首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that IFN-gamma/STAT1 plays an essential role in concanavalin A (ConA)-induced T cell hepatitis via activation of apoptotic signaling pathways. Here we demonstrate that IFN-gamma/STAT1 also plays a crucial role in leukocyte infiltration into the liver in T cell hepatitis. After injection of ConA, leukocytes were significantly infiltrated into the liver, which was suppressed in IFN-gamma(-/-) and STAT1(-/-) mice. Disruption of the IFN regulatory factor-1 (IRF-1) gene, a downstream target of IFN-gamma/STAT1, abolished ConA-induced liver injury and suppressed leukocyte infiltration into the liver. Additionally, ConA injection induced expression of a wide variety of chemokines and adhesion molecules in the liver. Among them, expression of ICAM-1, VCAM-1, monokine induced by IFN-gamma (Mig), CC chemokine ligand-20, epithelial cell-derived neutrophil-activating peptide (ENA)-78, IFN-inducible T cell-alpha chemoattractant (I-TAC), and IFN-inducible protein-10 (IP-10) was markedly attenuated in IFN-gamma(-/-), STAT1(-/-), and IRF-1(-/-) mice. In primary mouse hepatocytes, Kupffer cells, and endothelial cells, in vitro treatment with IFN-gamma activated STAT1, STAT3, and IRF-1, and induced expression of VCAM-1, ICAM-1, Mig, ENA-78, I-TAC, and IP-10 mRNA. Induction of these chemokines and adhesion molecules was markedly diminished in STAT1(-/-) and IRF-1(-/-) hepatic cells compared with wild-type hepatic cells. These findings suggest that in addition to induction of apoptosis, previously well documented, IFN-gamma also stimulated hepatocytes, sinusoidal endothelial cells, and Kupffer cells partly via an STAT1/IRF-1-dependent mechanism to produce multiple chemokines and adhesive molecules responsible for promoting infiltration of leukocytes and, ultimately, resulting in hepatitis.  相似文献   

2.
3.
Alpinia pricei Hayata is a Formosan plant which has been popularly used as nutraceutical or folk medicine for inflammation and various disorders. An active compound of the plant rhizomes, desmethoxyyangonin (DMY), was identified in this study for its novel effect against endotoxin lipopolysaccharide (LPS)-stimulated inflammation in murine macrophages and LPS/D-galactosamine (LPS/D-GalN)-induced fulminant hepatitis in mice. DMY was observed to significantly inhibit proliferation and activation of T cells ex vivo and the activity of several pro-inflammatory mediators in vitro. DMY also protected LPS/D-GalN−induced acute hepatic damages in mice through inhibiting aminotransferases activities and infiltrations of inflammatory macrophages, neutrophils and pathogenic T cells into the liver tissues. In addition, pretreatment with DMY significantly improved the survival rate of LPS/D-GalN−treated mice to 90% (9/10), compared to LPS/D-GalN−treated group (40%, 4/10). UPLC/MS platform-based comparative metabolomics approach was used to explore the serum metabolic profile in fulminant hepatic failure (FHF) mice with or without the DMY pretreatment. The results showed that LPS/D-GalN−induced hepatic damage is likely through perturbing amino acid metabolism, which leads to decreased pyruvate formation via catalysis of aminotransferases, and DMY treatment can prevent to a certain degree of these alterations in metabolic network in mouse caused by LPS/D-GalN. Mechanistic investigation demonstrated that DMY protects LPS or LPS/D-GalN−induced damages in cell or liver tissues mainly through de-regulating IKK/NFκB and Jak2/STAT3 signaling pathways. This report provides evidence-based knowledge to support the rationale for the use of A. pricei root extract in anti-inflammation and also its new function as hepatoprotetive agent against fulminant hepatitis.  相似文献   

