首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of aerobic training on heart rate dynamics in sedentary subjects.   总被引:7,自引:0,他引:7  
This study was designed to assess the effects of moderate- and high-volume aerobic training on the time domain and on spectral and fractal heart rate (HR) variability indexes. Sedentary subjects were randomized into groups with moderate-volume training (n = 20), high-volume training (n = 20), and controls (n = 15). The training period was 8 wk, including 6 sessions/wk at an intensity of 70-80% of the maximum HR, lasting for 30 min/session in the moderate-volume group and 60 min/session in the high-volume group. Time domain, frequency domain, and short-term fractal scaling measures of HR variability were analyzed over a 24-h period. Mean HR decreased from 70 +/- 7 to 64 +/- 8 beats/min and from 67 +/- 5 to 60 +/- 6 beats/min (P < 0.001 for both) for the moderate- and high-volume training groups, respectively. The normalized high-frequency spectral component increased in both groups (P < 0.05). The normalized low-frequency component decreased significantly (P < 0.05), resulting in a marked decrease in low frequency-to-high frequency ratio in both groups. In addition, short-term scaling exponent decreased in both groups (P < 0.001). There were no significant differences in the changes of HR variability indexes between groups. Aerobic training in sedentary subjects results in altered autonomic regulation of HR toward vagal dominance. A moderate training volume is a sufficient intervention to induce these beneficial effects.  相似文献   

2.
Seven male sedentary human subjects were studied during intense muscular work (80% of maximal oxygen uptake) performed either for 15 min or until exhaustion (mean duration: 47 +/- 2 min). Plasma catecholamines were estimated before and after the experiment by means of an original fluorimetric assay. Epinephrine or norepinephrine were individually isolated from plasma and assayed in single extracts by a highly sensitive fluorimetric method. Epinephrine and norepinephrine levels as low as 15 ng per liter were detectable by this procedure in human plasma. The adrenergic pattern was found to be greatly different from one subject to another and related to emotivity: the effect of this factor was revealed by the predominance of epinephrine in plasma at rest or under exercise (ratio NA/A less than 1). In nonemotive subjects (ratio NA/A greater than 1 at rest) plasma epinephrine and norepinephrine increased progressively during exercise. Increments after exercise were higher for norepinephrine changes; however, the fact that epinephrine concentrations correlated significantly with norepinephrine suggests a simulataneous and coordinated stimulation of adrenal glands and orthosympathetic nervous system. In emotive subjects (ratio NA/A less than 1 at rest) the apprehension of muscular work promoted a difference in catecholamine responses: norepinephrine release was not affected by subject's anxiety, while epinephrine secretion, already elevated before the test, reached a high degree of magnitude in the first minutes of muscular work, remaining nearly constant until exhaustion. Physical training of nonemotive subjects, during 2 months with two intense exercises by a week, reduced strongly norepinephrine release after exhaustive muscular work. In the same conditions, the adrenal-medullary response was not significantly modified when compared with untrained subjects. Our results suggest that the adrenergic behaviour during exercise is a function of effort intensity to be supplied; catecholamines seem to be important factors in regulating body homeostasy during muscular work in man. In addition, emotive subjects exhibit amplified adrenal-medullary response, which may be related to psychological stimuli.  相似文献   

3.
Tantucci, C., P. Bottini, M. L. Dottorini, E. Puxeddu, G. Casucci, L. Scionti, and C. A. Sorbini. Ventilatory response toexercise in diabetic subjects with autonomic neuropathy.J. Appl. Physiol. 81(5):1978-1986, 1996.We have used diabetic autonomic neuropathy as amodel of chronic pulmonary denervation to study the ventilatoryresponse to incremental exercise in 20 diabetic subjects, 10 with(Dan+) and 10 without (Dan) autonomic dysfunction, and in 10 normal control subjects. Although both Dan+ and Dan subjectsachieved lower O2 consumption andCO2 production(CO2) thancontrol subjects at peak of exercise, they attained similar values ofeither minute ventilation(E) oradjusted ventilation (E/maximalvoluntary ventilation). The increment of respiratory rate withincreasing adjusted ventilation was much higher in Dan+ than inDan and control subjects (P < 0.05). The slope of the linearE/CO2relationship was 0.032 ± 0.002, 0.027 ± 0.001 (P < 0.05), and 0.025 ± 0.001 (P < 0.001) ml/min inDan+, Dan, and control subjects, respectively. Bothneuromuscular and ventilatory outputs in relation to increasingCO2 were progressivelyhigher in Dan+ than in Dan and control subjects. At peak ofexercise, end-tidal PCO2 was muchlower in Dan+ (35.9 ± 1.6 Torr) than in Dan (42.1 ± 1.7 Torr; P < 0.02) and control (42.1 ± 0.9 Torr; P < 0.005) subjects.We conclude that pulmonary autonomic denervation affects ventilatoryresponse to stressful exercise by excessively increasing respiratoryrate and alveolar ventilation. Reduced neural inhibitory modulationfrom sympathetic pulmonary afferents and/or increasedchemosensitivity may be responsible for the higher inspiratoryoutput.

