首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The objectives of this research were to determine thecontribution of excitation-contraction (E-C) coupling failure to the decrement in maximal isometric tetanic force(Po) in mouse extensor digitorumlongus (EDL) muscles after eccentric contractions and to elucidatepossible mechanisms. The left anterior crural muscles of femaleICR mice (n = 164) wereinjured in vivo with 150 eccentric contractions.Po, caffeine-,4-chloro-m-cresol-, andK+-induced contracture forces,sarcoplasmic reticulum (SR) Ca2+release and uptake rates, and intracellularCa2+ concentration([Ca2+]i)were then measured in vitro in injured and contralateral control EDLmuscles at various times after injury up to 14 days. On the basis ofthe disproportional reduction inPo (~51%) compared with caffeine-induced force (~11-21%), we estimate that E-C coupling failure can explain 57-75% of thePo decrement from 0 to 5 days postinjury. Comparable reductions inPo andK+-induced force (51%), and minorreductions (0-6%) in the maximal SRCa2+ release rate, suggest thatthe E-C coupling defect site is located at the t tubule-SR interfaceimmediately after injury. Confocal laser scanning microscopy indicatedthat resting[Ca2+]iwas elevated and peak tetanic[Ca2+]iwas reduced, whereas peak4-chloro-m-cresol-induced[Ca2+]iwas unchanged immediately after injury. By 3 days postinjury, 4-chloro-m-cresol-induced[Ca2+]ibecame depressed, probably because of decreased SRCa2+ release and uptake rates(17-31%). These data indicate that the decrease inPo during the first several daysafter injury primarily stems from a failure in the E-C couplingprocess.

  相似文献   

2.
Palytoxin is a coral toxin that seriously impairs heart function, but its effects on excitation-contraction (E-C) coupling have remained elusive. Therefore, we studied the effects of palytoxin on mechanisms involved in atrial E-C coupling. In field-stimulated cat atrial myocytes, palytoxin caused elevation of diastolic intracellular Ca2+ concentration ([Ca2+]i), a decrease in [Ca2+]i transient amplitude, Ca2+ alternans followed by [Ca2+]i waves, and failures of Ca2+ release. The decrease in [Ca2+]i transient amplitude occurred despite high sarcoplasmic reticulum (SR) Ca2+ load. In voltage-clamped myocytes, palytoxin induced a current with a linear current-voltage relationship (reversal potential 5 mV) that was blocked by ouabain. Whole cell Ca2+ current and ryanodine receptor Ca2+ release channel function remained unaffected by the toxin. However, palytoxin significantly reduced Ca2+ pumping of isolated SR vesicles. In current-clamped myocytes stimulated at 1 Hz, palytoxin induced a depolarization of the resting membrane potential that was accompanied by delayed afterdepolarizations. No major changes of action potential configuration were observed. The results demonstrate that palytoxin interferes with the function of the sarcolemmal Na+-K+ pump and the SR Ca2+ pump. The suggested mode of palytoxin toxicity in the atrium involves the conversion of Na+-K+ pumps into nonselective cation channels as a primary event followed by depolarization, Na+ accumulation, and Ca2+ overload, which, in turn, causes arrhythmogenic [Ca2+]i waves and delayed afterdepolarizations. atrial myocytes; intracellular calcium  相似文献   

3.
Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic syndrome caused by exposure to halogenated volatile anesthetics and/or depolarizing muscle relaxants. We have measured intracellular Ca2+ concentration ([Ca2+]i) using double-barreled, Ca2+-selective microelectrodes in myoballs prepared from skeletal muscle of MH-susceptible (MHS) and MH-nonsusceptible (MHN) swine. Resting [Ca2+]i was approximately twofold in MHS compared with MHN quiescent myoballs (232 ± 35 vs. 112 ± 11 nM). Treatment of myoballs with caffeine or 4-chloro-m-cresol (4-CmC) produced an elevation in [Ca2+]i in both groups; however, the concentration required to cause a rise in [Ca2+]i elevation was four times lower in MHS than in MHN skeletal muscle cells. Incubation of MHS cells with the fast-complexing Ca2+ buffer BAPTA reduced [Ca2+]i, raised the concentration of caffeine and 4-CmC required to cause an elevation of [Ca2+]i, and reduced the amount of Ca2+ release associated with exposure to any given concentration of caffeine or 4-CmC to MHN levels. These results suggest that the differences in the response of MHS skeletal myoballs to caffeine and 4-CmC may be mediated at least in part by the chronic high resting [Ca2+]i levels in these cells. calcium homeostasis; 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid  相似文献   

