首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Q Wu  Yinghua Huang 《Génome》2007,50(1):84-89
Sorghum bicolor (L.) Moench is an important grain and forage crop grown worldwide. We developed a simple sequence repeat (SSR) linkage map for sorghum using 352 publicly available SSR primer pairs and a population of 277 F2 individuals derived from a cross between the Westland A line and PI 550610. A total of 132 SSR loci appeared polymorphic in the mapping population, and 118 SSRs were mapped to 16 linkage groups. These mapped SSR loci were distributed throughout 10 chromosomes of sorghum, and spanned a distance of 997.5 cM. More important, 38 new SSR loci were added to the sorghum genetic map in this study. The mapping result also showed that chromosomes SBI-01, SBI-02, SBI-05, and SBI-06 each had 1 linkage group; the other 6 chromosomes were composed of 2 linkage groups each. Except for 5 closely linked marker flips and 1 locus (Sb6_34), the marker order of this map was collinear to a published sorghum map, and the genetic distances of common marker intervals were similar, with a difference ratio 相似文献   

2.
Simple sequence repeat map of the sunflower genome   总被引:11,自引:0,他引:11  
Several independent molecular genetic linkage maps of varying density and completeness have been constructed for cultivated sunflower ( Helianthus annuus L.). Because of the dearth of sequence and probe-specific DNA markers in the public domain, the various genetic maps of sunflower have not been integrated and a single reference map has not emerged. Moreover, comparisons between maps have been confounded by multiple linkage group nomenclatures and the lack of common DNA markers. The goal of the present research was to construct a dense molecular genetic linkage map for sunflower using simple sequence repeat (SSR) markers. First, 879 SSR markers were developed by identifying 1,093 unique SSR sequences in the DNA sequences of 2,033 clones isolated from genomic DNA libraries enriched for (AC)(n) or (AG)(n) and screening 1,000 SSR primer pairs; 579 of the newly developed SSR markers (65.9% of the total) were polymorphic among four elite inbred lines (RHA280, RHA801, PHA and PHB). The genetic map was constructed using 94 RHA280 x RHA801 F(7) recombinant inbred lines (RILs) and 408 polymorphic SSR markers (462 SSR marker loci segregated in the mapping population). Of the latter, 459 coalesced into 17 linkage groups presumably corresponding to the 17 chromosomes in the haploid sunflower genome ( x = 17). The map was 1,368.3-cM long and had a mean density of 3.1 cM per locus. The SSR markers described herein supply a critical mass of DNA markers for constructing genetic maps of sunflower and create the basis for unifying and cross-referencing the multitude of genetic maps developed for wild and cultivated sunflowers.  相似文献   

3.
An expressed sequence tag (EST) library of the key grassland species perennial ryegrass (Lolium perenne L.) has been exploited as a resource for microsatellite marker development. Out of 955 simple sequence repeat (SSR) containing ESTs, 744 were used for primer design. Primer amplification was tested in eight genotypes of L. perenne and L. multiflorum representing (grand-) parents of four mapping populations and resulted in 464 successfully amplified EST-SSRs. Three hundred and six primer pairs successfully amplified products in the mapping population VrnA derived from two of the eight genotypes included in the original screening and revealed SSR polymorphisms for 143 ESTs. Here, we report on 464 EST-derived SSR primer sequences of perennial ryegrass established in laboratory assays, providing a dedicated tool for marker assisted breeding and comparative mapping within and among forage and turf grasses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Sugar beet (Beta vulgaris L.) is a biennial species. Shoot elongation (bolting) starts after a period of low temperature. The dominant allele of locus B causes early bolting without cold treatment. This allele is abundant in wild beets whereas cultivated beets carry the recessive allele. Fifteen AFLP markers, tightly linked to the bolting locus, have been identified using bulked segregant analysis. The F2-population consisted of 2,134 individuals derived after selfing a single F1-plant (Bb). In a first step, a linkage map was established with 249 markers based on 775 F2-individuals with a coverage of 822.3 cM. The loci are dispersed over nine linkage groups corresponding to the haploid chromosome number of Beta species. Seventeen marker loci were placed at a distance less than 3.2 cM around the bolting gene. In a second step, four of those markers most closely linked to B were mapped with the entire F2-population. Two of the markers were mapped flanking the B gene at distances of 0.14 and 0.23 cM. The other two markers were mapped at a distance of 0.5 cM from the gene. The tight linkage could be verified by testing 88 unrelated plants from a breeding program. The closely linked markers will enable breeders to select for the non-bolting character without laborious test crossings. Moreover, these markers are being used for map-based cloning of the bolting gene.  相似文献   