  相似文献   

4.
Autonomic nervous system activity is essential for regulation of ventricular repolarization (VR) and plays an important role in several arrhythmogenic conditions. This study in 31 healthy adult subjects (16 men, 15 women) evaluated the VR response to pharmacologically modulated autonomic nervous system activity applying vectorcardiography (VCG) analysis. During continuous VCG recording, 0.01-0.1 μg·kg(-1)·min(-1) isoprenaline (Iso) was infused at an increasing flow rate until three targeted heart rates (HR) were reached. After Iso washout, one intravenous bolus of 0.04 mg/kg atropine was given followed by an intravenous bolus of 0.2 mg/kg propranolol. A 5-min steady-state VCG recording was analyzed for each of the seven phases (including baseline 1 and 2). Furthermore, during the first 4 min following atropine, six periods of 10-s VCG were selected for subanalysis to evaluate the time course of change. The analysis included QRS, QT, and T-peak to T-end intervals, measures of the QRS and T vectors and their relation, as well as T-loop morphology parameters. By increasing HR, Iso infusion decreased HR dependent parameters reflecting total heterogeneity of VR (T area) and action potential morphology (ventricular gradient). In contrast, Iso prolonged QT HR corrected according to Bazett and increased the T-peak to T-end-to-QT ratio to levels observed in arrhythmogenic conditions. HR acceleration after atropine was accompanied by a transient paradoxical QT prolongation and delayed HR adaptation of T area and ventricular gradient. In addition to the expected HR adaptation, the VR response to β-adrenoceptor stimulation with Iso and to muscarinic receptor blockade with atropine thus included alterations previously observed in congenital and acquired long QT syndromes, demonstrating substantial overlap between physiological and pathophysiological electrophysiology.  相似文献   

5.
6.
The goal of the study was to determine the effects of continuous (CT) vs. intermittent (IT) training yielding identical mechanical work and training duration on skeletal muscle and cardiorespiratory adaptations in sedentary subjects. Eleven subjects (6 men and 5 women, 45 +/- 3 years) were randomly assigned to either of the two 8-wk training programs in a cross-over design, separated by 12 wk of detraining. Maximal oxygen uptake (Vo2max) increased after both trainings (9% with CT vs. 15% with IT), whereas only IT was associated with faster Vo2 kinetics (tau: 68.0 +/- 1.6 vs. 54.9 +/- 0.7 s, P < 0.05) measured during a test to exhaustion (TTE) and with improvements in maximal cardiac output (Qmax, from 18.1 +/- 1.1 to 20.1 +/- 1.2 l/min; P < 0.01). Skeletal muscle mitochondrial oxidative capacities (Vmax) were only increased after IT (3.3 +/- 0.4 before and 4.5 +/- 0.6 micromol O2 x min(-1) x g dw(-1) after training; P < 0.05), whereas capillary density increased after both trainings, with a two-fold higher enhancement after CT (+21 +/- 1% for IT and +40 +/- 3% after CT, P < 0.05). The gain of Vmax was correlated with the gain of TTE and the gain of Vo2max with IT. The gain of Qmax was also correlated with the gain of VO2max. These results suggest that fluctuations of workload and oxygen uptake during training sessions, rather than exercise duration or global energy expenditure, are key factors in improving muscle oxidative capacities. In an integrative view, IT seems optimal in maximizing both peripheral muscle and central cardiorespiratory adaptations, permitting significant functional improvement. These data support the symmorphosis concept in sedentary subjects.  相似文献   

7.
Recent findings have indicated that creatine supplementation may affect glucose metabolism. This study aimed to examine the effects of creatine supplementation, combined with aerobic training, on glucose tolerance in sedentary healthy male. Subjects (n = 22) were randomly divided in two groups and were allocated to receive treatment with either creatine (CT) ( approximately 10 g . day over three months) or placebo (PT) (dextrose). Administration of treatments was double blind. Both groups underwent moderate aerobic training. An oral glucose tolerance test (OGTT) was performed and both fasting plasma insulin and the homeostasis model assessment (HOMA) index were assessed at the start, and after four, eight and twelve weeks. CT demonstrated significant decrease in OGTT area under the curve compared to PT (P = 0.034). There were no differences between groups or over time in fasting insulin or HOMA. The results suggest that creatine supplementation, combined with aerobic training, can improve glucose tolerance but does not affect insulin sensitivity, and may warrant further investigation with diabetic subjects.  相似文献   

8.
9.