4.
Williams, Jay H. Contractile apparatus and sarcoplasmicreticulum function: effects of fatigue, recovery, and elevated Ca2+. J. Appl.Physiol. 83(2): 444-450, 1997.This investigationtested the notion that fatiguing stimulation induces intrinsic changes in the contractile apparatus and sarcoplasmic reticulum (SR) and thatthese changes are initiated by elevated intracellularCa2+ concentration([Ca2+]i).Immediately after stimulation of frog semitendinosus muscle, contractile apparatus and SR function were measured. Despite a largedecline in tetanic force (Po),maximal Ca2+-activated force(Fmax) of the contractileapparatus was not significantly altered. However,Ca2+ sensitivity was increased. Inconjunction, the rate constant ofCa2+ uptake by the SR wasdiminished, and the caffeine sensitivity ofCa2+ release was decreased. Duringrecovery, Po, contractileapparatus, and SR function each returned to near-initial levels.Exposure of skinned fibers to 0.5 µM freeCa2+ for 5 min depressed bothFmax andCa2+ sensitivity of thecontractile apparatus. In addition, caffeine sensitivity ofCa2+ release was diminished.Results suggest that fatigue induces intrinsic alterations incontractile apparatus and SR function. Changes in contractile apparatusfunction do not appear to be mediated by increased[Ca2+]i.However, a portion of the change in SRCa2+ release seems to be due toelevated[Ca2+]i.

  相似文献   

5.
Hypotonicswelling increases the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). The source of this Ca2+ is not clear. To study thesource of increase in [Ca2+]i in response tohypotonic swelling, we measured [Ca2+]i infura 2-loaded cultured VSMC (A7r5 cells). Hypotonic swelling produced a40.7-nM increase in [Ca2+]i that was notinhibited by EGTA but was inhibited by 1 µM thapsigargin. Priordepletion of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores with vasopressin did not inhibit the increasein [Ca2+]i in response to hypotonic swelling.Exposure of 45Ca2+-loaded intracellular storesto hypotonic swelling in permeabilized VSMC produced an increase in45Ca2+ efflux, which was inhibited by 1 µMthapsigargin but not by 50 µg/ml heparin, 50 µM ruthenium red, or25 µM thio-NADP. Thus hypotonic swelling of VSMC causes a release ofCa2+ from the intracellular stores from a novel sitedistinct from the IP3-, ryanodine-, and nicotinic acidadenine dinucleotide phosphate-sensitive stores.

  相似文献   

6.
Inskeletal muscle fibers, the intracellular loop between domains II andIII of the 1-subunit of the dihydropyridine receptor (DHPR) may directly activate the adjacent Ca2+ releasechannel in the sarcoplasmic reticulum. We examined the effects ofsynthetic peptide segments of this loop on Ca2+ release inmechanically skinned skeletal muscle fibers with functional excitation-contraction coupling. In rat fibers at physiological Mg2+ concentration ([Mg2+]; 1 mM), a20-residue skeletal muscle DHPR peptide[AS(20);Thr671-Leu690; 30 µM], shown previously toinduce Ca2+ release in a triad preparation, caused onlysmall spontaneous force responses in ~40% of fibers, although itpotentiated responses to depolarization and caffeine in all fibers. TheCOOH-terminal half of AS(20)[AS(10)] induced much larger spontaneousresponses but also caused substantial inhibition of Ca2+release to both depolarization and caffeine. Both peptides induced orpotentiated Ca2+ release even when the voltage sensors wereinactivated, indicating direct action on the Ca2+ releasechannels. The corresponding 20-residue cardiac DHPR peptide [AC(20);Thr793-Ala812] was ineffective, but itsCOOH-terminal half [AC(10)] had effects similar to AS(20). In the presence of lower[Mg2+] (0.2 mM), exposure to eitherAS(20) or AC(10) (30 µM) induced substantial Ca2+ release. PeptideCS (100 µM), a loop segment reported to inhibit Ca2+ release in triads, caused partial inhibition ofdepolarization-induced Ca2+ release. In toad fibers, eachof the A peptides had effects similar to or greater than those in ratfibers. These findings suggest that the A and C regions of the skeletalDHPR II-III loop may have important roles in vivo.

