa. The results indicate that epididymal sperm transport is enhanced after androgen withdrawal.  相似文献   

17.
The cauda epididymidis functions in the storage and protection of mature, fertile spermatozoa. We previously identified a region-specific secretory glycoprotein (termed HEP64) of the hamster proximal cauda epididymidis that specifically bound and coated the nonviable, but not the viable, spermatozoa within the epididymal lumen. In this study we employed expression screening of a hamster epididymal cDNA library to obtain the full-length sequence of HEP64 and to identify it as the fibrinogen-like protein fgl2. Northern blot analysis demonstrated that fgl2 mRNA is highly expressed by the proximal cauda epididymidis in comparison to other hamster tissues examined, and, in situ hybridization analysis of the epididymis revealed that fgl2 mRNA exhibited a region- and principal cell-specific expression pattern. Immunohistochemistry confirmed the association of fgl2 with abnormal spermatozoa in the cauda epididymidis and revealed smaller fgl2-containing particles. Immunoelectron microscopy revealed that fgl2 was distributed throughout an amorphous, "death cocoon," complex assembled onto abnormal spermatozoa and that the smaller fgl2 aggregates consisted of the amorphous material with embedded sperm fragments, organelles, and membrane vesicles. A protocol was developed to isolate an enriched death cocoon fraction. SDS-PAGE and microsequence analyses revealed that the Mr 64,000 fgl2 monomer was assembled into two disulfide-linked oligomers of Mr 260,000 and 280,000. These data demonstrate that the epididymis possesses a specific mechanism to identify and envelop defective spermatozoa with a protein complex containing the fibrinogen-like protein fgl2. We propose that this represents an important protective mechanism not only to shield the viable sperm population from potentially deleterious enzymes released by dying spermatozoa but also to prevent the release of sperm proteins that could initiate an immune response if they escaped the epididymal environment.  相似文献   

18.
Clusterin (sulfated glycoprotein-2) is a heterodimeric glycoprotein synthesized and secreted by rat Sertoli cells. An antigenically similar form is synthesized and secreted by the epididymis. The goal of this study was to define the epididymal regions in which clusterin is present and the regions in which clusterin is secreted and interacts with developing spermatozoa. Seminiferous tubule (STF), caput, corpus, and cauda fluids were collected by micropuncture and/or microperfusion and two-dimensional Western blot analysis was performed with a polyclonal antibody directed against Sertoli cell clusterin. Clusterin was found in both STF and epididymal fluid. STF contained predominantly the clusterin heavy chain (45 kd); however, a 70 Kd heterodimer was present under nonreducing conditions. Two subunits of clusterin with lower molecular weights (41 kd, heavy chain; 32 kd, light chain) and higher isoelectric points were present in the luminal fluid of all epididymal regions. The intraluminal levels of the heavy and light chains decreased from caput to cauda. Analysis by two-dimensional gel electrophoresis of proteins secreted directly into the epididymal luminal fluid revealed that clusterin was secreted by caput epithelium and not by the corpus and cauda epithelium. Western blots of membrane extracts from testicular, caput, and cauda spermatozoa revealed that testicular clusterin was associated with testicular sperm and epididymal clusterin with predominantly caput sperm. Our findings suggest that clusterin is secreted into the caput epididymal lumen, where it binds to sperm and then dissociates from sperm to be endocytosed by cells of the distal epididymal epithelium.  相似文献   

19.
Spermatozoa from the testis and cauda epididymidis were solubilized by detergent treatment and electrophoresis on SDS polyacrylamide gels revealed that the relative amounts of 13 detergent-extractable proteins decreased during passage of spermatozoa through the epididymis, 6 increased, whilst the remainder showed little or no change. Lactoperoxidase-catalysed iodination of plasma membrane proteins showed that the components carrying most of the label in testicular spermatozoa had Mr values of 110 000, 94 000, 84 000, 55 000 and 42 000 whereas on cauda epididymal spermatozoa the Mr values were 47 000, 24 000, 17 000, 14 500 and 13 500. Substantial differences were also noted in the protein composition of rete testis fluid and cauda epididymal plasma. The results support the concept that there is a considerable reorganization of the molecular architecture of the plasma membrane of spermatozoa during maturation in the epididymis.  相似文献   

20.
Epididymal fluid, which is derived from testicular fluid, contains several unusual compounds. Little information is available on the composition of the testicular fluid of primates, but the fluid of the ram, bull, boar, and rat contains high concentrations of inositol and certain amino acids. Analyses have been made of epididymal fluid collected from the cauda epididymis of the Rhesus monkey and several nonprimate species (e.g., ram, bull, dog, stallion, rabbit, guinea pig, rat, and hamster), but similar information on the human is lacking. Cauda epididymal fluid appears to be similar in composition from one mammalian species to another. However, the epididymal plasma differs considerably from blood, lymph, and other extracellular fluids. The environment of spermatozoa in the epididymis is, therefore, highly specialized, and presumably in some way contributes to the prolonged survival of spermatozoa in this organ, and provides substrates for the metabolism of the spermatozoa. The chief characteristics of the cauda epididymal plasma are the low concentration of inorganic ions and the high levels of several unusual organic constituents namely, glycerylphosphorylcholine, carnitine, sialic acid, amino acids, glycosidases, and phosphatases. At least one antifertility compound, namely, orally administered α-chlorohydrin, appears to be concentrated in the epididymis. Studies on laboratory animals, domestic species, and man, suggest that it inhibits enzymes of the glycyolytic pathway in spermatozoa, and this may be the basis for its antifertility activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号