4.
人肝刺激因子对实验性急性肝功能衰竭小鼠的保护作用   总被引:2,自引:0,他引:2  
取健康孕妇水囊引产的4~6个月龄的胎儿肝脏,按LaBreque法提取肝刺激因子(hHSS)。将hHSS注入肝部分切除的大鼠体内,用~3H-TdR掺入肝DNA测定其生物学活性。给昆明种小鼠腹腔注射D-半乳糖胺(D-Gal)以造成急性肝功能衰竭,观察hHSS对这种急性肝衰的保护效应,结果如下:①hHSS明显降低D-Gal所致的小鼠死亡率(P<0.01);②hHSS显著降低D-Gal所致sGPT和sGOT水平增高(sGPT 208.2±26.1比103.6±21.2 U/100ml;sGOT 502.6±65.4比287.8±39.4 U/100m1);③hHSS明显降低D-Gal所致的小鼠肝组织丙二醛水平增高(330.4±38.9比115.5±43.8nmol/100mg蛋白质);④光镜和电镜的组织学观察表明hHSS明显减轻D-Gal对肝组织的损害。上述实验结果表明,hHSS对D-Gal所致的急性肝衰具有明显的保护作用,其机制可能是保护肝细胞正常代谢和防止膜脂质过氧化。  相似文献   

5.
T cell-mediated immune responses are implicated in the pathogenesis of a variety of liver disorders; however, the underlying mechanism remains obscure. Con A injection is a widely accepted mouse model to study T cell-mediated liver injury, in which STAT6 is rapidly activated. Disruption of the IL-4 and STAT6 gene by way of genetic knockout abolishes Con A-mediated liver injury without affecting IFN-gamma/STAT1, IL-6/STAT3, or TNF-alpha/NF-kappaB signaling or affecting NKT cell activation. Infiltration of neutrophils and eosinophils in Con A-induced hepatitis is markedly suppressed in IL-4 (-/-) and STAT6(-/-) mice compared with wild-type mice. IL-4 treatment induces expression of eotaxins in hepatocytes and sinusoidal endothelial cells isolated from wild-type mice but not from STAT6(-/-) mice. Con A injection induces expression of eotaxins in the liver and elevates serum levels of IL-5 and eotaxins; such induction is markedly attenuated in IL-4(-/-) and STAT6(-/-) mice. Finally, eotaxin blockade attenuates Con A-induced liver injury and leukocyte infiltration. Taken together, these findings suggest that IL-4/STAT6 plays a critical role in Con A-induced hepatitis, via enhancing expression of eotaxins in hepatocytes and sinusoidal endothelial cells, and induces IL-5 expression, thereby facilitating recruitment of eosinophils and neutrophils into the liver and resulting in hepatitis.  相似文献   

6.
The effects of secoisolariciresinol (1) and isotaxiresinol (2), two major lignans isolated from the wood of Taxus yunnanensis, on tumor necrosis factor-alpha (TNF-alpha)-dependent hepatic apoptosis induced by D-galactosamine (d-GalN)/lipopolysaccharide (LPS) were investigated in mice. Co-administration of d-GalN (700 mg/kg) and LPS (10 microg/kg) resulted in a typical hepatic apoptosis characterized by DNA fragmentation and the formation of apoptotic bodies. Serum glutamic pyruvic transaminase (sGPT) and glutamic oxaloacetic transaminase (sGOT) levels were also raised at 8 h after d-GalN/LPS intoxication due to a severe necrosis of hepatocytes. Pre-administration of 1 or 2 (50, 10 mg/kg, i.p.) 12 and 1 h before d-GalN/LPS significantly reduced DNA fragmentation and prevented chromatin condensation, apoptotic body formation and hepatitis. Pro-inflammatory cytokines such as TNF-alpha and interferon-gamma (IFN-gamma) secreted from LPS-activated macrophages are important mediators of hepatocyte apoptosis in this model. Pre-treatment with 1 or 2 significantly inhibited the elevation of serum TNF-alpha and IFN-gamma levels. In a separate experiment, both lignans had a significant dose-dependent protective effect on d-GalN/TNF-alpha-induced cell death in primary cultured mouse hepatocytes and TNF-alpha-mediated cell death in murine L929 fibrosarcoma cells. These results indicated that 1 and 2 prevent d-GalN/LPS-induced hepatic injury by inhibiting hepatocyte apoptosis through the blocking of TNF-alpha and IFN-gamma production by activated macrophages and direct inhibition of the apoptosis induced by TNF-alpha.  相似文献   