  相似文献   

7.
Increases in Pi combined with decreases in myoplasmic Ca2+ are believed to cause a significant portion of the decrease in muscular force during fatigue. To investigate this further, we determined the effect of 30 mM Pi on the force-Ca2+ relationship of chemically skinned single muscle fibers at near-physiological temperature (30°C). Fibers isolated from rat soleus (slow) and gastrocnemius (fast) muscle were subjected to a series of solutions with an increasing free Ca2+ concentration in the presence and absence of 30 mM Pi at both low (15°C) and high (30°C) temperature. In slow fibers, 30 mM Pi significantly increased the Ca2+ required to elicit measurable force, referred to as the activation threshold at both low and high temperatures; however, the effect was twofold greater at the higher temperature. In fast fibers, the activation threshold was unaffected by elevating Pi at 15°C but was significantly increased at 30°C. At both low and high temperatures, 30 mM Pi increased the Ca2+ required to elicit half-maximal force (pCa50) in both slow and fast fibers, with the effect of Pi twofold greater at the higher temperature. These data suggest that during fatigue, reductions in the myoplasmic Ca2+ and increases in Pi act synergistically to reduce muscular force. Consequently, the combined changes in these ions likely account for a greater portion of fatigue than previously predicted based on studies at lower temperatures or high temperatures at saturating Ca2+ levels. force-pCa relationship; phosphate; fatigue  相似文献   

8.
Decoding of fast cytosolic Ca2+ concentration ([Ca2+]i) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca2+] ([Ca2+]m) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca2+] ([Ca2+]em) to >0.5 µM resulted in a [Ca2+]em-dependent increase in the rate of mitochondrial Ca2+ accumulation ([Ca2+]em resulting in half-maximal rate of Ca2+ accumulation = 4.4 µM) via Ca2+ uniporter. Ca2+ uptake was sensitive to the Ca2+ uniporter blocker ruthenium red and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and depended on inorganic phosphate concentration. The rates of [Ca2+]m increase and recovery were dependent on the extramitochondrial [Na+] ([Na+]em) due to Ca2+ extrusion via mitochondrial Na+/Ca2+ exchanger. The maximal rate of Ca2+ extrusion was observed with [Na+]em in the range of 20–40 mM. Rapid switching (0.25–1 Hz) of [Ca2+]em between 0 and 100 µM simulated rapid beat-to-beat changes in [Ca2+]i (with [Ca2+]i transient duration of 100–500 ms). No [Ca2+]m oscillations were observed, either under conditions of maximal rate of Ca2+ uptake (100 µM [Ca2+]em, 0 [Na+]em) or with maximal rate of Ca2+ removal (0 [Ca2+]em, 40 mM [Na+]em). The slow frequency-dependent increase of [Ca2+]m argues against a rapid transmission of Ca2+ signals between cytosol and mitochondria on a beat-to-beat basis in the heart. [Ca2+]m changes elicited by continuous or pulsatile exposure to elevated [Ca2+]em showed no difference in mitochondrial Ca2+ uptake. Thus in cardiac myocytes fast [Ca2+]i transients are integrated by mitochondrial Ca2+ transport systems, resulting in a frequency-dependent net mitochondrial Ca2+ accumulation. mitochondrial Ca2+; excitation-contraction coupling; cardiomyocytes  相似文献   

