首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Msb3p and Msb4p proteins of Saccharomyces cerevisiae are members of the Ypt/Rab-specific GTPase-activating protein (GAP) family. They are essential to vesicular trafficking and involved in the regulation of exocytosis and in the organization of the actin cytoskeleton, but their exact biological roles have yet to be determined. The msb3 msb4 yeast double mutation causes growth inhibition in the presence of DMSO and/or caffeine, affects the organization of the actin cytoskeleton, produces a random budding pattern in diploid cells, and affects segregation of the nucleus. To find cell components that interact genetically with the products of the MSB3 and MSB4 genes, we screened a genomic library for multicopy suppressor genes restoring normal growth of the double mutant in the presence of DMSO and caffeine. Six genes were identified, and the extent to which each gene corrects specific growth defects of the msb3 msb4 mutant is described. The encoded suppressors were classified on the basis of functional features into four groups: vesicular transport proteins (Sec7p, Vps35p, and Uso1p), a protein involved in cell division (Sap155p), a molecular chaperon (Ssz1p), and a protein associated with the 25S proteasome (Cic1p).  相似文献   

2.
As a pathogenic fungus, Aspergillus flavus can produce carcinogenic aflatoxins (AFs), which poses a great threat to crops and animals. Msb2, the signalling mucin protein, is a part of mitogen-activated protein kinase (MAPK) pathway which contributes to a range of physiological processes. In this study, the roles of membrane mucin Msb2 were explored in A. flavus by the application of gene disruption. The deletion of msb2 gene (Δmsb2) caused defects in vegetative growth, sporulation and sclerotia formation when compared to WT and complement strain (Δmsb2C) in A. flavus. Using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis, it was found that deletion of msb2 down-regulated aflatoxin B1 (AFB1) synthesis and decreased the infection capacity of A. flavus. Consistently, Msb2 responds to cell wall stress and osmotic stress by positively regulating the phosphorylation of MAP kinase. Notably, Δmsb2 mutant exhibited cell wall defect, and it was more sensitive to inhibitor caspofungin when compared to WT and Δmsb2C. Taking together, these results revealed that Msb2 plays key roles in morphological development process, stresses adaptation, secondary metabolism and pathogenicity in fungus A. flavus.  相似文献   

3.
The yeast proteins Msb3p and Msb4p are two Ypt/Rab-specific GTPase-activating proteins (GAPs) involved in cell growth polarization. Both proteins share with a wide variety of other proteins the highly conserved TBC domain forming the catalytically active RabGAP domain. In particular, Msb3p and Msb4p are similar to the human proteins oncTre210p (the 786-amino-acid product of the human Tre2 oncogene, implicated in Ewing's sarcoma) and RN-tre (a Rab5-GAP controlling endocytosis of the EGFR). To further understand the biochemical function of Tre2 oncogene, we expressed its cDNA and, as a control, the RN-tre cDNA, in an msb3 msb4 double mutant yeast strain. Complementation data show that RN-tre can, unlike Tre2, replace the function of the MSB3 and MSB4 genes. As two highly conserved amino acids, including the catalytic arginine, are mutated in the oncTre210p TBC domain, we restored these two amino acids and expressed the modified Tre2 cDNA in the yeast mutant.  相似文献   

