首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intraperitoneal urocortin inhibits gastric emptying and food intake in mice. We investigated corticotropin-releasing factor receptor (CRF-R) subtypes involved in intraperitoneal urocortin actions using selective CRF-R antagonists. Gastric emptying was measured 2 h after a chow meal, and food intake was measured hourly after an 18-h fast in mice. Urocortin (3 microg/kg ip) inhibited gastric emptying by 88%. The CRF-R1/CRF-R2 antagonist astressin B (30 microg/kg ip) and the selective CRF-R2 antagonist antisauvagine-30 (100 microg/kg ip) completely antagonized urocortin action, whereas the selective CRF-R1 antagonist CP-154,526 (10 mg/kg ip) had no effect. Urocortin (1-10 microg/kg ip) dose dependently decreased the 2-h cumulative food intake by 30-62%. Urocortin (3 microg/kg)-induced hypophagia was completely antagonized by astressin B (30 microg/kg ip) and partially (35 and 31%) by antisauvagine-30 (100 or 200 microg/kg ip). The CRF-R1 antagonists CP-154,526 or DMP904 (10 mg/kg ip) had no effect. Capsaicin did not alter urocortin-inhibitory actions while blocking the satiety effect of intraperitoneal CCK. These data indicate that intraperitoneal urocortin-induced decrease in feeding is only partly mediated by CRF-R2, whereas urocortin action to delay gastric emptying of a meal involves primarily CRF-R2.  相似文献   

2.
We investigated whether either heterozygous (HET) or homozygous (knockout, KO) disruption of the melanocortin type 4 receptor (MC4R) gene alters post ingestive responsiveness of mice. Specifically, we tested the hypothesis that hyperphagia in MC4RKO mice might be due to a deficit in processes that sustain intermeal intervals (satiety) and/or processes that terminate ongoing episodes of eating (satiation). To test satiety, mice drank an oral preload and then we monitored intake of a subsequent liquid diet test meal. To test satiation, we examined the effect of exogenous administration of cholecystokinin (CCK) and bombesin (BN) on the size of a liquid diet meal. Experiment 1 was comprised of two studies. In the first, we determined that the intake of all three genotypes following fasts of either 6, 12, or 24 h were comparable, and so chose 12 h deprivation for the subsequent studies. In the second, 12 h fasted mice were allowed to consume a fixed preload, approximately 50% of their expected mean intake and, following delays of either 30 or 60 min, were allowed to consume to satiation. Compared with no preload, the preload significantly reduced meal size comparably in all three genotypes. The reduction in intake was greater when the test meal was presented 30 compared with 60 min after the preload, again with no genotype differences in this decay of satiety. In experiment 2, we administered either CCK or BN and examined suppression of meal size after a 12 h fast. Mice were tested repeatedly with CCK-8 (2, 6, or 18 μg/kg ip) or BN (2, 4 or 8 μg/kg ip) with vehicle injection days intervening. The 30 min intakes of HET and KO mice were suppressed more than those of WT following either CCK or BN. These experiments suggest that diminished responsiveness to nutrients or gut satiety hormones is not responsible for hyperphagia in MC4RKO mice.  相似文献   

3.
Obestatin is a new peptide for which anorexigenic effects were recently reported in mice. We investigate whether peripheral injection of obestatin or co-injection with cholecystokinin (CCK) can modulate food intake, gastric motor function (intragastric pressure and emptying) and gastric vagal afferent activity in rodents. Obestatin (30, 100 and 300 microg/kg, i.p.) did not influence cumulative food intake for the 2h post-injection in rats or mice nor gastric emptying in rats. In rats, obestatin (300 microg/kg) did not modify CCK (1 microg/kg, i.p.)-induced significant decrease in food intake (36.6%) and gastric emptying (31.0%). Furthermore, while rats injected with CCK (0.3 microg/kg, i.v.) displayed gastric relaxation, no change in gastric intraluminal pressure was elicited by obestatin (300 microg/kg, i.v.) pre- or post-CCK administration. In in vitro rat gastric vagal afferent preparations, 20 units that had non-significant changes in basal activity after obestatin at 30 microg responded to CCK at 10 ng by a 182% increase. These data show that obestatin neither influences cumulative food intake, gastric motility or vagal afferent activity nor CCK-induced satiety signaling.  相似文献   