9.
The myoplasmic free Ca2+concentration([Ca2+]i)was measured in intact single fibers from mouse skeletal muscle withthe fluorescent Ca2+ indicatorindo 1. Some fibers were perfused in a solution in which theconcentration of Na+ was reducedfrom 145.4 to 0.4 mM (low-Na+solution) in an attempt to activate reverse-modeNa+/Ca2+exchange (Ca2+ entry in exchangefor Na+ leaving the cell). Undernormal resting conditions, application oflow-Na+ solution only increased[Ca2+]iby 5.8 ± 1.8 nM from a mean resting[Ca2+]iof 42 nM. In other fibers,[Ca2+]iwas elevated by stimulating sarcoplasmic reticulum (SR)Ca2+ release with caffeine (10 mM)and by inhibiting SR Ca2+ uptakewith2,5-di(tert-butyl)-1,4-benzohydroquinone(TBQ; 0.5 µM) in an attempt to activate forward-modeNa+/Ca2+exchange (Ca2+ removal from thecell in exchange for Na+ influx).These two agents caused a large increase in[Ca2+]i,which then declined to a plateau level approximately twice the baseline[Ca2+]iover 20 min. If the cell was allowed to recover between exposures tocaffeine and TBQ in a solution in whichCa2+ had been removed, theincrease in[Ca2+]iduring the second exposure was very low, suggesting thatCa2+ had left the cell during theinitial exposure. Application of caffeine and TBQ to a preparation inlow-Na+ solution produced a large,sustained increase in[Ca2+]iof ~1 µM. However, when cells were exposed to caffeine and TBQ in alow-Na+ solution in whichCa2+ had been removed, a sustainedincrease in[Ca2+]iwas not observed, although[Ca2+]iremained higher and declined slower than in normalNa+ solution. This suggests thatforward-modeNa+/Ca2+exchange contributed to the fall of[Ca2+]iin normal Na+ solution, but whenextracellular Na+ was low, aprolonged elevation of[Ca2+]icould activate reverse-modeNa+/Ca2+exchange. The results provide evidence that skeletal muscle fibers possess aNa+/Ca2+exchange mechanism that becomes active in its forward mode when [Ca2+]iis increased to levels similar to that obtained during contraction.

  相似文献   

10.
µ-calpain and calpain-3 are Ca2+-dependent proteases found in skeletal muscle. Autolysis of calpains is observed using Western blot analysis as the cleaving of the full-length proteins to shorter products. Biochemical assays suggest that µ-calpain becomes proteolytically active in the presence of 2–200 µM Ca2+. Although calpain-3 is poorly understood, autolysis is thought to result in its activation, which is widely thought to occur at lower intracellular Ca2+ concentration levels ([Ca2+]i; 1 µM) than the levels at which µ-calpain activation occurs. We have demonstrated the Ca2+-dependent autolysis of the calpains in human muscle samples and rat extensor digitorum longus (EDL) muscles homogenized in solutions mimicking the intracellular environment at various [Ca2+] levels (0, 2.5, 10, and 25 µM). Autolysis of calpain-3 was found to occur across a [Ca2+] range similar to that for µ-calpain, and both calpains displayed a seemingly higher Ca2+ sensitivity in human than in rat muscle homogenates, with 15% autolysis observed after 1-min exposure to 2.5 µM Ca2+ in human muscle and almost none after 1- to 2-min exposure to the same [Ca2+]i level in rat muscle. During muscle activity, [Ca2+]i may transiently peak in the range found to autolyze µ-calpain and calpain-3, so we examined the effect of two types of exhaustive cycling exercise (30-s "all-out" cycling, n = 8; and 70% O2 peak until fatigue, n = 3) on the amount of autolyzed µ-calpain or calpain-3 in human muscle. No significant autolysis of µ-calpain or calpain-3 occurred as a result of the exercise. These findings have shown that the time- and concentration-dependent changes in [Ca2+]i that occurred during concentric exercise fall near but below the level necessary to cause autolysis of calpains in vivo. Ca2+-dependent proteases; proteolysis  相似文献   