5.
In order to develop simple sequence repeat (SSR) markers in Italian ryegrass, we constructed a genomic library enriched for (CA)n-containing SSR repeats. A total of 1,544 clones were sequenced, of which 1,044 (67.6%) contained SSR motifs, and 395 unique clones were chosen for primer design. Three hundred and fifty-seven of these clones amplified products of the expected size in both parents of a two-way pseudo-testcross F1 mapping population, and 260 primer pairs detected genetic polymorphism in the F1 population. Genetic loci detected by a total of 218 primer pairs were assigned to locations on seven linkage groups, representing the seven chromosomes of the haploid Italian ryegrass karyotype. The SSR markers covered 887.8 cM of the female map and 795.8 cM of the male map. The average distance between two flanking SSR markers was 3.2 cM. The SSR markers developed in this study will be useful in cultivar discrimination, linkage analysis, and marker-assisted selection of Italian ryegrass and closely related species.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
Cassava (Manihot esculenta) is an economically important crop that is grown in tropical and sub-tropical regions. Use of molecular technology for genetic improvement of cassava has been limited by the lack of a large set of DNA markers and a genetic map. Therefore, the aims here were to develop additional simple sequence repeat (SSR) markers from the public expressed sequence tags (ESTs), and to construct a genetic linkage map. In this study, we designed 425 EST-SSR markers from sequences obtained from the cassava EST database in GenBank, and integrated them with 667 SSR markers from a microsatellite-enriched genomic sequence received from the International Center for Tropical Agriculture (CIAT). Of these, 107 EST-SSR and 500 genomic SSR primer pairs showed polymorphic patterns when screened in two cassava varieties, Hauy Bong 60 and Hanatee, which were used as female and male parental lines, respectively. Within the 107 and 500 primer pairs, 81 and 226 EST-SSR and SSR primer pairs were successfully genotyped with 100 samples of F1 progeny, respectively. The results showed 20 linkage groups consisting of 211 markers—56 EST-SSR and 155 SSR markers—spanning 1,178 cM, with an average distance between markers of 5.6 cM and about 11 markers per linkage group. These novel EST-SSR markers provided genic PCR-based co-dominant markers that were useful, reliable and economical. The EST-SSRs were used together with SSR markers to construct the cassava genetic linkage map which will be useful for the identification of quantitative trait loci controlling the traits of interest in cassava breeding programs.  相似文献   

7.
Segregation patterns of polymorphic simple sequence repeat (SSR) primer pairs were investigated in monoploid potato families derived from anther culture. A total of 14 primers developed from the sequences in the database, as well as from a genomic library of potato, was used. Distorted segregation was observed for seven (50%) polymorphic loci among monoploids derived from an interspecific hybrid. Similar distortion was observed for only one of five loci that could be contrasted between the two monoploid families. Segregation distortion was less common in the sexually derived backcross population between the interspecific hybrid and either of its parents. One locus could be putatively linked to a lethal allele because it showed distorted segregation in both monoploid families, a group of 70 heterozygous diploids derived from unreduced gametes through anther culture, and a backcross population. These diploids were used to map the polymorphic SSR markers with respect to the centromeres using half-tetrad analysis. The majority of the SSR loci mapped more than 33 cM from the centromere, suggesting the occurrence of a single crossover per chromosome arm.  相似文献   