4.
Leptin regulates energy homeostasis and body weight by balancing energy intake and expenditure. It was recently reported that leptin, released into the gut lumen during the cephalic phase of gastric secretion, is capable of initiating intestinal nutrient absorption. Vagal afferent neurons also express receptors for both CCK and leptin, which are believed to interact in controlling food intake. The present study was undertaken to investigate the central and peripheral effects of leptin on gastric emptying rate. Under anesthesia, male Sprague-Dawley rats (250-300 g) were fitted with gastric Gregory cannulas (n=12) and some had additional cerebroventricular cannulas inserted into their right lateral ventricles. Following recovery, the rate of gastric emptying of saline (300 mOsm/kg H(2)O) was determined after instillation into the gastric fistula (3 ml, 37 degrees C, containing phenol red, 60 mg/l as a non-absorbable dilution marker). Gastric emptying rate was determined from the volume and phenol red concentrations recovered after 5 min. Leptin, injected intraperitoneally (i.p.; 10, 30, 60, 100 microg/kg) or intracerebroventricularly (i.c.v.; 5, 15 microg/rat) 15 min before the emptying, delayed gastric emptying rate of saline at the dose of 30 microg/kg or 15 microg/rat (p<0.001). When CCK(1) receptor blocker L-364,718 (1 mg/kg, i.p.), CCK(2) receptor blocker L-365,260 (1 mg/kg, ip) or adrenergic ganglion blocker bretylium tosylate (15 mg/kg, i.p.) was administered 15 min before ip leptin (30 microg/kg) injections, leptin-induced delay in gastric emptying was abolished only by the CCK(1) receptor blocker (p<0.001). However, the inhibitory effect of central leptin on gastric emptying was reversed by adrenergic blockade, but not by either CCK antagonists. Our results demonstrated that leptin delays gastric emptying. The peripheral effect of leptin on gastric motility appears to be mediated by CCK(1) receptors, suggesting the release of CCK and the involvement of vagal afferent fibers. On the other hand, the central effect of leptin on gastric emptying is likely to be mediated by adrenergic neurons. These results indicate the existence of a functional interaction between leptin and CCK receptors leading to inhibition of gastric emptying and short-term suppression of food intake, providing an additional feedback control in producing satiety.  相似文献   

5.
Systemic injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor ion channels, increases meal size and delays satiation. We examined whether MK-801 increases food intake by directly interfering with actions of cholecystokinin (CCK). Prior administration of MK-801 (100 microg/kg ip) reversed the inhibitory effects of CCK-8 (2 and 4 microg/kg ip) on real feeding of both liquid and solid foods. MK-801 alone did not alter 30-min sham intake of 15% sucrose compared with intake after saline. Furthermore, while CCK-8 (2 or 4 microg/kg ip) reduced sham intake, this reduction was not attenuated by MK-801 pretreatment. To ascertain whether MK-801 attenuation of CCK-induced reduction of real feeding was associated with attenuated inhibition of gastric emptying, we tested the effect of MK-801 pretreatment on CCK-induced inhibition of gastric emptying of 5-ml saline loads. Ten-minute gastric emptying was accelerated after MK-801 (3.9 +/- 0.2 ml) compared with saline vehicle (2.72 +/- 0.2 ml). CCK-8 (0.5 microg/kg ip) reduced 10-min emptying to 1.36 +/- 0.3 ml. Pretreatment with MK-801 did not significantly attenuate CCK-8-induced reduction of gastric emptying (0.9 +/- 0.4 ml). This series of experiments demonstrates that blockade of NMDA ion channels reverses inhibition of real feeding by CCK. However, neither inhibition of sham feeding nor inhibition of gastric emptying by CCK is attenuated by MK-801. Therefore, increased food intake after NMDA receptor blockade is not caused by a direct interference with CCK-induced satiation. Rather, increased real feeding, either in the presence or absence of CCK, depends on blockade of NMDA receptor participation in other post-oral feedback signals such as gastric sensation or gastric tone.  相似文献   