11.
The hypothesisthat vascular protection in females and its absence in males reflectsgender differences in [Ca2+]i andCa2+ mobilization mechanisms of vascular smooth musclecontraction was tested in fura 2-loaded aortic smooth muscle cellsisolated from intact and gonadectomized male and female Wistar-Kyoto(WKY) and spontaneously hypertensive (SHR) rats. In WKY cells incubated in Hanks' solution (1 mM Ca2+), the resting length and[Ca2+]i were significantlydifferent in intact males (64.5 ± 1.2 µm and 83 ± 3 nM) than inintact females (76.5 ± 1.5 µm and 64 ± 7 nM). In intact male WKY,phenylephrine (Phe, 105 M) caused transient increasein [Ca2+]i to 428 ± 13 nMfollowed by maintained increase to 201 ± 8 nM and 32% cellcontraction. In intact female WKY, the Phe-induced [Ca2+]i transient was notsignificantly different, but the maintained [Ca2+]i (159 ± 7 nM) and cellcontraction (26%) were significantly less than in intact male WKY. InCa2+-free (2 mM EGTA) Hanks', Phe and caffeine (10 mM)caused transient increases in[Ca2+]i and contraction that werenot significantly different between males and females. Membranedepolarization by 51 mM KCl caused 31% cell contraction and increased[Ca2+]i to 259 ± 9 nM in intactmale WKY, which were significantly greater than a 24% contraction and214 ± 8 nM [Ca2+]i in intactfemale WKY. Maintained Phe- and KCl-stimulated cell contraction and[Ca2+]i were significantly greaterin SHR than WKY in all groups of rats. Reduction in cell contractionand [Ca2+]i in intact femalescompared with intact males was significantly greater in SHR (~30%)than WKY (~20%). No significant differences in cell contraction or[Ca2+]i were observed betweencastrated males, ovariectomized (OVX) females, and intact males, orbetween OVX females with 17-estradiol implants and intact females.Exogenous application of 17-estradiol (108 M) tocells from OVX females caused greater reduction in Phe- and KCl-inducedcontraction and [Ca2+]i in SHR thanWKY. Thus the basal, maintained Phe- and depolarization-induced [Ca2+]i and contraction of vascularsmooth muscle triggered by Ca2+ entry from theextracellular space exhibit differences depending on gender and thepresence or absence of female gonads. Cell contraction and[Ca2+]i due to Ca2+release from the intracellular stores are not affected by gender or gonadectomy. Gender-specific reduction in contractility and [Ca2+]i in vascular smoothmuscle of female rats is greater in SHR than WKY rats.

  相似文献   

12.
We testedthe hypothesis that strain is the primary mechanical signal in themechanosensitive modulation of intracellular Ca2+concentration ([Ca2+]i) in airway smoothmuscle. We found that [Ca2+]i wassignificantly correlated with muscle length during isotonic shorteningagainst 20% isometric force (Fiso). When the isotonic loadwas changed to 50% Fiso, data points from the 20 and 50% Fiso experiments overlapped in thelength-[Ca2+]i relationship. Similarly, datapoints from the 80% Fiso experiments clustered near thosefrom the 50% Fiso experiments. Therefore, despite 2.5- and4-fold differences in external load, [Ca2+]idid not deviate much from the length-[Ca2+]irelation that fitted the 20% Fiso data. Maximal inhibition of sarcoplasmic reticular (SR) Ca2+ uptake by 10 µMcyclopiazonic acid (CPA) did not significantly change[Ca2+]i in carbachol-induced isometriccontractions and isotonic shortening. CPA also did not significantlychange myosin light-chain phosphorylation or force redevelopment whencarbachol-activated muscle strips were quickly released from optimallength (Lo) to 0.5 Lo. These results are consistent with thehypothesis and suggest that SR Ca2+ uptake is not theunderlying mechanism.