Background

Age- and sex-specific reference intervals are an important prerequisite for interpreting thyroid hormone measurements in children. However, only few studies have reported age- and sex-specific pediatric reference values for TSHbasal (TSH), free T3 (fT3), and free T4 (fT4) so far. Reference intervals are known to be method- and population-dependent. The aim of our study was to establish reference intervals for serum TSH, fT3, and fT4 from birth to 18 years and to assess sex differences.

Methods

2,194 thyroid hormone tests obtained from a hospital-based pediatric population were included into our retrospective analysis. Individuals with diagnoses or medications likely to affect thyroid function were primarily excluded, as well as the diagnostic groups, if different from the purely healthy subgroup (n = 414). Age groups were ranging from 1 day to 1 month, 1 – 12 months, and 1 – 5, 6 – 10, 11 – 14, and 15 – 18 years, respectively. Levels of fT3, fT4 and TSH were measured on Advia® Centaur? automated immunoassay system.

Results

The final sample size for reference data creation was 1,209 for TSH, 1,395 for fT3, and 1,229 for fT4. Median and 2.5/10/25/75/90/97.5 percentiles were calculated for each age group. Males had greater mean fT3 concentrations than females (p < 0.001). No sex-differences were found for TSH and fT4 between age-matched serum samples. Median concentrations of fT3, fT4 and TSH were greatest during the first month of life, followed by a continuous decline with age.

Conclusion

Our results corroborate those of previous studies showing that thyroid hormone levels change markedly during childhood, and that adult reference intervals are not universally applicable to children. Moreover, differences of our reference intervals compared to previous studies were observed, likely caused by different antibody characteristics of various analytical methods, different populations or undefined geographic covariates, e.g. iodine and selenium status.  相似文献   

10.
Forty-eight sedentary and 39 quite active or well-trained men participated in this study. Muscle biopsy samples were taken from the vastus lateralis for the determination of fiber type composition (I, IIa, IIb), fiber type area, and assay of the following enzymes: malate dehydrogenase (MDH), 3-hydroxyacyl CoA dehydrogenase (HADH) and oxoglutarate dehydrogenase (OGDH). Maximal oxygen uptake (VO2max) was determined with a progressive cycle ergometer test, while endurance performance or maximal aerobic capacity (MAC) was defined as the total work output during a 90-min cycle ergometer test. Correlation analysis revealed no evidence of association between fiber type composition and VO2max kg-1 or MAC kg-1 in sedentary subjects, while active men exhibited significant correlation between % type I (r = 0.52), % type IIb (r = 0.31) and VO2max kg-1. Enzyme activities were not significantly correlated with MAC kg-1 and VO2max kg-1 in sedentary men while active men exhibited significant correlation for the three enzymes (0.37 less than or equal to r less than or equal to 0.51) with VO2max kg-1. These results show that the contribution of muscle fiber type and enzyme activities to aerobic performance may be inflated from a statistical point of view by the training status heterogeneity of subjects. They also suggest that variation in these muscle characteristics does not account for the individual differences in aerobic performance of subjects who have never trained before. Therefore, the assessment of muscle characteristics is not as useful as originally thought for the detection of individuals with a high potential for endurance performance among untrained subjects.  相似文献   