6.
CCK-resistance in Zucker obese versus lean rats   总被引:4,自引:0,他引:4  
Obese Zucker rats are less sensitive to the satiety effect of CCK than lean litter mates. The present studies further characterised this CCK resistance. Subcutaneous injection of the CCK agonist caerulein dose-dependently decreased food intake in Zucker obese and lean rats whereas the CCK-B agonist gastrin-17 did not. Caerulein at 4 μg/kg, which resulted in CCK plasma bioactivity slightly above postprandial levels, decreased food intake in lean rats but not in obese rats. The decrease in food intake was also more marked at higher caerulein doses (20–100 μg/kg) in lean versus obese rats. In lean animals the satiety effects of the “near physiological” 4 μg/kg caerulein dose was abolished after blockade of vagal afferents with capsaicin, whereas the effects of higher caerulein doses were not. CCK-stimulated amylase secretion from pancreatic acini and binding capacity of 125I- labelled CCK-8 were decreased in obese versus lean rats. The CCK-A antagonist loxiglumide at 20 mg/kg, a dose which abolished the action of all caerulein doses on food intake, failed to alter the food intake either in obese or in lean rats when given without an agonist. The results suggest that the satiety effects of “near physiological” doses of caerulein in lean rats are mediated by vagal afferents whereas pharmacological doses act via non-vagal mechanisms. The differences in CCK's satiety effect between lean and obese rats may be due to differences in CCK-receptor binding and action at peripheral vagal sites. However, the failure of the CCK-A antagonist to increase food intake questions whether any of the effects of exogenous CCK are of physiological relevance.  相似文献   

7.
Results from previous studies indicate that oxytocin (OT)-containing neural pathways are activated in laboratory rats after systemic administration of CCK or d-fenfluramine and that centrally released OT may participate in the anorexigenic effects of these treatments. To explore the relationship between feeding behavior and OT function, the effects of CCK and d-fenfluramine on feeding and central c-Fos expression were compared in wild-type (OT+/+) and OT-deficient mice (OT-/-) of C57BL/6 background. Male OT+/+ and OT-/- mice were administered saline or CCK (1, 3, or 10 microg/kg ip) after overnight food deprivation. Saline-treated OT+/+ and OT-/- mice consumed equivalent amounts of food after an overnight fast. CCK inhibited deprivation-induced food intake in a dose-dependent manner to a similar extent in both genotypes. CCK treatment also induced similar hindbrain and forebrain patterns of increased c-Fos expression in mice of both genotypes. After treatment with d-fenfluramine (10 mg/kg ip), both OT+/+ and OT-/- mice consumed significantly less food than untreated controls, with no difference between genotypes. We conclude that OT signaling pathways are unnecessary for the anorexigenic effects of systemically administered CCK and d-fenfluramine in C57BL/6 mice.  相似文献   

8.
Exendin-4 (Ex4), a long-acting glucagon-like peptide-1 (GLP-1) receptor agonist, has been shown to reduce food intake and suppress gastric emptying in rodents and humans. In this study we investigated the effects of peripheral administration of Ex4 on food intake and meal patterns in adult male rhesus macaques. Rhesus macaques (n = 4) that had been trained to lever press for food pellets were injected intramuscularly 15 min before the start of their 6-h daily feeding period. Ex4 was given at doses of 0.10, 0.32, 0.56, 1.0, and 3.0 microg/kg. Ex4 suppressed food intake in a dose-dependent manner, with the 3.0 microg/kg dose completely preventing feeding during the 6-h period and the 0.10 microg/kg dose suppressing intake by 17%. Doses of 0.32, 0.56, 1.0, and 3.0 microg/kg caused significant reductions in cumulative intake at all six hourly time points. Ex4 inhibited food intake through a specific effect on meal size. Meal size was significantly reduced in a dose-dependent manner with significant reductions at the 0.32 and 1.0 microg/kg doses (P < 0.05). Day 2 and 3 intakes returned to baseline levels with no compensation for Ex4-induced feeding suppression. Administration of doses of 0.32 and 0.56 microg/kg Ex4 over 5 consecutive days led to sustained reductions in intake with no evidence of compensation. Again, these reductions were due to specific effects on meal size. These results demonstrate that activation of GLP-1 pathways has potent effects on the controls of meal size and overall food intake in a nonhuman primate model.  相似文献   