4.
Botrytis cinerea is a necrotrophic fungus that infects a wide range of fruit, vegetable and flower crops. Penetration of the host cuticle occurs via infection structures that are formed in response to appropriate plant surface signals. The differentiation of these structures requires a highly conserved mitogen‐activated protein (MAP) kinase cascade including the MAP kinase BMP1. In yeast and several plant‐pathogenic fungi, the signalling mucin Msb2 has been shown to be involved in surface recognition and MAP kinase activation. In this study, a B. cinerea msb2 mutant was generated and characterized. The mutant showed normal growth, sporulation, sclerotia formation and stress resistance. In the absence of nutrients, abnormal germination with multiple germ tubes was observed. In the presence of sugars, normal germination occurred, but msb2 germlings were almost unable to form appressoria or infection cushions on hard surfaces. Nevertheless, the msb2 mutant showed only a moderate delay in lesion formation on different host plants, and formed expanding lesions similar to the wild‐type. Although the wild‐type showed increasing BMP1 phosphorylation during the first hours of germination on hard surfaces, the phosphorylation levels in the msb2 mutant were strongly reduced. Several genes encoding secreted proteins were found to be co‐regulated by BMP1 and Msb2 during germination. Taken together, B. cinerea Msb2 is likely to represent a hard surface sensor of germlings and hyphae that triggers infection structure formation via the activation of the BMP1 MAP kinase pathway.  相似文献   

5.
In the vascular wilt pathogen Fusarium oxysporum, the mitogen‐activated protein kinase (MAPK) Fmk1 is essential for plant infection. The mucin‐like membrane protein Msb2 regulates a subset of Fmk1‐dependent functions. Here, we examined the role of the tetraspan transmembrane protein Sho1 as an additional regulator of the Fmk1 pathway and determined its genetic interaction with Msb2. Targeted Δsho1 mutants were generated in wild‐type and Δmsb2 backgrounds to test possible interactions between the two genes. The mutants were examined for hyphal growth under different stress conditions, phosphorylation of the MAPK Fmk1 and an array of Fmk1‐dependent virulence functions. Similar to Msb2, Sho1 was required for the activation of Fmk1 phosphorylation, as well as Fmk1‐dependent gene expression and invasive growth functions, including extracellular pectinolytic activity, cellophane penetration, plant tissue colonization and virulence on tomato plants. Δsho1 mutants were hypersensitive to the cell wall‐perturbing compound Calcofluor White, and this phenotype was exacerbated in the Δmsb2 Δsho1 double mutant. These results highlight that Sho1 and Msb2 have partially overlapping functions upstream of the Fmk1 MAPK cascade, to promote invasive growth and plant infection, as well as cell wall integrity, in F. oxysporum.  相似文献   

6.
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.  相似文献   

7.
Msb1 is not essential for growth in the budding yeast Saccharomyces cerevisiae since msb1Δ cells do not display obvious phenotypes. Genetic studies suggest that Msb1 positively regulates Cdc42 function during bud development, since high-copy MSB1 suppressed the growth defect of temperature-sensitive cdc24 and cdc42 mutants at restrictive temperature, while deletion of MSB1 showed synthetic lethality with cdc24, bem1, and bem2 mutations. However, the mechanism of how Msb1 regulates Cdc42 function remains poorly understood. Here, we show that Msb1 localizes to sites of polarized growth during bud development and interacts with Cdc42 in the cells. In addition, Msb1 interacts with Boi1 and Boi2, two scaffold proteins that also interact with Cdc42 and Bem1. These findings suggest that Msb1 may positively regulate Cdc42 function by interacting with Cdc42, Boi1, and Boi2, which may promote the efficient assembly of Cdc42, Cdc24, and other proteins into a functional complex. We also show that Msb1 interacts with Rho1 in the cells and Msb1 overproduction inhibits the growth of rho1-104 and rho1-3 but not rho1-2 cells. The growth inhibition appears to result from the down-regulation of Rho1 function in glucan synthesis, specifically during early stage of bud development. These results suggest that Msb1 may coordinate Cdc42 and Rho1 functions during early stage of bud development by promoting Cdc42 function and inhibiting Rho1 function. Msb1 overproduction also affects cell morphology, septin organization, and causes increased, aberrant deposition of 1,3-β-glucan and chitin at the mother-bud neck. However, the stimulation of glucan synthesis mainly occurs during late, but not early, stage of bud development.  相似文献   