7.
8.
9.
肝再生剌激因子对小鼠实验性急性肝损伤的保护作用   总被引:4,自引:1,他引:3  
安威 《生理学报》1991,43(5):415-427
A hepatic stimulator substance (HSS) was extracted from the liver of male weanling SD rats according to the method of LaBrecque. The mice were injected with carbon tetrachloride or D-galactosamine to induce hepatic injuries and the protective effect of HSS on thus induced hepatic damage was investigated. The results were as follows: (1) HSS could suppresses the elevation of sGPT and sGOT induced by carbon tetrachloride intoxication in a dose-dependent manner. (2) Hepatic histological findings indicated that the degree of CCl4 or D-galactosamine-induced hepatic lesions could be lessened by HSS. (3) CCl4-induced reduction of hepatic mitochondrial succinic dehydrogenase activity could be restored by HSS. (4) Insulin-glucagon enhanced the survival of D-galactosamine intoxicated mice and stimulated hepatocyte proliferation, thus showing less pronounced hepatic damage.  相似文献   

10.
The effects of betaine supplementation on D-galactosamine-induced liver injury were examined in terms of hepatic and serum enzyme activities and of the levels of glutathione and betaine-derived intermediates. The rats induced with liver injury showed marked increases in serum enzyme activity, but those receiving dietary supplementation of 1% betaine showed enzyme activity levels similar to a control group without liver injury. Administration of betaine also increased both hepatic and serum glutathione levels, even following D-galactosamine injection. The activity of glutathione-related enzymes was markedly decreased following injection of D-galactosamine, but remained comparable to that of the control group in rats receiving 1% betaine. The concentrations of hepatic S-adenosyl methionine and cysteine showed similar trends to that observed for hepatic glutathione levels. These results indicate that 1% betaine has a hepatoprotective effect by increasing hepatic and serum glutathione levels along with glutathione-related enzyme activities in rats.  相似文献   

11.
We report the development and characterization of a novel model of severe hepatitis induced against hepatitis B virus surface Ag (HBsAg). HBsAg was successfully targeted into the liver in soluble form. Using this unique property of HBsAg, we established a liver injury model induced by HBsAg-specific Th1 cells. Severe liver injury was induced in C57BL/6 mice by injection of HBsAg together with HBsAg-specific Th1 cells. Histochemical examination demonstrated extensive necroinflammatory hepatic lesions in these animals. Application of this liver injury model to mutant or gene knockout mice enabled us to define the effector mechanisms of Th1 cells in fulminant hepatitis. When Fas-deficient lpr mice were used as recipients, a similar degree of liver injury was induced as in wild-type mice. Moreover, HBsAg-specific Th1 cells obtained from perforin-/- mice could induce severe liver injury in both wild-type and lpr mice. These results indicated that neither Fas ligand nor perforin are essential for Th1-mediated liver injury in this model. Pretreatment with anti-TNF-alpha mAb prevented liver injury, whereas severe liver injury was induced in TNF-alpha-/- mice. Moreover, IFN-gamma receptor-deficient mice were resistant to Th1-mediated liver injury. Therefore, TNF-alpha and IFN-gamma, which were produced by HBsAg-specific Th1 cells during the effector phase, appeared to be indispensable in the pathogenesis of fulminant hepatitis.  相似文献   