8.
Eggplant (Solanum melongena L.), also known as aubergine or brinjal, is an important vegetable in many countries. Few useful molecular markers have been reported for eggplant. We constructed simple sequence repeat (SSR)-enriched genomic libraries in order to develop SSR markers, and sequenced more than 14,000 clones. From these sequences, we designed 2,265 primer pairs to flank SSR motifs. We identified 1,054 SSR markers from amplification of 1,399 randomly selected primer pairs. The markers have an average polymorphic information content of 0.27 among eight lines of S. melongena. Of the 1,054 SSR markers, 214 segregated in an intraspecific mapping population. We constructed cDNA libraries from several eggplant tissues and obtained 6,144 expressed sequence tag (EST) sequences. From these sequences, we designed 209 primer pairs, 7 of which segregated in the mapping population. On the basis of the segregation data, we constructed a linkage map, and mapped the 236 segregating markers to 14 linkage groups. The linkage map spans a total length of 959.1 cM, with an average marker distance of 4.3 cM. The markers should be a useful resource for qualitative and quantitative trait mapping and for marker-assisted selection in eggplant breeding.  相似文献   

9.
Solanum tuberosum L. DNA sequences containing simple sequence repeat (SSR) motifs were extracted from the EMBL database, cDNA and selectively enriched small-insert DNA libraries. Enrichment was achieved using either triplex affinity capture or single-strand hybridisation selection. One hundred and twelve primer pairs which successfully amplified products of the correct size from potato DNA were ultimately designed and synthesised. Ninety-eight of these revealed length polymorphisms in a panel of four diploid and two tetraploid clones, in agreement with the high information content of this class of markers which has been found in other species. All of the markers were assigned a quality score of 1–5 based on their potential usefulness. Eighty-nine loci from 65 of the primer pairs were located on two genetic linkage maps of potato by segregation analysis of the amplified alleles. Fifty-two of the SSRs were clearly single locus. The maps were aligned using 23 SSR primer pairs and 13 RFLP loci mapped in both populations. The markers described constitute a class which should replace Restriction Fragment Length Polymorphisms (RFLP) as the markers of choice for future genetic studies in potato. The sequences of the primers, together with other information on these markers are provided. Received: 12 January 1998 / Accepted: 25 March 1998  相似文献   

10.
Although microsatellite or simple sequence repeat (SSR) markers have several advantages, few have been developed in fungi. The goal of this study was to identify and characterize SSR-containing loci in the filamentous ascomycete Magnaporthe grisea, the causal agent of rice blast disease, and to add these markers to an integrated genetic map of this species [Theor. Appl. Genet. 95 (1997) 20]. We have constructed and screened a microsatellite-enriched small-insert genomic library as well as exploited both publicly available and one proprietary databases for identification of M. grisea SSR containing sequences. Twenty-four out of 49 primer pairs designed to amplify SSR, produced unambiguous polymorphic products in our test population of six isolates. The number of alleles at each locus ranged from two to six when assayed on 3% agarose gels. Twenty-three of the primer pairs amplified polymorphic products between Guy11 and 2539, the parents of a cross from which a genetic map for M. grisea has been established. Genetic analysis showed that all the markers segregated in the expected 1:1 ratio and map positions were determined for all 23 loci.  相似文献   