9.
CCK octapeptide (CCK-8) is released by the gut in response to a meal and acts via CCK(A) receptors on vagal afferents to induce satiety. However, the central neural pathways by which peripheral CCK-8 affects feeding are poorly understood. In the present study, we tested the hypothesis that norepinephrine (NE) is necessary for satiety induced by peripheral CCK-8 by using mice lacking dopamine beta-hydroxylase (Dbh(-/-)), the enzyme responsible for synthesizing NE and epinephrine from dopamine. We found that Dbh(-/-) mice are as responsive to the satiating effects of CCK-8 as their normal littermates.  相似文献   

10.
Kanoski SE  Walls EK  Davidson TL 《Peptides》2007,28(5):988-1002
The present studies assessed the extent to which the adiposity signal leptin and the brain-gut hormone cholecystokinin (CCK), administered alone or in combination, give rise to interoceptive sensory cues like those that are produced by a low (1h) level of food deprivation. Rats were trained with cues arising from 1 to 24-h food deprivation as discriminative stimuli. For one group, 24-h food deprivation predicted the delivery of sucrose pellets, whereas 1-h food deprivation did not. Another group received the reversed deprivation level-sucrose contingency. After asymptotic performance was achieved, the effects of leptin and CCK on food intake and on discrimination performance were tested under 24-h food deprivation. In Experiment 1a, leptin administered into the third cerebroventricle (i3vt) at 3.5 or 7.0 microg doses had little effect, compared to saline on food intake or discriminative responding. In Experiment 1b, leptin (7.0 microg, i3vt) combined with CCK-8 (2 microg/kg, i.p.) reduced food intake significantly, but the findings indicated that CCK-8 alone produces interoceptive discriminative cues more like those produced by 1- than 24-h food deprivation. Experiment 2a tested rats with i.p. leptin (0.3 and 0.5mg/kg). Although neither dose suppressed intake, the 0.3mg/kg dose produced interoceptive cues like 1-h food deprivation. Experiment 2b tested two doses of CCK-8 (2 and 4 mg/kg, i.p.) and found significant intake suppression and generalization of discrimination with both doses of CCK-8. These findings suggest a role for both leptin and CCK in the production of sensory consequences that correspond to "satiety".  相似文献   

11.
Neurotrophin-4 (NT-4) knockout mice exhibited decreased innervation of the small intestine by vagal intraganglionic laminar endings (IGLEs) and reduced food satiation. Recent findings suggested this innervation was increased in NT-4 knock-in (NT-4KI) mice. Therefore, to further investigate the relationship between intestinal IGLEs and satiation, meal patterns were characterized using solid and liquid diets, and cholecystokinin (CCK) effects on 30-min solid diet intake were examined in NT-4KI and wild-type mice. NT-4KI mice consuming the solid diet exhibited reduced meal size, suggesting increased satiation. However, compensation occurred through increased meal frequency, maintaining daily food intake and body weight gain similar to controls. Mutants fed the liquid diet displayed a decrease in intake rate, again implying increased satiation, but meal duration increased, which led to an increase in meal size. This was compensated for by decreased meal frequency, resulting in similar daily food intake and weight gain as controls. Importantly, these alterations in NT-4KI mice were opposite, or different, from those of NT-4 knockout mice, further supporting the hypothesis that they are specific to vagal afferent signaling. CCK suppressed short-term intake in mutants and controls, but the mutants exhibited larger suppressions at lower doses, implying they were more sensitive to CCK. Moreover, devazepide prevented this suppression, indicating this increased sensitivity was mediated by CCK-1 receptors. These results suggest that the NT-4 gene knock-in, probably involving increased intestinal IGLE innervation, altered short-term feeding, in particular by enhancing satiation and sensitivity to CCK, whereas long-term control of daily intake and body weight was unaffected.  相似文献   