  相似文献   

13.
The regulationof intracellular Ca2+ signals in smooth muscle cells andarterial diameter by intravascular pressure was investigated in ratcerebral arteries (~150 µm) using a laser scanning confocal microscope and the fluorescent Ca2+ indicator fluo 3. Elevation of pressure from 10 to 60 mmHg increased Ca2+spark frequency 2.6-fold, Ca2+ wave frequency 1.9-fold, andglobal intracellular Ca2+ concentration([Ca2+]i) 1.4-fold in smooth muscle cells,and constricted arteries. Ryanodine (10 µM), an inhibitor ofryanodine-sensitive Ca2+ release channels, or thapsigargin(100 nM), an inhibitor of the sarcoplasmic reticulumCa2+-ATPase, abolished sparks and waves, elevated global[Ca2+]i, and constricted pressurized (60 mmHg) arteries. Diltiazem (25 µM), a voltage-dependentCa2+ channel (VDCC) blocker, significantly reduced sparks,waves, and global [Ca2+]i, and dilatedpressurized (60 mmHg) arteries. Steady membrane depolarization elevatedCa2+ signaling similar to pressure and increased transientCa2+-sensitive K+ channel current frequencye-fold for ~7 mV, and these effects were prevented by VDCCblockers. Data are consistent with the hypothesis that pressure inducesa steady membrane depolarization that activates VDCCs, leading to anelevation of spark frequency, wave frequency, and global[Ca2+]i. In addition, pressure inducescontraction via an elevation of global[Ca2+]i, whereas the net effect of sparks andwaves, which do not significantly contribute to global[Ca2+]i in arteries pressurized to between 10 and 60 mmHg, is to oppose contraction.

  相似文献   

14.
KCl has long been used as a convenient stimulus to bypass G protein-coupled receptors (GPCR) and activate smooth muscle by a highly reproducible and relatively "simple" mechanism involving activation of voltage-operated Ca2+ channels that leads to increases in cytosolic free Ca2+ ([Ca2+]i), Ca2+-calmodulin-dependent myosin light chain (MLC) kinase activation, MLC phosphorylation and contraction. This KCl-induced stimulus-response coupling mechanism is a standard tool-set used in comparative studies to explore more complex mechanisms generated by activation of GPCRs. One area where this approach has been especially productive is in studies designed to understand Ca2+ sensitization, the relationship between [Ca2+]i and force produced by GPCR agonists. Studies done in the late 1980s demonstrated that a unique relationship between stimulus-induced [Ca2+]i and force does not exist: for a given increase in [Ca2+]i, GPCR activation can produce greater force than KCl, and relaxant agents can produce the opposite effect to cause Ca2+ desensitization. Such changes in Ca2+ sensitivity are now known to involve multiple cell signaling strategies, including translocation of proteins from cytosol to plasma membrane, and activation of enzymes, including RhoA kinase and protein kinase C. However, recent studies show that KCl can also cause Ca2+ sensitization involving translocation and activation of RhoA kinase. Rather than complicating the Ca2+ sensitivity story, this surprising finding is already providing novel insights into mechanisms regulating Ca2+ sensitivity of smooth muscle contraction. KCl as a "simple" stimulus promises to remain a standard tool for smooth muscle cell physiologists, whose focus is to understand mechanisms regulating Ca2+ sensitivity. K+ depolarization; cell signaling; signal transduction; contraction  相似文献   