11.
To date, the large majority of studies evaluating growth hormone (GH) response to acute physical exercise has been performed involving gross muscle groups. To the best of our knowledge, none has evaluated the effects of a respiratory muscle endurance training (RMET) on hormonal secretions, particularly on GH release, though some respiratory devices have been widely used in athletes to train respiratory muscles and to improve cardiopulmonary function and physical performance. 8 healthy men underwent an incremental progressive RMET protocol of 11 daily sessions, obtained through the use of a specifically designed respiratory device (Spiro Tiger?). The 12th session of RMET (15 min duration: 1 min at a respiration rate of 28 acts/min, 5 min at 32 acts/min, 5 min at 34 acts/min, 4 min at 36 acts/min) was associated with blood samplings for determination of GH, cortisol, ghrelin, glucose, and lactate (LA) levels. GH and cortisol responses significantly increased after a 15-minute RMET session, which, in contrast, inhibited ghrelin secretion. There was a minimal, though significant, increase in LA levels with a significant elevation in glycemia. A 15-minute RMET session, administered after a 11-days incremental progressive RMET protocol, was capable of stimulating GH and cortisol release and suppressing ghrelin secretion. Optimization of incremental progressive RMET protocols would be important to maximize the positive chronic effects of this intervention on somatotropic function and muscle performance.  相似文献   

12.
13.
The vascular endothelium plays a key role in arterial wall homeostasis by preventing atherosclerotic plaque formation. A primary causal factor of endothelial dysfunction is the reactive oxygen species. Aerobic exercise is ascribed as an important adjuvant therapy in endothelium‐dependent cardiovascular disease. However, little is known about the effects of concurrent (aerobic + strength) training on that. For a comparison of the effects of aerobic and concurrent physical training on endothelial function, oxidative stress parameters and the immunoinflammatory activity of monocytes/macrophages, 20 adult male volunteers of middle age were divided into a concurrent training (CT) programme group and an aerobic training group. The glutathione disulphide to glutathione ratio (GSSG/GSH) and plasma lipoperoxide (LPO) levels, as well as flow‐mediated dilation (FMD), monocyte/macrophage functional activity (zymosan phagocytosis), body lipid profiles, aerobic capacity (maximal oxygen uptake) and strength parameters (one‐repetition maximum test), were measured before and after the exercise training programmes. The CT exhibited reduced acute effects of exercise on the GSSG/GSH ratio, plasma LPO levels and zymosan phagocytosis. The CT also displayed improved lipid profiles, glycaemic control, maximal oxygen uptake and one‐repetition maximum test values. In both the aerobic training and the CT, training improved the acute responses to exercise, as inferred from a decrease in the GSSG/GSH ratios. The aerobic sessions did not alter basal levels of plasma LPO or macrophage phagocytic activity but improved FMD values as well as lipid profiles and glycaemic control. In summary, both training programmes improve systemic redox status and antioxidant defences. However, the aerobic training was more efficient in improving FMD in the individuals studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The response to incremental work after placebo and propranolol (80 mg, orally) was studied in 11 sedentary (S) and 11 physically active (PA) healthy subjects. O2 uptake, CO2 output, and minute ventilation were significantly reduced at all or most work rates after propranolol in S subjects, whereas in PA subjects only O2 uptake was occasionally significantly reduced. Maximum work capacity during the propranolol trial was significantly increased by 17% in the S group but was unaltered in the PA group. A subanaerobic threshold constant work test in five sedentary subjects demonstrated that propranolol had no effect on the respiratory response both early and late in exercise. In addition, propranolol did not impair the ability of the respiratory control system to maintain alveolar PCO2 at new set points when external dead space was added during constant load work. We conclude that alterations of gas exchange during incremental work after propranolol administration are related to both physical fitness and type of exercise.  相似文献   

15.
In elderly subjects, heart rate responses to postural change are attenuated, whereas their vascular responses are augmented. Altered strategy in maintaining blood pressure homeostasis during upright position may result from various cardiovascular changes, including age-related cardiovascular autonomic dysfunction. This exploratory study was conducted to evaluate impact of age on cardiovascular autonomic responses to head-up tilt (HUT) in healthy subjects covering a wide age range. The study population consisted of 63 healthy, normal-weight, nonsmoking subjects aged 23-77 yr. Five-minute electrocardiogram and finger blood pressure recordings were performed in the supine position and in the upright position 5 min after 70 degrees HUT. Stroke volume was assessed from noninvasive blood pressure signals by the arterial pulse contour method. Heart rate variability (HRV) and systolic blood pressure variability (SBPV) were analyzed by using spectral analysis, and baroreflex sensitivity (BRS) was assessed by using sequence and cross-spectral methods. Cardiovascular autonomic activation during HUT consisted of decreases in HRV and BRS and an increase in SBPV. These changes became attenuated with aging. Age correlated significantly with amplitude of HUT-stimulated response of the high-frequency component (r = -0.61, P < 0.001) and the ratio of low-frequency to high-frequency power of HRV (r = -0.31, P < 0.05) and indexes of BRS (local BRS: r = -0.62, P < 0.001; cross-spectral baroreflex sensitivity in the low-frequency range: r = -0.38, P < 0.01). Blood pressure in the upright position was maintained well irrespective of age. However, the HUT-induced increase in heart rate was more pronounced in the younger subjects, whereas the increase in peripheral resistance was predominantly observed in the older subjects. Thus it is likely that whereas the dynamic capacity of cardiac autonomic regulation decreases, vascular responses related to vasoactive mechanisms and vascular sympathetic regulation become augmented with increasing age.  相似文献   