12.
CCK type 1 (CCK1) receptor antagonists differing in blood-brain barrier permeability were used to test the hypothesis that satiety is mediated in part by CCK action at CCK1 receptors on vagal sensory nerves innervating the small intestine. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of N alpha-3-quinolinoyl-D-Glu-N,N-dipentylamide, does not. At dark onset, non-food-deprived control rats and rats with subdiaphragmatic vagotomies received a bolus injection of devazepide (2.5 micromol/kg i.v.) or a 3-h infusion of A-70104 (3 micromol.kg(-1).h(-1) i.v.) either alone or coadministered with a 2-h intragastric infusion of peptone (0.75 or 1 g/h). Food intake was determined from continuous computer recordings of changes in food bowl weight. In control rats both antagonists stimulated food intake and attenuated the anorexic response to intragastric infusion of peptone. In contrast, only devazepide was effective in stimulating food intake in vagotomized rats. Thus endogenous CCK appears to act both at CCK1 receptors beyond the blood-brain barrier and by a CCK1 receptor-mediated mechanism involving abdominal vagal nerves to inhibit food intake.  相似文献   

13.
Dopamine D(2) receptors mediate amylin's acute satiety effect   总被引:1,自引:0,他引:1  
The anorectic effect of the pancreatic peptide amylin has been established in numerous studies. Here, we investigated the influence of a pretreatment with dopamine (DA) D(1)- and D(2)-receptor antagonists on the anorectic effect of intraperitoneally injected amylin in rats fed a medium-fat (18% fat) diet. In 24-h food-deprived rats, pretreatment with the DA D(2)-receptor antagonist raclopride [100 microg/kg (0.2 micromol/kg) ip] significantly attenuated amylin's (5 microg/kg ip) anorectic effect, whereas raclopride alone had no effect on food intake [i.e., food intakes 1 h after injection were (n = 12): NaCl/NaCl 7.3 +/- 0.5 g; NaCl/amylin 3.9 +/- 0.6; raclopride/NaCl 7.7 +/- 0.7; raclopride/amylin 5.6 +/- 0.7]. Pretreatment with another DA D(2) receptor antagonist, sulpiride [50 mg/kg (154 micromol/kg) ip], similarly reduced amylin's satiety effect, whereas pretreatment with the DA D(1)-receptor antagonist SCH-23390 [10 microg/kg (0.03 micromol/kg) ip] did not influence amylin's effect. SCH-23390, however, completely blocked the anorexia induced by D-amphetamine (0.3 mg/kg ip). These results suggest that, under the present feeding conditions, the dopaminergic system mediates part of amylin's inhibitory effect on feeding in rats when administered intraperitoneally. This seems to involve DA D(2) receptors but not D(1) receptors.  相似文献   

14.
Enterostatin, a pentapeptide released from the exocrine pancreas and gastrointestinal tract, selectively inhibits fat intake through activation of an afferent vagal signaling pathway. This study investigated if the effects of enterostatin were mediated through a CCK-dependent pathway. The series of in vivo and in vitro experiments included studies of 1) the feeding effect of peripheral enterostatin on Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors, 2) the effect of CCK-8S on the intake of a two-choice high-fat (HF)/low-fat (LF) diet, 3) the effects of peripheral or central injection of the CCK-A receptor antagonist lorglumide on the feeding inhibition induced by either central or peripheral enterostatin, and 4) the ability of enterostatin to displace CCK binding in a 3T3 cell line expressing CCK-A receptor gene and in rat brain sections. The results showed that OLTEF rats did not respond to enterostatin (300 microg/kg ip) in contrast to the 23% reduction in intake of HF diet in Long Evans Tokushima Otsuka (LETO) control rats. CCK (1 microg/kg ip) decreased the intake of the HF diet in a two-choice diet regime with a compensatory increase in intake of the LF diet. Peripheral injection of lorglumide (300 microg/kg) blocked the feeding inhibition induced by either near-celiac arterial or intracerebroventricular enterostatin, whereas intracerebroventricular lorglumide (5 nmol icv) only blocked the response to intracerebroventricular enterostatin but not to arterial enterostatin. Enterostatin did not bind on CCK-A receptors because neither enterostatin nor its analogs VPDPR and beta-casomorphin displaced [3H]L-364,718 from CCK-A receptors expressed in 3T3 cells or the binding of 125I-CCK-8S from rat brain sections. The data suggest that both the peripheral and central responses to enterostatin are mediated through or dependent on peripheral and central CCK-A receptors.  相似文献   