11.
Identifying annual ryegrass contamination in perennial ryegrass seed lots has been of major interest in seed-testing laboratories and for seed regulatory agencies in the USA for many years. This study was conducted to characterize a superoxide dismutase locus (Sod-1) and determine its potential to distinguish cultivated ryegrass species. The inheritance of Sod-1 was evaluated in a three-generation annual 2 perennial ryegrass mapping population and segregation fitted an expected 1:2:1 ratio for a single locus with two alleles. The molecular form of the Sod-1 locus was determined by H2O2 and KCN inhibitor assays which indicated that the Sod-1, and a second independently segregating Sod-2, locus were both Cu/ZnSod enzymes. The common alleles at the Sod-1 locus were scored in 13 annual and 24 perennial ryegrass cultivars to determine the potential of using this locus for species separation. The Sod-1b allele was homozygous in 98% of perennial ryegrass individuals from 24 cultivars, but those not 100% homozygous for Sod-1b were seed lots with unknown contamination from annual ryegrass. These results indicate that the Sod-1b allele in the homozygous condition is a good indicator of perenniality. All eight annual ryegrass cultivars originating in Europe or Asia had a low frequency of Sod-1b homozygous individuals or none at all. The five cultivars originating in the Western Hemisphere, however, had genotype frequencies for homozygous Sod-1b of up to 56%. The potential of the Sod-1 locus to serve as a test to separate the two growth forms depends on the source of the annual-type contamination.  相似文献   

12.
Enrichment methods were optimised in order to isolate large numbers of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.), with the aim of developing a comprehensive set of loci for trait mapping and cultivar identification. Two libraries were constructed showing greater than 50% enrichment for a variety of SSR-motif types. Sequence characterisation of 1853 clones identified 859 SSR-containing clones, of which 718 were unique. Truncation of flanking sequences limited potential primer design to 366 clones. One-hundred selected SSR primer pairs were evaluated for amplification and genetic polymorphism across a panel of diverse genotypes. The efficiency of amplification was 81%. A relatively high level of SSR polymorphism was detected (67%), with a range of 2–7 alleles per locus. Mendelian segregation of alleles detected by selected SSR-locus primer pairs was demonstrated in the F1 progeny of a pair cross. Cross-species amplification was detected in a number of related pasture and turfgrass species, with high levels of transfer to other Lolium species and members of the related genus Festuca. The identity of putative SSR ortholoci in these related species was confirmed by DNA sequence analysis. These loci constitute a valuable resource of ideal markers for the molecular breeding of ryegrasses and fescues. Received: 8 May 2000 / Accepted: 13 June 2000  相似文献   

13.
Bacterial wilt (Burkholderia caryophylli (Burkholder) Yabuuchi et al.) is one of the most damaging diseases during carnation (Dianthus caryophyllus L.) cultivation in Japan. To find molecular markers for use in marker-assisted selection, we constructed a simple sequence repeat (SSR)-based genetic linkage map of carnation using an F2 population of 90 plants derived from a cross between a highly resistant line (85-11) and a susceptible cultivar (Pretty Favvare). To develop a large number of SSR markers, we constructed four new SSR-enriched genomic libraries and conducted expressed sequence tag analysis. We mapped 178 SSR loci into 16 linkage groups. The map covered 843.6?cM, with an average distance of 6.5?cM between two loci. This is the first report of a genetic linkage map based mainly on SSR markers in the genus Dianthus. Quantitative trait locus (QTL) analysis identified one locus for resistance to bacterial wilt in linkage group (LG) B4. The locus explained 63.0% of the phenotypic variance for resistance to bacterial wilt. The SSR markers CES1161 and CES2643 that were closest to the QTL were efficient markers for selecting lines with resistance derived from line 85-11. A positional comparison using SSR markers as anchor loci revealed that LG B4 corresponded to LG A6 in a previously constructed map. We found that the position of the resistance locus derived from line 85-11 was similar to that of the major resistance locus observed for a highly resistant wild species, Dianthus capitatus ssp. andrzejowskianus.  相似文献   