12.
Cathepsin B is a cysteine proteinase, considered to have an important role in apoptosis, which is activated by D-galactosamine and tumor necrosis factor-alpha (D-GalN/TNF-alpha). Benzyloxycarbonyl-L-phenylalanine fluoromethyl ketone (Z-FA.FMK) is a cathepsin B inhibitor used in research on apoptotic pathways. The aim of this study was to investigate the role of Z-FA.FMK on apoptotic cell death, cell proliferation and liver damage induced by a D-GalN/TNF-alpha combination in mice. In the study, 1 h after administration of 8 mg/kg Z-FA.FMK by intravenous injection, D-GalN (700 mg/kg) and TNF-alpha (15 microg/kg) were administered by a single intraperitoneal injection. In the group given D-GalN/TNF-alpha, the following results were found: Degenerative changes in the liver tissue, significant increase in the number of both TUNEL and activated caspase-3-positive hepatocytes, a decrease in the number of PCNA-positive hepatocytes, an increase in lipid peroxidation (LPO) levels and a decrease in glutathione (GSH) and DNA levels in the liver tissue. In contrast, in the group given D-GalN/TNF-alpha and Z-FA.FMK, a decrease in the damage of the liver tissue, a significant decrease in TUNEL and activated caspase-3-positive hepatocytes, a significant increase in the number of PCNA-positive hepatocytes, a decrease in the LPO levels, an increase in GSH and DNA levels in the liver tissue were found. As a result, microscopic and biochemical evaluations indicate that Z-FA.FMK plays a protective role against liver injury induced by D-GalN/TNF-alpha and it has an inverse effect on hepatocyte apoptosis and proliferation in BALB/c mice.  相似文献   

13.
Mechanisms to maintain blood pressure in the face of infection are critical to survival. The angiotensinogen (AGT) gene locus is an important component of this response. Thus the AGT gene, expressed predominantly by liver cells, is known to be a positive acute phase reactant. We have previously demonstrated activation of the AGT promoter in hepatocytes through the IL6/STAT3 signaling mechanism. We have now investigated whether IFN-gamma, a cytokine also induced in response to diverse infections, can regulate AGT gene expression, and have elucidated the molecular mechanism involved. IFN gamma treatment up-regulated AGT mRNA level and promoter activity in Hep3B hepatocytes. Sequential deletion of the promoter from the 5' side suggested the major IFN gamma responsive DNA element to be between -303 and -103. This region contained a candidate STAT1-binding site between -271 and -279. EMSA and chromatin immuno-precipitation (ChIP) assays confirmed that IFN-gamma treatment induced the binding of STAT1 to this element. Reporter constructs containing this AGT promoter derived element in a multimerized context but not a mutant version were responsive to IFN gamma. Moreover mutating this STAT1 element in the context of the wild-type AGT holo promoter reduced responsiveness to IFN gamma. In contrast to the clear synergism between dexamethasone and IL 6 in the upregulation of the AGT promoter (through interaction between GR and STAT3), the combination of IFN gamma with IL 6 or with dexamethasone did not further increase AGT promoter activity suggesting that the IFN gamma/STAT1 pathway represents a separate signaling mechanism. These data highlight the redundancy in cytokine-mediated host response pathways aimed at the maintenance of blood pressure during infection.  相似文献   

14.
15.
16.
Interleukin-6 (IL-6) is a multifunctional cytokine, which may block apoptosis during inflammation to protect cells under very toxic conditions. However, IL-6 also activates STAT3 in many types of human cancer. Recent studies demonstrate that high levels of IL-6 are associated with hepatocellular carcinoma, the most common type of liver cancer. Here we reported that IL-6 promoted survival of human liver cancer cells through activating STAT3 in response to doxorubicin treatment. Endogenous IL-6 levels in SNU-449 cells were higher than in Hep3B cells. Meanwhile, SNU-449 cells were more resistant to doxorubicin than Hep3B cells. Addition of IL-6 induced STAT3 activation in Hep3B cells and led to protection against doxorubicin. In contrast, neutralizing IL-6 with anti-IL-6 antibody decreased survival of SNU-449 cells in response to doxorubicin. To elucidate the mechanism of the anti-apoptotic function of IL-6, we investigated if STAT3 mediated this drug resistance. Targeting STAT3 with STAT3 siRNA reduced the protection of IL-6 against doxorubicin-induced apoptosis, indicating that STAT3 signaling contributed to the anti-apoptotic effect of IL-6. Moreover, we further explored if a STAT3 small molecule inhibitor could abolish this anti-apoptotic effect. LLL12, a STAT3 small molecule inhibitor, blocked IL-6-induced STAT3 phosphorylation, resulting in attenuation of the anti-apoptotic activity of IL-6. Finally, neutralization of endogenous IL-6 with anti-IL-6 antibody or blockade of STAT3 with LLL12 lowered the recovery in SNU-449 cells after doxorubicin treatment. Therefore, our results demonstrated that targeting STAT3 signaling could interrupt the anti-apoptotic function of IL-6 in human liver cancer cells.  相似文献   