15.
Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1), in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK), amylin, and the glucagon like peptide-1 (GLP-1) receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1–10 nmol/kg significantly reduced glucose intake in wild type (WT) mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.  相似文献   

16.
Cholecystokinin (CCK), acting at CCK1 receptors (CCK1Rs) on intestinal vagal afferent terminals, has been implicated in the control of gastrointestinal function and food intake. Using CCK1R(-/-) mice, we tested the hypothesis that lipid-induced activation of the vagal afferent pathway and intestinal feedback of gastric function is CCK1R dependent. In anesthetized CCK1R(+/+) ("wild type") mice, meal-stimulated gastric acid secretion was inhibited by intestinal lipid infusion; this was abolished in CCK1R(-/-) mice. Gastric emptying of whole egg, measured by nuclear scintigraphy in awake mice, was significantly faster in CCK1R(-/-) than CCK1R(+/+) mice. Gastric emptying of chow was significantly slowed in response to administration of CCK-8 (22 pmol) in CCK1R(+/+) but not CCK1R(-/-) mice. Activation of the vagal afferent pathway was measured by immunohistochemical localization of Fos protein in the nucleus of the solitary tract (NTS; a region where vagal afferents terminate). CCK-8 (22 pmol ip) increased neuronal Fos expression in the NTS of fasted CCK1R(+/+) mice; CCK-induced Fos expression was reduced by 97% in CCK1R(-/-) compared with CCK1R(+/+) mice. Intralipid (0.2 ml of 20% Intralipid and 0.04 g lipid), but not saline, gavage increased Fos expression in the NTS of fasted CCK1R(+/+) mice; lipid-induced Fos expression was decreased by 47% in CCK1R(-/-) compared with CCK1R(+/+)mice. We conclude that intestinal lipid activates the vagal afferent pathway, decreases gastric acid secretion, and delays gastric emptying via a CCK1R-dependent mechanism. Thus, despite a relatively normal phenotype, intestinal feedback in response to lipid is severely impaired in these mice.  相似文献   

17.
Both bone marrow (BM) and myocardium contain progenitor cells expressing the c-Kit tyrosine kinase. The aims of this study were to determine the effects of c-Kit mutations on: i. myocardial c-Kit(+) cells counts and ii. the stability of left ventricular (LV) contractile function and structure during aging. LV structure and contractile function were evaluated (echocardiography) in two groups of Kit mutant (W/Wv and W41/W42) and in wild type (WT) mice at 4 and 12 months of age and the effects of the mutations on LV mass, vascular density and the numbers of proliferating cells were also determined. In 4 month old Kit mutant and WT mice, LV ejection fractions (EF) and LV fractional shortening rates (FS) were comparable. At 12 months of age EF and FS were significantly decreased and LV mass was significantly increased only in W41/W42 mice. Myocardial vascular densities and c-Kit(+) cell numbers were significantly reduced in both mutant groups when compared to WT hearts. Replacement of mutant BM with WT BM at 4 months of age did not prevent these abnormalities in either mutant group although they were somewhat attenuated in the W/Wv group. Notably BM transplantation did not prevent the development of cardiomyopathy in 12 month W41/W42 mice. The data suggest that decreased numbers and functional capacities of c-Kit(+) cardiac resident progenitor cells may be the basis of the cardiomyopathy in W41/W42 mice and although defects in mutant BM progenitor cells may prove to be contributory, they are not causal.  相似文献   

18.
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are peptides that act both peripherally and centrally to reduce food intake by decreasing meal size. The present study examined the effects of intraperitoneally administered bolus doses of recombinant apo AIV, CCK-8, and a combination of subthreshold doses of apo AIV and CCK on 4-h food intake in rats that were fasted overnight. Apo AIV at 100 microg/kg reduced food intake significantly relative to the saline control for 1 h, as did doses of CCK-8 at or above 0.125 microg/kg. Doses of apo AIV (50 microg/kg) or CCK (0.06 microg/kg) alone had no effect on food intake. However, when these subthreshold doses of apo AIV and CCK were administered together, the combination produced a significant inhibition of food intake relative to saline controls (P < 0.001), and the duration of the effect was longer than that caused by the administration of either apo AIV or CCK alone. The satiation effect produced by CCK-8 + apo AIV was attenuated by lorglumide, a CCK1 receptor antagonist. We conclude that, whereas the intraperitoneal administration of doses of either recombinant apo AIV or CCK at or above threshold levels reduces food intake, the coadministration of subthreshold doses of the two peptides is highly satiating and works via CCK1 receptor.  相似文献   