8.
The dimorphic fungus Ustilago maydis switches from budding to hyphal growth on the plant surface. In response to hydrophobicity and hydroxy fatty acids, U. maydis develops infection structures called appressoria. Here, we report that, unlike in Saccharomyces cerevisiae and other fungi where Sho1 (synthetic high osmolarity sensitive) and Msb2 (multicopy suppressor of a budding defect) regulate stress responses and pseudohyphal growth, Sho1 and Msb2-like proteins play a key role during appressorium differentiation in U. maydis. Sho1 was identified through a two-hybrid screen as an interaction partner of the mitogen-activated protein (MAP) kinase Kpp6. Epistasis analysis revealed that sho1 and msb2 act upstream of the MAP kinases kpp2 and kpp6. Furthermore, Sho1 was shown to destabilize Kpp6 through direct interaction with the unique N-terminal domain in Kpp6, indicating a role of Sho1 in fine-tuning Kpp6 activity. Morphological differentiation in response to a hydrophobic surface was strongly attenuated in sho1 msb2 mutants, while hydroxy fatty acid–induced differentiation was unaffected. These data suggest that Sho1 and the transmembrane mucin Msb2 are involved in plant surface sensing in U. maydis.  相似文献   

9.
In the yeast Saccharomyces cerevisiae, Cdc24p functions at least in part as a guanine-nucleotide-exchange factor for the Rho-family GTPase Cdc42p. A genetic screen designed to identify possible additional targets of Cdc24p instead identified two previously known genes, MSB1 and CLA4, and one novel gene, designated MSB3, all of which appear to function in the Cdc24p-Cdc42p pathway. Nonetheless, genetic evidence suggests that Cdc24p may have a function that is distinct from its Cdc42p guanine-nucleotide-exchange factor activity; in particular, overexpression of CDC42 in combination with MSB1 or a truncated CLA4 in cells depleted for Cdc24p allowed polarization of the actin cytoskeleton and polarized cell growth, but not successful cell proliferation. MSB3 has a close homologue (designated MSB4) and two more distant homologues (MDR1 and YPL249C) in S. cerevisiae and also has homologues in Schizosaccharomyces pombe, Drosophila (pollux), and humans (the oncogene tre17). Deletion of either MSB3 or MSB4 alone did not produce any obvious phenotype, and the msb3 msb4 double mutant was viable. However, the double mutant grew slowly and had a partial disorganization of the actin cytoskeleton, but not of the septins, in a fraction of cells that were larger and rounder than normal. Like Cdc42p, both Msb3p and Msb4p localized to the presumptive bud site, the bud tip, and the mother-bud neck, and this localization was Cdc42p dependent. Taken together, the data suggest that Msb3p and Msb4p may function redundantly downstream of Cdc42p, specifically in a pathway leading to actin organization. From previous work, the BNI1, GIC1, and GIC2 gene products also appear to be involved in linking Cdc42p to the actin cytoskeleton. Synthetic lethality and multicopy suppression analyses among these genes, MSB, and MSB4, suggest that the linkage is accomplished by two parallel pathways, one involving Msb3p, Msb4p, and Bni1p, and the other involving Gic1p and Gic2p. The former pathway appears to be more important in diploids and at low temperatures, whereas the latter pathway appears to be more important in haploids and at high temperatures.  相似文献   

10.
The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis.  相似文献   

11.
Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.  相似文献   

12.
In this work, we quantified the life table demographic responses of Moina macrocopa daily exposed to three concentrations, 0, 0.08, 0.16, and 0.32 mg l−1 of CdCl2 for 3, 6, 12, and 24 h. These cadmium levels represented 10–50% of the median lethal concentration known for M. macrocopa. In general, increase in CdCl2 concentration and increase in the exposure time had a negative impact on the both survivorship and reproduction variables of M. macrocopa. The survivorship curves showed drastic mortality of M. macrocopa exposed for 24 h per day at all three concentrations used. The survival of animals was distinctly lower than in controls for the 3-h exposure at 0.08 mg l−1 of CdCl2. The cladocerans ceased to reproduce when exposed to 0.32 mg l−1 CdCl2 for 6 h or longer. Depending on the heavy metal concentration and the duration of exposure, the average lifespan, net reproductive rate, generation time, and the rate of population increase varied from 3 to 10 days, 1 to 30 offspring female−1, 4 to 8 days, and −0.20 to +0.59 day−1, respectively. Even the lowest CdCl2 concentration for an exposure time of 3 h had an adverse effect on M. macrocopa, which suggested the importance of including pulsed exposure times in ecotoxicological evaluations.  相似文献   

