首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多头绒泡菌染色体构建过程的形态学研究   总被引:4,自引:0,他引:4  
以同步核内有丝分裂的多头绒泡菌(Physarum polycephalum)原质团为材料,在有丝分裂周期中连续取材,按常规方法制备超薄切片,在电镜下研究了染色体形态构建的整个过程。有丝分裂前期,首先是G_2期凝集的染色质块逐渐解集缩成为松散状,染色质在松散的同时逐渐改组成直径为80~150nm的松散染色线结构。接着是在松散的染色线上形成一些电子密度高的集缩区,随着集缩区的增多和扩展,染色线缩短变粗,最后形成直径300~350nm的染色体。上述两个过程各需30min左右。与上述过程同时发生的是,核仁由中央位置逐渐移向边缘,前期50min左右时在近核膜处呈团块状解体。染色体形态构建的整个过程约需1h,可分为染色质的松散改组和集缩两个连续的步骤,25~30nm染色质纤维是这一过程中能分辨的最细的形态单位。  相似文献   

2.
We succeeded to visualize the chromoneme or a filamentous chromatin structure, with the mean thickness 0.1–0.2 μm, as a higher level of chromatin compactization in animal and plant cells at different stages of chromosome condensation at mitotic prophase and during chromatid decondensation at telophase. Under the natural conditions, chromoneme elements are not detected in the most condensed chromatin of metaphase chromosomes on ultrathin sections. We studied the ultrastructure and behavior of the chromatin of mitotic chromosomes in situ in cultured mouse L-197 cells under the conditions selectively demonstrating the chromoneme structure of the mitotic chromosomes in the presence of Ca2+. Loosely packaged dense chromatin bands, ca. 100 nm in diameter, chromonemes, were detected in chromosome arms in a solution containing 3 mM CaCl2. When transferred in a hypotonic solution containing 10 mM tris-HCl, these chromosomes swelled, lost the chromoneme level of structure, and rapidly transformed in loose aggregates of elementary DNP fibrils, 30 nm in diameter. After this decondensation in the low ionic strength solution, the chromoneme structure of mitotic chromosomes was restored when they were transferred in a Ca2+ containing solution. The morphological characteristics of the chromoneme and pattern of its packaging in the chromosome were preserved. However, when the mitotic cells with chromosomes, in which the chromoneme structure was visualized with the help of 3 mM CaCl2, were treated with a photosensitizer, ethidium bromide, and illuminate with a light with the wavelength 460 nm, chromatic decondensation under the hypotonic solution was not observed. The chromoneme elements in a stabilized chromatin of the mitotic chromosome preserved specific interconnection and the general pattern of their packaging in the chromatid was also preserved. The chromoneme elements in the chromosomes stabilized by light preserved their density and diameter even in a 0.6 M NaCl solution, which normally leads to chromoneme destruction. An even more rigid treatment of the stabilized chromosomes with a 2 M NaCl solution, which normally fully decondenses the chromosomes, made it possible to detect a 3D reticular skeleton devoid of any axial structures. __________ Translated from Ontogenez, Vol. 36, No. 5, 2005, pp. 323–332. Original Russian Text Copyright ? 2005 by Burakov, Tvorogova, Chentsov.  相似文献   

3.
Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIalpha and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150-200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200-300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial "glue."  相似文献   

4.
The chromatin organization in developing germ cells of Drosophila hydei males was studied with the highly sensitive DNA stain DAPI (4, 6-diamidino-2-phenylindole dichloride). The prophase of meiosis I is characterized by decondensed chromosomes and only late during this stage do they condense rapidly. The sex chromosomes show allocycly. During postmeiotic development the final condensation of chromatin is preceded by a cycle of condensation and subsequent decondensation. Meiotic chromosomes were studied in more detail after orcein staining. Pairing sites of the sex chromosomes could be localized in the distal end of the heterochromatic arm of the X chromosome and distally in both arms of the Y chromosome. The various heterochromatic parts of the genome condense differentially in meiosis. Chromatin reorganization was studied cytochemically with antibodies raised against histones H1 and H2A of D. melanogaster. The core histone H2A is present in spermatid nuclei until the late elongation stage. However, histone H1 is not found in the chromatin later than the early primary spermatocyte stage. Thus, chromatin reorganization during spermatogenesis in D. hydei is complex. The process is discussed with regard to possible functions.  相似文献   