16.
The PRL response to TRH constitutes an important clinical tool for diagnosing forms of hyperprolactinemic syndrome. Hence it is important to establish the characteristics of the circadian variation in the response of PRL to TRH to improve the diagnostic value of the test. Six male subjects, ranging in age from 23 to 24 years, participated in this study. All were considered healthy on the basis of clinical examination, biochemical and hormonal tests. Six TRH tests were performed on each subject, one test every other day during a total span of 12 days. Each test was performed at a different clock hour: 0000, 0400, 0800, 1200, 1600, 2000. For the test, subjects received 200 microgram TRH intravenously. Blood samples were drawn from a catheterized arm vein before the TRH injection (basal value) and 20, 30, 60 and 120 min after injection. At each timepoint 5 endpoints were determined for PRL on each subject. The population mean cosinor, according to Halberg, was used to investigate the circadian rhythm in each of the endpoints. All the 5 endpoints for PRL are consistent on showing p values near 0.5 and acrophase estimates before midnight (while basal value displays acrophase at 0400). Further investigations are necessary to clarify these circadian rhythms and the shift of the acrophases.  相似文献   

17.
We evaluated the cardiovascular effects of intravenously (i.v.) and buccally administered dexmedetomidine, a selective alpha2-adrenoceptor agonist. Six healthy male subjects were studied unmedicated and after 2 micro g/kg i.v. or buccal doses of dexmedetomidine, using repeated recordings of ECG and blood pressure. Cardiac parasympathetic activity was estimated by measurements of high-frequency (HF) heart rate variability. Intravenous, but not buccal, dexmedetomidine raised systolic blood pressure by 11 +/- 5 mmHg (mean +/- SEM) and diastolic by 16 +/- 3 mmHg (maxima at 10 min). Later on, both i.v., and buccal dexmedetomidine produced a very similar hypotensive effect: on average, >or=10 mmHg reductions in systolic and diastolic pressure at 3 h. Intravenous dosing was followed by a decline in heart rate (-11 +/- 2 beats/min) accompanied by a trend toward enhanced HF variability (maximal effect at 10 min), which probably reflected baroreflex-mediated parasympathetic efferent neuronal activation. Buccal dexmedetomidine increased significantly the HF variability (maximum at 45 min) without influencing heart rate. We conclude that dexmedetomidine, when administered by a method that avoids concentration peaks, e.g., buccal dosing, can be used to produce a prolonged augmentation of cardiac parasympathetic efferent neuronal activity.  相似文献   

18.
19.
The purpose of this study was to reexamine the effect of training on plasma adrenocorticotropin (ACTH) levels during exercise. Ten adult volunteers were split into a control and an experimental group. The experimental group participated in a 12-wk training program that resulted in a significant 11% increase in their mean maximal O2 uptake. The plasma ACTH response to a 150-W work rate was measured in both groups before and after the training program. The experimental group demonstrated a significant reduction in the ACTH response (11 vs. 4 pg/ml) to the work rate, whereas the control group demonstrated an unchanged response (16 vs. 13 pg/ml) over the course of the study. These data suggest that the ACTH response to an absolute submaximal work rate is blunted after training.  相似文献   

20.
Three groups of five women (age = 18--25 years) participated in a 12-week training program. Cardiovascular responses up to 85% VO2 max to interval (ITG) and continuous (CTG) training were studied in two groups, before training and after 4, 8, and 12 weeks of training four times per week. A control group was assessed before and after 6 and 12 weeks. Both exercise groups demonstrated significant increases in Cao2--Cvo2 after 8 weeks with only slight further increases after 12 weeks (CTG = 8.9%, ITG = 20.0% at 85% VO2 max). No significant changes were noted in either group in SV (+ 5 ml ITG, + 9 ml CTG) or in their Qc. These results indicated that, in response to high intensity training, women may demonstrate similar cardiovascular adaptations to training as have been observed for men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号