13.
Cadmium toxicity is reduced by nitric oxide in rice leaves   总被引:24,自引:1,他引:24  
We evaluate the protective effect of nitric oxide (NO) against Cadmium (Cd) toxicity in rice leaves. Cd toxicity of rice leaves was determined by the decrease of chlorophyll and protein contents. CdCl2 treatment resulted in (1) increase in Cd content, (2) induction of Cd toxicity, (3) increase in H2O2 and malondialdehyde (MDA) contents, (4) decrease in reduced form glutathione (GSH) and ascorbic acid (ASC) contents, and (5) increase in the specific activities of antioxidant enzymes (superoxide dismutase, glutathione reductase, ascorbate peroxidase, catalase, and peroxidase). NO donors [N-tert-butyl-α-phenylnitrone, 3-morpholinosydonimine, sodium nitroprusside (SNP), and ASC + NaNO2] were effective in reducing CdCl2-induced toxicity and CdCl2-increased MDA content. SNP prevented CdCl2-induced increase in the contents of H2O2 and MDA, decrease in the contents of GSH and ASC, and increase in the specific activities of antioxidant enzymes. SNP also prevented CdCl2-induced accumulation of NH4 +, decrease in the activity of glutamine synthetase (GS), and increase in the specific activity of phenylalanine ammonia-lyase (PAL). The protective effect of SNP on CdCl2-induced toxicity, CdCl2-increased H2O2, NH4 +, and MDA contents, CdCl2-decreased GSH and ASC, CdCl2-increased specific activities of antioxidant enzymes and PAL, and CdCl2-decreased activity of GS were reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting that protective effect by SNP is attributable to NO released. Reduction of CdCl2-induced toxicity by NO in rice leaves is most likely mediated through its ability to scavenge active oxygen species including H2O2.  相似文献   

14.
The effects of varying concentrations of cadmium (Cd) on the development of Lycopersicon esculentum cv. Micro‐Tom (MT) plants were investigated after 40 days (vegetative growth) and 95 days (fruit production), corresponding to 20 days and 75 days of exposure to CdCl2, respectively. Inhibition of growth was clearly observed in the leaves after 20 days and was greater after 75 days of growth in 1 mM CdCl2, whereas the fruits exhibited reduced growth following the exposure to a concentration as low as 0.1 mM CdCl2. Cd was shown to accumulate in the roots after 75 days of growth but was mainly translocated to the upper parts of the plants accumulating to high concentrations in the fruits. Lipid peroxidation was more pronounced in the roots even at 0.05 mM CdCl2 after 75 days, whereas in leaves, there was a major increase after 20 days of exposure to 1 mM CdCl2, but the fruit only exhibited a slight significant increase in lipid peroxidation in plants subjected to 1 mM CdCl2 when compared with the control. Oxidative stress was also investigated by the analysis of four key antioxidant enzymes, which exhibited changes in response to the increasing concentrations of Cd tested. Catalase (EC 1.11.1.6) activity was shown to increase after 75 days of Cd treatment, but the major increases were observed at 0.1 and 0.2 mM CdCl2, whereas guaiacol peroxidase (EC 1.11.1.7) did not vary significantly from the control in leaves and roots apart from specific changes at 0.5 and 1 mM CdCl2. The other two enzymes tested, glutathione reductase (EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1), did not exhibit any significant changes in activity, apart from a slight decrease in SOD activity at concentrations above 0.2 mM CdCl2. However, the most striking results were obtained when an extra treatment was used in which a set of plants was subjected to a stepwise increase in CdCl2 from 0.05 to 1 mM, leading to tolerance of the Cd applied even at the final highest concentration of 1 mM. This apparent adaptation to the toxic effect of Cd was confirmed by biomass values being similar to the control, indicating a tolerance to Cd acquired by the MT plants.  相似文献   