5.
An ultrastructural study has been made of spermatogenesis in two species of primitive spiders having holocentric chromosomes (Dysdera crocata, XO and Segestria florentia X1X2O). Analysis of the meiotic prophase shows a scarcity or absence of typical leptotene to pachytene stages. Only in D. crocata have synaptonemal complex (SC) remnants been seen, and these occurred in nuclei with an extreme chromatin decondensation. In both species typical early prophase stages have been replaced by nuclei lacking SC and with their chromatin almost completely decondensed, constituting a long and well-defined diffuse stage. Only nucleoli and the condensed sex chromosomes can be identified. — In S. florentina paired non-homologous sex chromosomes lack a junction lamina and thus clearly differ from the sex chromosomes of more evolved spiders with an X1X2O male sex determination mechanism. In the same species, sex chromosomes can be recognized during metaphase I due to their special structural details, while in D. crocata the X chromosome is not distinguishable from the autosomes at this stage. — The diffuse stage and particularly the structural characteristics of the sex chromosomes during meiotic prophase are reviewed and discussed in relation to the meiotic process in other arachnid groups.  相似文献   

6.
Premature chromosome condensation (PCC) was induced in order to study the arrangement of muntjac chromosomes in the interphase nuclei of proliferating and resting cells with respect to their polarity and the spatial relationship between them. The data were compared with the situation in in situ fixed and colcemid blocked metaphases. It appears that in rapidly dividing cells almost all G1- and G2 interphase chromosomes exhibit the Rabl type polarized orientation. This pattern still predominates in G0 lymphocytes which may have been arrested at this stage for some months or even years. — The location of the small chromosome Y2 was found to be central in normal metaphases but peripheral in colcemid blocked mitoses. The behavior in the premature condensed chromosome preparations was intermediate. Measurements of centromere distances between all possible pairs of chromosomes as well as on the relative position of chromosomes in circular spreads revealed no evidence for homologous somatic association during interphase and metaphase or any other suprachromosomal ordering principle. Interphase chromosome orientation seems to be solely the result of chromosome arrangement of the foregoing anaphase. Association between heterochromatic regions or the nucleolus organizers did not substantially influence this pattern. There is no support for speculations that in mammalian cells close proximity of homologoues sites is instrumental in functional cooperation.  相似文献   

7.
The localization of DNA in the condensed interphase chromosomes of Euglena was determined by immunoelectron microscopy. Deposits of gold particles that coincided with the localization of DNA followed threads that corresponded to the chromatin fibers. The threads were 55–80 nm in diameter and were assumed to be supersolenoids. The localization of gold deposits on chromosomes that had been sectioned in various directions suggested that the chromatin fibers coiled around the surface of chromosomes, with a wide central axial region of the chromosomes remaining free of DNA. These findings are discussed in relation to current models of chromosomal structure.  相似文献   

8.
At meiotic prophase the chromatin becomes arranged in loops on newly formed chromosome cores. The cores of homologous chromosomes become aligned in parallel and thus form the synaptonemal complex (SC), a structure found in the meiocytes of nearly all recombinationally competent, sexually reproducing organisms. We report that two polyclonal antibodies against topoisomerase II (topo II), which recognize the mitotic metaphase chromosome scaffold give, at pachytene, a positive immunocytological reaction with the chromatin and, predominantly, with the cores and centromeric regions of the paired chromosomes. It therefore appears that during meiotic prophase, topo II — a DNA-binding enzyme implicated in transient double-strand breaks, chromosome condensation, and anaphase separation — is associated with the chromatin and SCs of the pachytene and diplotene chromosomes.  相似文献   