14.
Development of SSR markers and construction of a linkage map in jute   总被引:1,自引:0,他引:1  
Jute is an important natural fibre crop, which is only second to cotton in its importance at the global level. It is mostly grown in Indian subcontinent and has been recently used for the development of genomics resources.We recently initiated a programme to develop simple sequence repeat markers and reported a set of 2469 SSR that were developed using four SSR-enriched libraries (Mir et al. 2009). In this communication, we report an additional set of 607 novel SSR in 393 SSR containing sequences. However, primers could be designed for only 417 potentially useful SSR. Polymorphism survey was carried out for 374 primer pairs using two parental genotypes (JRO 524 and PPO4) of a mapping population developed for fibre fineness; only 66 SSR were polymorphic. Owing to a low level of polymorphism between the parental genotypes and a high degree of segregation distortion in recombinant inbred lines, genotypic data of only 53 polymorphic SSR on the mapping population consisting of 120 RIL could be used for the construction of a linkage map; 36 SSR loci were mapped on six linkage groups that covered a total genetic distance of 784.3 cM. Hopefully, this map will be enriched with more SSR loci in future and will prove useful for identification of quantitative trait loci/genes for molecular breeding involving improvement of fibre fineness and other related traits in jute.  相似文献   

15.
Simple sequence repeats (SSRs) are co-dominant markers, and are very useful in constructing consensus maps in heterozygous perennial plant species like pistachio. Pistacia vera L. is the only cultivated species in the genus Pistacia. It is dioecious with a haploid chromosome count of n =?15. Saturated genetic linkage maps can be a reference to identify markers linked to economically important phenotypic traits that could be useful for early breeding and selection programs. Therefore, this study aimed to develop polymorphic SSR markers in silico and to construct the first SSR-based genetic linkage map in pistachio. The DNA sequences of three cultivars (Siirt, Ohadi, and Bagyolu) of P. vera and one genotype belonging to P. atlantica (Pa-18) were obtained by next-generation sequencing, and 625 polymorphic SSR loci were identified from 750 screened in silico polymorphic SSR primer pairs. The novel SSRs were used to construct SSR-based genetic linkage maps in pistachio along with published SSRs in Siirt × Bagyolu F1 population. Most (71.4%) of the SSRs were common markers that were used to construct consensus and parental maps spanning 15 linkage groups (LGs). A total of 384, 317, and 341 markers were mapped in the consensus, female, and male genetic maps with total lengths of 1511.3, 1427.0, and 1453.4 cM, respectively. The large number of SSR markers discovered and the first SSR-based genetic linkage map constructed in this study will be useful for anchoring loci for map integration, and will facilitate marker-assisted selection efforts for important horticultural traits in the genus Pistacia.  相似文献   

16.
Simple sequence repeats (SSRs) are valuable molecular markers in many plant species. In common wheat (Triticum aestivum L.), which is characteristic of its large genomes and alloploidy, SSRs are one of the most useful markers. To increase SSR marker sources and construct an SSR-based linkage map of appropriate density, we tried to develop new SSR markers from SSR-enriched genomic libraries and the public database. SSRs having (GA)n and (GT)n motifs were isolated from enriched libraries, and di- and tri-nucleotide repeats were mined from expressed sequence tags (ESTs) and DNA sequences of Triticum species in the public database. Of the 1,147 primer pairs designed, 842 primers gave accurate amplification products, and 478 primers showed polymorphism among the nine wheat lines examined. Using a doubled haploid (DH) population from an intraspecific cross between Kitamoe and Münstertaler (KM), we constructed an SSR-based linkage map that consisted of 464 loci: 185 loci from genomic libraries, 65 loci from the sequence database including ESTs, 213 loci from the SSR markers already reported, and 1 locus of morphological marker. Although newly developed SSR loci were distributed throughout all chromosomes, clustering of them around putative centromeric regions was found on several chromosomes. The total length of the KM map spanned 3,441 cM and corresponded to approximately 86% genome coverage. The KM map comprised of 23 linkage groups because two gaps of over 50 cM distance remained on chromosome 6A. This is a first report of SSR-based linkage map using single intraspecific population of common wheat. This mapping result suggests that it becomes possible to construct linkage maps with sufficient genome coverage using only SSR markers without RFLP markers, even in an intraspecific population of common wheat. Moreover, the new SSR markers will contribute to the enrichment of molecular marker resources in common wheat.  相似文献   