15.
The purpose ofthe present study was to determine whether cyclic ADP-ribose (cADPR)acts as a second messenger forCa2+ release through ryanodinereceptor (RyR) channels in tracheal smooth muscle (TSM). Freshlydissociated porcine TSM cells were permeabilized with -escin, andreal-time confocal microscopy was used to examine changes inintracellular Ca2+ concentration([Ca2+]i).cADPR (10 nM-10 µM) induced a dose-dependent increase in [Ca2+]i,which was blocked by the cADPR receptor antagonist 8-amino-cADPR (20 µM) and by the RyR blockers ruthenium red (10 µM) and ryanodine (10 µM), but not by the inositol 1,4,5-trisphosphate receptor blockerheparin (0.5 mg/ml). During steady-state[Ca2+]ioscillations induced by acetylcholine (ACh), addition of 100 nM and 1 µM cADPR increased oscillation frequency and decreased peak-to-troughamplitude. ACh-induced[Ca2+]ioscillations were blocked by 8-amino-cADPR; however, 8-amino-cADPR didnot block the[Ca2+]iresponse to a subsequent exposure to caffeine. These results indicatethat cADPR acts as a second messenger forCa2+ release through RyR channelsin TSM cells and may be necessary for initiating ACh-induced[Ca2+]ioscillations.

  相似文献   

16.
The subcellular spatial and temporal organization ofagonist-induced Ca2+ signals wasinvestigated in single cultured vascular endothelial cells.Extracellular application of ATP initiated a rapid increase ofintracellular Ca2+ concentration([Ca2+]i)in peripheral cytoplasmic processes from where activation propagated asa[Ca2+]iwave toward the central regions of the cell. The average propagation velocity of the[Ca2+]iwave in the peripheral processes was 20-60 µm/s, whereas in thecentral region the wave propagated at <10 µm/s. The time course ofthe recovery of[Ca2+]idepended on the cell geometry. In the peripheral processes (i.e.,regions with a high surface-to-volume ratio)[Ca2+]ideclined monotonically, whereas in the central region[Ca2+]idecreased in an oscillatory fashion. Propagating[Ca2+]iwaves were preceded by small, highly localized[Ca2+]itransients originating from 1- to 3-µm-wide regions. The average amplitude of these elementary events ofCa2+ release was 23 nM, and theunderlying flux of Ca2+ amountedto ~1-2 × 1018mol/s or ~0.3 pA, consistent with aCa2+ flux through a single orsmall number of endoplasmic reticulum Ca2+-release channels.

  相似文献   

17.
The role of Na+/Ca2+ exchange inregulating intracellular Ca2+ concentration([Ca2+]i) in isolated smooth muscle cellsfrom the guinea pig urinary bladder was investigated. Incrementalreduction of extracellular Na+ concentration resulted in agraded rise of [Ca2+]i; 50-100 µMstrophanthidin also increased [Ca2+]i. Asmall outward current accompanied the rise of[Ca2+]i in low-Na+ solutions(17.1 ± 1.8 pA in 29.4 mM Na+). The quantity ofCa2+ influx through the exchanger was estimated from thecharge carried by the outward current and was ~30 times that which isnecessary to account for the rise of [Ca2+]i,after correction was made for intracellular Ca2+ buffering.Ca2+ influx through the exchanger was able to loadintracellular Ca2+ stores. It is concluded that the levelof resting [Ca2+]i is not determined by theexchanger, and under resting conditions (membrane potential 50 to60 mV), there is little net flux through the exchanger. However, asmall rise of intracellular Na+ concentration would besufficient to generate significant net Ca2+ influx.

  相似文献   

18.
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle triggered in susceptible individuals by inhalation anesthetics and depolarizing skeletal muscle relaxants. This syndrome has been linked to a missense mutation in the type 1 ryanodine receptor (RyR1) in more than 50% of cases studied to date. Using double-barreled Ca2+ microelectrodes in myotubes expressing wild-type RyR1 (WTRyR1) or RyR1 with one of four common MH mutations (MHRyR1), we measured resting intracellular Ca2+ concentration ([Ca2+]i). Changes in resting [Ca2+]i produced by several drugs known to modulate the RyR1 channel complex were investigated. We found that myotubes expressing any of the MHRyR1s had a 2.0- to 3.7-fold higher resting [Ca2+]i than those expressing WTRyR1. Exposure of myotubes expressing MHRyR1s to ryanodine (500 µM) or (2,6-dichloro-4-aminophenyl)isopropylamine (FLA 365; 20 µM) had no effects on their resting [Ca2+]i. However, when myotubes were exposed to bastadin 5 alone or to a combination of ryanodine and bastadin 5, the resting [Ca2+]i was significantly reduced (P < 0.01). Interestingly, the percent decrease in resting [Ca2+]i in myotubes expressing MHRyR1s was significantly greater than that for WTRyR1. From these data, we propose that the high resting myoplasmic [Ca2+]i in MHRyR1 expressing myotubes is due in part to a related structural conformation of MHRyR1s that favors "passive" calcium leak from the sarcoplasmic reticulum. ryanodine; FLA 365; bastadin 5; resting intracellular calcium concentration; sarcoplasmic reticulum  相似文献   