9.
With simultaneous immunofluorescence and fluorescent in situ hybridization, we have determined the organization of native and heterologous DNA sequences relative to the cores of meiotic prophase chromosomes. The normal chromatin organization is demonstrated with probes of mouse sequences: a cosmid probe that identities unique sequences and a 720 kb yeast artificial chromosome (YAC) probe that recognizes a specific region of the chromatin domain. The heterologous DNA consists of a 1.8 Mb insertion of 40 tandem head-to-tail phage LIZ vectors and of 11.4 Mb of bacterial/mouse DNA repeats. The lengthy insert is unusual in that it is not contained in the chromatin domain of chromosome 4 and in that it fails to form direct attachments to the chromosome core. The ends are attached indirectly, probably by means of the flanking mouse sequences. At late stages of meiotic prophase, while the terminal attachments remain the same, the DNA becomes highly compacted. Apparently, higher order condensation and core attachment are independent processes. The condensed inserts relax precociously at metaphase I. In the mouse heterozygous for the insert, the two sister inserts are usually merged, as are all four inserts in the homozygous mouse. Evidently chromatin loops with identical sequences can become associated during meiotic prophase. Mouse sequences within a heterologous DNA insert (repeats of bacterial plasmid pBR322 with a mouse -globin insert) were observed to restore some degree of core attachment.  相似文献   

10.
Preparative polyacrylamide gel electrophoresis was used to examine histone phosphorylation in synchronized Chinese hamster cells (line CHO). Results showed that histone f1 phosphorylation, absent in G1-arrested and early G1-traversing cells, commences 2 h before entry of traversing cells into the S phase. It is concluded that f1 phosphorylation is one of the earliest biochemical events associated with conversion of nonproliferating cells to proliferating cells occurring on old f1 before synthesis of new f1 during the S phase. Results also showed that f3 and a subfraction of f1 were rapidly phosphorylated only during the time when cells were crossing the G2/M boundary and traversing prophase. Since these phosphorylation events do not occur in G1, S, or G2 and are reduced greatly in metaphase, it is concluded that these two specific phosphorylation events are involved with condensation of interphase chromatin into mitotic chromosomes. This conclusion is supported by loss of prelabeled 32PO4 from those specific histone fractions during transition of metaphase cells into interphase G1 cells. A model of the relationship of histone phosphorylation to the cell cycle is presented which suggests involvement of f1 phosphorylation in chromatin structural changes associated with a continuous interphase "chromosome cycle" which culminates at mitosis with an f3 and f1 phosphorylation-mediated chromosome condensation.  相似文献   

11.
12.
Summary Meristematic cells of pea cotyledonary buds blocked in G0–1 state contain a small nucleolus with a large central clear area surrounded by a fibrillar rim. The nucleolar structure varies according to the cell cycle from the G0–1-blocked state until the first mitoses occurring between 24 and 27h after removal of the main stem. In order to better identify and understand the role of the central area in the nucleolar function, its content was investigated by cytochemical and terminal deoxynucleotidyl transferase-immunogold methods. The central area showed the characteristics of a vacuole commonly constituted of the condensed chromatin, ribonucleoprotein granules, and lack of argyrophilic proteins. 3 h after decapitation, a thickening of the fibrillar rim occurred, accompanied by an increase of granules in the vacuole. After 6h, the unique vacuole broke up into two to four small vacuoles in which the granules are more abundant. After 12 h the nucleolus acquired compact structure with few minute vacuoles dispersed over the fibrillar component. During the whole cell cycle, the condensed chromatin is always observed in the vacuole. Our findings suggest that the appearance of the vacuoles is subsequent to the output of preribosomes from nucleolus. These vacuoles might play a role in condensation and decondensation of the chromatin.  相似文献   

13.
Zusammenfassung Das strukturelle Element eukaryotischer Chromosomen ist die aus DNS und Histonen bestehende Chromatinfibrille von ca. 100 bis 200 Å Durchmesser. Ein Chromatid besteht in den meisten Species aus einer Chromatinfibrille, die vielfach und unregelmäßig gefaltet von einem Ende zum anderen durchgeht. Die Chromatinfibrille ist aus einer Kette von Nukleosomen aufgebaut, die von zentral liegenden Histon-Körperchen, um die sich die DNA schlingt, gebildet werden. Die Nukleosomen sind in isolierten Chromatinfibrillen sowie in Dünnschnitten durch Chromosomen nach verschiedenen Fixierungen nachzuweisen. Die Bildung der dicken und kurzen Metaphasenchromosomen geschieht durch Spiralisation, wobei sich die dünnen Prophasen-Chromosomen in regelmäßige große Windungen legen. Die Entstehung großer Windungen ist auch in durch Fusion mit Metaphasen vorzeitig kondensierten Chromosomen zu beobachten. Außer den großen Windungen gibt es aber keine konstante regelmäßige Anordnung der Chromatinfibrille. In der Ana- und Telophase tritt eine diffuse Dekondensation ein.
Summary The structural element of eukaryotic chromosomes is the chromatin fibre consisting of histones and DNA. The chromatin fibre is about 100–200 Å thick. One chromatid is built up from one chromatin fibre running through from one end to the other and laid in numerous irregular foldings. The chromatin fibre is a chain of nucleosomes. These are globular histone bodies around which the DNA winds. Nucleosomes can be observed in isolated chromatin fibrils as well as in thin sections of chromosomes after different modes of fixation. Prophasic chromosomes or early premature condensed chromosomes are thin uncoiled threads. With chromosome condensation a major coiling is seen. No constant regular arrangement of the chromatin fibril besides the major coils is observed. A rather diffuse decondensation takes place in ana- and telophase.