17.
BALB/c mice have been shown to easily induce Th2 type responses in several infection models. In this study, to examine the mechanisms of Th2 dominant responses in BALB/c mice, we assessed several macrophage functions using C3H/HeN, C57BL/6, and BALB/c mouse strains. Peritoneal macrophages from three strains of mice equally produced IL-12 by stimulation with LPS plus IFN-gamma. However, IFN-gamma production in response to IL-12 or IL-12 plus IL-18 was much lower in macrophages from BALB/c mice than other strains. IFN-gamma produced by activated macrophages induced IL-12R mRNA expression in T cells and macrophages themselves depending on their amount of IFN-gamma; namely, macrophages from BALB/c mice induced lower expression of IL-12R. Intracellular levels of STAT4 were much lower in macrophages from BALB/c mice. However, other STATs, such as STAT1 or STAT6, were expressed similarly in the three mouse strains. STAT4 and IFN-gamma production by other cell types such as T cells and B cells were equal in C3H/HeN and BALB/c mice. These results indicate that macrophages from Th2-dominant BALB/c mice have different functional characters compared with other mouse strains; that is, STAT4 expression and IFN-gamma production are reduced, which is one of the causes to shift to Th2-type responses.  相似文献   

18.
Xing WW  Zou MJ  Liu S  Xu T  Gao J  Wang JX  Xu DG 《Cytokine》2011,56(2):174-179
Interleukin-22 (IL-22), a member of the IL-10 cytokine family that is produced by activated Th22, Th1 and Th17 cells as well as natural killer cells, plays an important role in increase of innate immunity, protection from damage and enhancement of regeneration. Here, we examined the effects of IL-22 on acute liver failure model induced by d-galactosamine (GalN) and lipopolysaccharide (LPS). Administration of recombinant human IL-22 (rhIL-22) reduced the death rate markedly and prevented mice from severe hepatic injury, as evidenced by decreased serum alanine aminotransferase (ALT) and total bilirubin (T.Bil) activity as well as improved histological signs in liver. Furthermore, IL-22 treatment decreased the hepatic malondialdehyde (MDA) contents and increased the reduced glutathione levels. Serum tumor necrosis factor α (TNF-α) level and hepatic caspase-3 activity were significantly lower in mice administrated with IL-22. Moreover, IL-22 treatment significantly enhanced activation of STAT3 and up-regulated the expression of Bcl-xL, heme oxygenase-1 (HO-1) and redox factor-1 (Ref-1) in the liver injury induced by GalN/LPS. Collectively, these data indicate that IL-22 can provide critical protection against GalN/LPS-induced liver injury through anti-apoptotic, anti-oxidant and anti-inflammatory actions.  相似文献   

19.
Kuo PL  Chiang LC  Lin CC 《Life sciences》2002,72(1):23-34
Resveratrol, a phytoalexin found in many plants, has been reported to possess a wide range of pharmacological properties and is one of the promising chemopreventive agents for cancer. Here, we examined the antiproliferation effect of resveratrol in two human liver cancer cell lines, Hep G2 and Hep 3B. Our results showed that resveratrol inhibited cell growth in p53-positive Hep G2 cells only. This anticancer effect was a result of cellular apoptotic death induced by resveratrol via the p53-dependent pathway. Here we demonstrated that the resveratrol-treated cells were arrested in G1 phase and were associated with the increase of p21 expression. In addition, we also illustrated that the resveratrol-treated cells had enhanced Bax expression but they were not involved in Fas/APO-1 apoptotic signal pathway. In contrast, the p53-negative Hep 3B cells treated with resveratrol did not show the antiproliferation effect neither did they show significant changes in p21 nor Fas/APO-1 levels. In summary, our study demonstrated that the resveratrol effectively inhibited cell growth and induced programmed cell death in Hepatoma cells on a molecular basis. Furthermore, these results implied that resveratrol might also be a new potent chemopreventive drug candidate for liver cancer as it played an important role to trigger p53-mediated molecules involved in the mechanism of p53-dependent apoptotic signal pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号