19.
Pancreatitis is an inflammatory disease of pancreatic acinar cells whereby intracellular calcium concentration ([Ca2+]i) signaling and enzyme secretion are impaired. Increased oxidative stress has been suggested to mediate the associated cell injury. The present study tested the effects of the oxidant, hydrogen peroxide, on [Ca2+]i signaling in rat pancreatic acinar cells by simultaneously imaging fura-2, to measure [Ca2+]i, and dichlorofluorescein, to measure oxidative stress. Millimolar concentrations of hydrogen peroxide increased cellular oxidative stress and irreversibly increased [Ca2+]i, which was sensitive to antioxidants and removal of external Ca2+, and ultimately led to cell lysis. Responses were also abolished by pretreatment with (sarco)endoplasmic reticulum Ca2+-ATPase inhibitors, unless cells were prestimulated with cholecystokinin to promote mitochondrial Ca2+ uptake. This suggests that hydrogen peroxide promotes Ca2+ release from the endoplasmic reticulum and the mitochondria and that it promotes Ca2+ influx. Lower concentrations of hydrogen peroxide (10–100 µM) increased [Ca2+]i and altered cholecystokinin-evoked [Ca2+]i oscillations with marked heterogeneity, the severity of which was directly related to oxidative stress, suggesting differences in cellular antioxidant capacity. These changes in [Ca2+]i also upregulated the activity of the plasma membrane Ca2+-ATPase in a Ca2+-dependent manner, whereas higher concentrations (0.1–1 mM) inactivated the plasma membrane Ca2+-ATPase. This may be important in facilitating "Ca2+ overload," resulting in cell injury associated with pancreatitis. oxidant stress; pancreatitis; calcium pump  相似文献   

20.
To clarify the contribution of intracellularCa2+ concentration([Ca2+]i)-dependent and -independentsignaling mechanisms in arteriolar smooth muscle (aSM) to modulation ofarteriolar myogenic tone by nitric oxide (NO), released in response toincreases in intraluminal flow from the endothelium, changes in aSM[Ca2+]i and diameter of isolated rat gracilismuscle arterioles (pretreated with indomethacin) were studied byfluorescent videomicroscopy. At an intraluminal pressure of 80 mmHg, [Ca2+]i significantly increased andmyogenic tone developed in response to elevations of extracellularCa2+ concentration. The Ca2+ channelinhibitor nimodipine substantially decreased[Ca2+]i and completely inhibited myogenictone. Dilations to intraluminal flow (that were inhibited byN-nitro-L-arginine methyl ester)or dilations to the NO donorS-nitroso-N-acetyl-DL-penicillamine (that were inhibited by the guanylate cyclase inhibitor1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) were notaccompanied by substantial decreases in aSM[Ca2+]i. 8-Bromoguanosine cGMP and thecGMP-specific phosphodiesterase inhibitor zaprinast significantlydilated arterioles yet elicited only minimal decreases in[Ca2+]i. Thus flow-induced endothelialrelease of NO elicits relaxation of arteriolar smooth muscle by acGMP-dependent decrease of the Ca2+ sensitivity of thecontractile apparatus without substantial changes in thepressure-induced level of [Ca2+]i.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号