Presented at the V. Meeting of the Cytogenetics Section of the Gesellschaft für Anthropologie und Humangenetik, Basle, Switzerland, June 17–19, 1976 (Erika M. Bühler, chairman)  相似文献   

14.
The chromatin structure of six diploids species ofCostus was analysed using conventional Giemsa staining, C-banding and DAPI/CMA fluorochromes. The interphase nuclei in all the species show an areticulate structure and the prophase chromosomes show large blocks of proximal condensed chromatin. After banding procedures, each chromosome exhibits only centromeric dot-like DAPI+/CMA C-bands whereas the satellites (one pair at each karyotype) are weakly stained after C-banding and show a DAPI/CMA+ fluorescence. Two chromocentres show bright fluorescence with CMA and weak staining after C-banding whereas the others chromocentres show only a small fraction of DAPI+ heterochromatin. These results were interpreted to mean that the greater part of the condensed chromatin has an euchromatic nature whereas two types of well localized heterochromatin occur in a small proportion. The Z-stage analysis suggests that heterochromatin and condensed euchromatin decondense at different times. The chromosome number and morphology of all species are given and the implications of the condensed euchromatin are discussed.Dedicated to Prof.Elisabeth Tschermak-Woess on the occasion of her 70th birthday.  相似文献   

15.
Here we report that DNA decatenation is not a physical requirement for the formation of mammalian chromosomes containing a two-armed chromosome scaffold. 2-aminopurine override of G2 arrest imposed by VM-26 or ICRF-193, which inhibit topoisomerase II (topo II)–dependent DNA decatenation, results in the activation of p34cdc2 kinase and entry into mitosis. After override of a VM-26–dependent checkpoint, morphologically normal compact chromosomes form with paired axial cores containing topo II and ScII. Despite its capacity to form chromosomes of normal appearance, the chromatin remains covalently complexed with topo II at continuous levels during G2 arrest with VM-26. Override of an ICRF-193 block, which inhibits topo II–dependent decatenation at an earlier step than VM-26, also generates chromosomes with two distinct, but elongated, parallel arms containing topo II and ScII. These data demonstrate that DNA decatenation is required to pass a G2 checkpoint, but not to restructure chromatin for chromosome formation. We propose that the chromosome core structure is templated during interphase, before DNA decatenation, and that condensation of the two-armed chromosome scaffold can therefore occur independently of the formation of two intact and separate DNA helices.  相似文献   