17.
Switchgrass (Panicum virgatum L.) is a model cellulosic biofuel crop in the United States. Simple sequence repeat (SSR) markers are valuable resources for genetic mapping and molecular breeding. A large number of expressed sequence tags (ESTs) of switchgrass are recently available in our sequencing project. The objectives of this study were to develop new SSR markers from the switchgrass EST sequences and to integrate them into an existing linkage map. More than 750 unique primer pairs (PPs) were designed from 243,600 EST contigs and tested for PCR amplifications, resulting in 538 PPs effectively producing amplicons of expected sizes. Of the effective PPs, 481 amplifying informative bands in NL94 were screened for polymorphisms in a panel consisting of NL94 and its seven first-generation selfed (S1) progeny. This led to the selection of 117 polymorphic EST–SSRs to genotype a mapping population encompassing 139 S1 individuals of NL94. Of 83 markers demonstrating clearly scorable alleles in the mapping population, 79 were integrated into a published linkage map, with three linked to accessory loci and one unlinked. The newly identified EST–SSR loci were distributed in 17 of 18 linkage groups with 27 (32.5 %) exhibiting distorted segregations. The integration of EST–SSRs aided in reducing the average marker interval (cM) to 3.7 from 4.2, and reduced the number of gaps (each >15 cM) to 10 from 23. Developing new EST–SSRs and constructing a higher density linkage map will facilitate quantitative trait locus mapping and provide a firm footing for marker-assisted breeding in switchgrass.  相似文献   

18.
A genetic linkage map for the ectomycorrhizal basidiomycete Laccaria bicolor was constructed from 45 sib-homokaryotic haploid mycelial lines derived from the parental S238N strain progeny. For map construction, 294 simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs), amplified fragment length polymorphisms (AFLPs) and random amplified polymorphic DNA (RAPD) markers were employed to identify and assay loci that segregated in backcross configuration. Using SNP, RAPD and SSR sequences, the L. bicolor whole-genome sequence (WGS) assemblies were aligned onto the linkage groups. A total of 37.36 Mbp of the assembled sequences was aligned to 13 linkage groups. Most mapped genetic markers used in alignment were colinear with the sequence assemblies, indicating that both the genetic map and sequence assemblies achieved high fidelity. The resulting matrix of recombination rates between all pairs of loci was used to construct an integrated linkage map using JoinMap. The final map consisted of 13 linkage groups spanning 812 centiMorgans (cM) at an average distance of 2.76 cM between markers (range 1.9-17 cM). The WGS and the present linkage map represent an initial step towards the identification and cloning of quantitative trait loci associated with development and functioning of the ectomycorrhizal symbiosis.  相似文献   

19.
Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends   总被引:15,自引:3,他引:12  
Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala ‘Maxxa’, 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21%) were polymorphic between G. hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9% of the coverage was located on the A subgenome while 39.7% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
Molecular genetic maps were constructed for two full-sib populations, TTC1 and TTC2, derived from two Leymus triticoides x Leymus cinereus hybrids and one common Leymus triticoides tester. Informative DNA markers were detected using 21 EcoRI-MseI and 17 PstI-MseI AFLP primer combinations, 36 anchored SSR or STS primer pairs, and 9 anchored RFLP probes. The 164-sib TTC1 map includes 1069 AFLP markers and 38 anchor loci in 14 linkage groups spanning 2001 cM. The 170-sib TTC2 map contains 1002 AFLP markers and 36 anchor loci in 14 linkage groups spanning 2066 cM. Some 488 homologous AFLP loci and 24 anchor markers detected in both populations showed similar map order. Thus, 1583 AFLP markers and 50 anchor loci were mapped into 14 linkage groups, which evidently correspond to the 14 chromosomes of allotetraploid Leymus (2n = 4x = 28). Synteny of two or more anchor markers from each of the seven homoeologous wheat and barley chromosomes was detected for 12 of the 14 Leymus linkage groups. Moreover, two distinct sets of genome-specific STS markers were identified in these allotetraploid Leymus species. These Leymus genetic maps and populations will provide a useful system to evaluate the inheritance of functionally important traits of two divergent perennial grass species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号