19.
Goebel M  Stengel A  Wang L  Taché Y 《Peptides》2011,32(1):36-43
Nesfatin-1 is well established to reduce food intake upon brain injection in rats, while in mice its anorexigenic action and brain expression are largely unexplored. We characterized the influence of intracerebroventricular (icv) and peripheral (intraperitoneal, ip, subcutaneous, sc) injection of nesfatin-1 on dark phase ingestive behavior using an automated feeding monitoring system and co-localized NUCB2/nesfatin-1 immunoreactivity in the associated brain areas. Nesfatin-1 (0.3, 1 or 3 μg/mouse, icv) caused a dose-related reduction of 4-h dark phase food intake by 13%, 27%, and 46% respectively. Nesfatin-1 (3 μg/mouse, icv) action had a 2-h delayed onset, 82% peak inhibition occurring at 3-4 h post-injection and was long lasting (30% reduction for 12 h period post-injection). Nesfatin-1 (3 μg/mouse, icv)-treated mice had a 46% lower meal frequency associated with 2-times longer inter-meal intervals and a 35% reduction in meal size compared to vehicle during the 1-4 h post-injection (p < 0.05). NUCB2/nesfatin-1-immunopositive neurons were found in hypothalamic (supraoptic, paraventricular, arcuate, dorsomedial, lateral) and brainstem (dorsal vagal complex) feeding regulatory nuclei. When injected peripherally, neither food intake nor feeding microstructure parameters were altered. These results demonstrate that NUCB2/nesfatin-1 is prominently expressed in mouse hypothalamus and medulla and acts in the brain to curtail the dark phase feeding by inducing satiation and satiety indicated by reduced meal size and prolonged inter-meal intervals respectively. The lack of nesfatin-1 effect when injected peripherally at a 23-times higher dose indicates a primarily central site of the anorexigenic action for nesfatin-1 in mice.  相似文献   

20.
CCK and ghrelin exert antagonistic effects on ingestive behavior. The aim of the present study was to investigate the interaction between ghrelin and CCK administered peripherally on food intake and neuronal activity in specific hypothalamic and brain stem nuclei, as assessed by c-Fos-like immunoreactivity (c-FLI) in nonfasted rats. Ghrelin (13 microg/kg body wt) injected intraperitoneally significantly increased the cumulative food intake when measured at 30 min and 1 h after injection, compared with the vehicle group (2.9 +/- 1.0 g/kg body wt vs. 1.2 +/- 0.5 g/kg body wt, P < 0.028). Sulfated CCK octapeptide (CCK-8S) (2 or 25 microg/kg body wt) injected simultaneously blocked the orexigenic effect of ghrelin (0.22 +/- 0.13 g/kg body wt, P < 0.001 and 0.33 +/- 0.23 g/kg body wt, P < 0.0008), while injected alone, both doses of CCK-8S exerted a nonsignificant trend to reduce food intake. Ghrelin (13 microg/kg body wt ip) markedly increased the number of c-FLI-positive neurons per section in the arcuate nucleus (ARC) compared with vehicle (median: 31.35 vs. 9.86, P < 0.0001). CCK-8S (2 or 25 microg/kg body wt ip) had no effect on neuronal activity in the ARC, as assessed by c-FLI (median: 5.33 and 11.21 cells per section), but blocked the ghrelin-induced increase of c-fos expression in this area when both peptides were administered simultaneously (median: 13.33 and 12.86 cells per section, respectively). Ghrelin at this dose had no effect on CCK-induced stimulation of c-fos expression in the paraventricular nucleus of the hypothalamus and the nucleus of the solitary tract. These results suggest that CCK abolishes ghrelin-induced food intake through dampening increased ARC neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号