16.
The phases of mitosis were examined in the columnar cells at the base of duodenal crypts in adult male mice given an intravenous injection of 3H-thymidine and sacrificed 20 min later. The duodenum was fixed by immersion into glutaraldehyde-formaldehyde, and the cells were examined in the electron microscope, with or without processing for radioautography. Interphase nuclei are characterized by the distribution of chromatin; aside from the cortical chromatin spread along nuclear envelope and nucleolus, there are chromatin accumulations that belong mainly in two different classes: 1) numerous chromatin "specks" ranging in size from about 5 to 70 nm and averaging 47 nm; 2) a few roughly circular or elongated chromatin "packets" measuring from 70 to 230 nm. Early prophase nuclei differ mainly by a large increase in the number of chromatin packets to 20-30 or more per nuclear profile; their average diameter is 128 nm. During mid-prophase, the chromatin packets enlarge gradually to an average 221 nm diameter. Between mid- and late prophase, there is a further increase in diameter to 679 nm. At metaphase, the packets take on the appearance of mature chromosomes, and their diameter increases to 767 nm. At anaphase, daughter chromosomes migrate to each pole, where they fuse into a compact chromatin mass. At telophase, nucleoplasmic areas progressively enlarge within the chromatin mass and separate strands of chromatin, which gradually become segmented into chromatin clumps. Counts of mitotic cells show a high proportion of prophase and telophase nuclei. Calculation from the counts yields the duration of the phases, that is, 5.6, 0.2, 0.1, and 1.6 hr, respectively, for pro-, meta-, ana-, and telophase. Finally, radioautography 20 min after 3H-thymidine injection shows labeling in 54% of the interphase nuclei, 85% of early prophase nuclei, and 73% of mid-prophase nuclei, while there is no label in late prophase, metaphase, anaphase and telophase nuclei. In confirmation of previous light microscopic work, the S stage of the cycle begins when a cell is in interphase and continues through the early prophase and part of mid-prophase. Moreover, the main sites of DNA synthesis are the chromatin specks during interphase and the cortical chromatin during early and mid-prophase. The chromosome condensation taking place in the meantime may be separated into two main steps: 1) a slow, moderate condensation of the chromatin packets during early and mid-prophase and 2) a rapid, pronounced one during late prophase and prometaphase when the packets become chromosomes.  相似文献   

17.
18.
Chromosomes of root tip cells ofAllium cepa andAllium sativum were studied in early, middle and late telophase to examine the organization of mitotic chromosomes, taking advantage of the naturally occurring chromosome dispersion during the process of decondensation in telophase. Longitudinal and transverse sections of telophase chromosomes viewed under the transmission electron microscope showed that mitotic chromosomes inAllium were composed of helically coiled 400–550 nm chromatin fibres. In some regions of the longitudinal sections, these chromatin fibres were seen to be orientated parallel to one another but formed roughly a right angle to the long axis of the chromosome. In transverse sections, the telophase chromosome appeared to have a hollow centre encircled by the 400–550 nm chromatin fibre which in turn was a hollow tube structure formed by the coiling of a thinner fibre of 170–200 nm. In addition, cross views of chromatin fibres of 170–200 nm and 50–70 nm were also identified in telophase chromosome preparations. These two organizational levels of chromatin fibres also showed a hollow centre. The process of decondensation of telophase chromosomes is described, and some morphological characteristics associated with the activities of chromosome decondensation are analysed. Based on the observations made onAllium chromosomes in this study, various models of chromosome organization are discussed.  相似文献   

19.
The object of this study was to determine the kinetics of chromosome decondensation during the G1 period of the HeLa cell cycle. HeLa cells synchronized in the G1 period following the reversal of mitotic block were fused with Colcemid-arrested mitotic HeLa cells at 1.5, 3, 5, and 7 h after the reversal of N2O block. The resulting prematurely condensed chromosomes (PCC) were classified into six categories depending on the degree of their condensation. The frequency of occurrence of each category was plotted as a function of time after mitosis. The results of this study indicate that the process of chromosome decondensation, initiated during the telophase of mitosis continues throughout the G1 period without any interruption, thus the chromatin reaches an ultimate state of decondensation by the end of G1 period, when DNA synthesis is initiated.  相似文献   

20.
Fluorescent in situ hybridization with chromosome specific probes was used in conjunction with laser scanning confocal microscopy to assess the three-dimensional distribution of chromosomes in human T-lymphocyte nuclei. Cells in the G1-phase of the cell cycle exhibit a distinctly non-random chromosome organization: centromeric regions of the ten chromosomes examined are localized on the nuclear periphery, often making contact with the nuclear membrane, while telomeric domains are consistently localized within the interior 50% of the nuclear volume. Chromosome homolog pairing is not observed. Transition from the G1 to G2 cell cycle phase is accompanied by extensive chromosome movement, with centromeres assuming a more interior location. Chromosome condensation and chromatin depleted areas are observed in a small subset of G2 nuclei approaching mitosis. These results demonstrate that dynamic chromosome rearrangements occur in non-mitotic nuclei during the cell cycle.by L. Manuelidis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号