15.
16.
Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway.  相似文献   

17.
18.
The nodal explants of in vitro shoots of Holarrhena antidysenterica L. were cultured on Murashige and Skoog's (MS) medium augmented with 15 μM N6-benzyladenine (BA) alone (control) or supplemented with different concentrations (1, 5, 10 and 20 mg dm−3) of CdCl2, CuSO4, Pb(NO3)2 and ZnSO4. The maximum morphogenic response in terms of average shoot number (4.95 ± 0.17) was seen in control. ZnSO4 proved to be less inhibitory in comparison to CuSO4, Pb(NO3)2 and CdCl2. None of the explants cultured on CdCl2 containing medium induced multiple shoots. Maximum protein content [3.80 ± 0.04 mg g−1(f.m.)] was observed in control and slightly less [3.50 ± 0.02 mg g−1(f.m.)] in tissues exposed to 1 mg dm−3 of CuSO4 and minimum [1.00 ± 0.02 mg g−1(f.m.)] in Zn treated (20 mg dm−3) explants. SDS-PAGE analysis of the treated tissues revealed that two new polypeptides (29 and 20 kDa) in response to Cu and Zn treatment, respectively, have been synthesized.  相似文献   

19.
Two Saccharomyces cerevisiae plasma membrane-spanning proteins, Sho1 and Sln1, function during increased osmolarity to activate a mitogen-activated protein (MAP) kinase cascade. One of these proteins, Sho1, utilizes the MAP kinase kinase kinase Ste11 to activate Pbs2. We previously used the FUS1 gene of the pheromone response pathway as a reporter to monitor cross talk in hog1 mutants. Cross talk requires the Sho1-Ste11 branch of the HOG pathway, but some residual signaling, which is STE11 dependent, still occurs in the absence of Sho1. These observations led us to propose the existence of another osmosensor upstream of Ste11. To identify such an osmosensor, we screened for mutants in which the residual signaling in a hog1 sho1 mutant was further reduced. We identified the MSB2 gene, which encodes a protein with a single membrane-spanning domain and a large presumptive extracellular domain. Assay of the FUS1-lacZ reporter (in a hog1 mutant background) showed that sho1 and msb2 mutations both reduced the expression of the reporter partially and that the hog1 sho1 msb2 mutant was severely defective in the expression of the reporter. The use of DNA microarrays to monitor gene expression revealed that Sho1 and Msb2 regulate identical gene sets in hog1 mutants. A role for MSB2 in HOG1 strains was also seen in strains defective in the two known branches that activate Pbs2: an ssk1 sho1 msb2 strain was more osmosensitive than an ssk1 sho1 MSB2 strain. These observations indicate that Msb2 is partially redundant with the Sho1 osmosensing branch for the activation of Ste11.  相似文献   

20.
Drosophila cells were treated with increasing concentrations of CdCl2 (10 μM-1 mM). The toxicity of cadmium, as observed by cellular death and the ability of the cells to survive after removal of CdCl2, depended on concentration and duration of treatment. The overall synthesis of protein, measured by incorporation of [35S]methionine, decreased. It fell to 66% of the controls after 24 h of exposition to 50 μM CdCl2 and to 29% after 48 h. We showed that cadmium induced the synthesis of ‘heat shock proteins’ (hsps), which started after 6 h and was maximal after 24 h of 50–100 μM CdCl2 treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号