首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of aerobic training on heart rate dynamics in sedentary subjects.   总被引:7,自引:0,他引:7  
This study was designed to assess the effects of moderate- and high-volume aerobic training on the time domain and on spectral and fractal heart rate (HR) variability indexes. Sedentary subjects were randomized into groups with moderate-volume training (n = 20), high-volume training (n = 20), and controls (n = 15). The training period was 8 wk, including 6 sessions/wk at an intensity of 70-80% of the maximum HR, lasting for 30 min/session in the moderate-volume group and 60 min/session in the high-volume group. Time domain, frequency domain, and short-term fractal scaling measures of HR variability were analyzed over a 24-h period. Mean HR decreased from 70 +/- 7 to 64 +/- 8 beats/min and from 67 +/- 5 to 60 +/- 6 beats/min (P < 0.001 for both) for the moderate- and high-volume training groups, respectively. The normalized high-frequency spectral component increased in both groups (P < 0.05). The normalized low-frequency component decreased significantly (P < 0.05), resulting in a marked decrease in low frequency-to-high frequency ratio in both groups. In addition, short-term scaling exponent decreased in both groups (P < 0.001). There were no significant differences in the changes of HR variability indexes between groups. Aerobic training in sedentary subjects results in altered autonomic regulation of HR toward vagal dominance. A moderate training volume is a sufficient intervention to induce these beneficial effects.  相似文献   

2.
This study was designed to assess the relationship between R-R interval length and heart rate (HR) variability in healthy subjects and patients after an acute myocardial infarction (AMI). Twenty-four-hour ambulatory ECG recordings were obtained for 76 healthy subjects and 82 post-AMI patients. The high-frequency (HF, 0.15-0.4 Hz) spectral power of R-R intervals was analyzed in 5-min sequences over 24 h and plotted as a function of the corresponding mean R-R interval length. Quadratic regression model was used to study the relationship between R-R interval length and HF power. If a distinct deflection point (R-R0) occurred in the quadratic regression (r >0.50) model before maximum R-R interval, indicating the plateau of HF power, the relationship between R-R interval and HF power was defined as saturated. Otherwise, the relationship was defined as linear (r >0.50) or low correlated (r >0.50). The relationship was saturated in 35, linear in 38, and low correlated in 3 healthy subjects. In post-AMI patients, the relationship was saturated in 9 subjects, linear in 44 subjects, and low correlated in 29 patients. The HF power analyzed from the 24-h period did not differ between the saturated and linear groups, but when analyzed from the linear portion only, HF spectral power was smaller in the linear than the saturated group both among healthy subjects (P <0.05) and post-AMI patients (P <0.05). Saturation of the HF oscillations of R-R intervals is a common phenomenon in healthy subjects and also present in post-AMI patients during ambulatory conditions. This saturation effect may bias the quantification of cardiac vagal function when HR variability is analyzed from Holter recordings.  相似文献   

3.
In subjects with sinus rhythm, respiration has a profound effect on heart rate variability (HRV) at high frequencies (HF). Because this HF respiratory arrhythmia is lost in atrial fibrillation (AF), it has been assumed that respiration does not influence the ventricular response. However, previous investigations have not considered the possibility that respiration might influence HRV at lower frequencies. We hypothesized that Cheyne-Stokes respiration with central sleep apnea (CSR-CSA) would entrain HRV at very low frequency (VLF) in AF by modulating atrioventricular (AV) nodal refractory period and concealed conduction. Power spectral analysis of R-wave-to-R-wave (R-R) intervals and respiration during sleep were performed in 13 subjects with AF and CSR-CSA. As anticipated, no modulation of HRV was detected at HF during regular breathing. In contrast, VLF HRV was entrained by CSR-CSA [coherence between respiration and HRV of 0.69 (SD 0.22) at VLF during CSR-CSA vs. 0.20 (SD 0.19) at HF during regular breathing, P < 0.001]. Comparison of R-R intervals during CSR-CSA demonstrated a shorter AV node refractory period during hyperpnea than apnea [minimum R-R of 684 (SD 126) vs. 735 ms (SD 147), P < 0.001] and a lesser degree of concealed conduction [scatter of 178 (SD 56) vs. 246 ms (SD 72), P = 0.001]. We conclude that CSR-CSA entrains the ventricular response to AF, even in the absence of HF respiratory arrhythmia, by inducing rhythmic oscillations in AV node refractoriness and the degree of concealed conduction that may be a function of autonomic modulation of the AV node.  相似文献   

4.
Paced breathing (PB) around 0.25 Hz has been advocated as a means to avoid confounding and to standardize measurements in short-term investigations of autonomic cardiovascular regulation. Controversy remains, however, as to whether it causes any alteration in autonomic control. We addressed this issue in 40 supine, middle-aged, healthy volunteers by assessing the changes induced by PB (0.25 Hz for 8 min) on 1) ventilatory parameters, 2) the indexes of autonomic control of cardiovascular function, and 3) the spectral indexes of cardiovascular variability. Subjects were grouped into group 1 (n = 31), if spontaneous breathing was regular and within the high-frequency (HF) band (0.15-0.45 Hz), or group 2 (n = 9), if it was irregular or slow (< 0.15 Hz). In both groups, PB was accompanied by an increase in minute ventilation (both groups, P < 0.01), whereas tidal volume increased only in group 1 (P = 0.0003). End-tidal CO2 decreased by [median (lower quartile, upper quartile)] -0.2 (-0.5, -0.1)% (group 1, P < 0.0001) and -0.6 (-0.8, -0.5)% (group 2, P = 0.008). Mean R-R interval and systolic and diastolic pressure remained remarkably stable (all P > or = 0.13, both groups). No significant changes were observed in spectral indexes of R-R and pressure variability (all P > or = 0.12, measured only in group 1 to avoid confounding), except in the HF power of pressure signals, which significantly increased (all P < 0.05) in association with increased tidal volume. In conclusion, PB at 0.25 Hz causes a slight hyperventilation and does not affect traditional indexes of autonomic control or, in subjects with spontaneous breathing in the HF band, most relevant spectral indexes of cardiovascular variability. These findings support the notion that PB does not alter cardiovascular autonomic regulation compared with spontaneous breathing.  相似文献   

5.
R-R interval variability (RR variability) is increasingly being used as an index of autonomic activity. High-frequency (HF) power reflects vagal modulation of the sinus node. Since vagal modulation occurs at the respiratory frequency, some investigators have suggested that HF power cannot be interpreted unless the breathing rate is controlled. We hypothesized that HF power during spontaneous breathing would not differ significantly from HF power during metronome-guided breathing. We measured HF power during spontaneous breathing in 20 healthy subjects and 19 patients with heart disease. Each subject's spontaneous breathing rate was determined, and the calculation of HF power was repeated with a metronome set to his or her average spontaneous breathing rate. There was no significant difference between the logarithm of HF power measured during spontaneous and metronome-guided breathing [4.88 +/- 0.29 vs. 5.29 +/- 0.30 ln(ms(2)), P = 0.32] in the group as a whole and when patients and healthy subjects were examined separately. We did observe a small (9.9%) decrease in HF power with increasing metronome-guided breathing rates (from 9 to 20 breaths/min). These data indicate that HF power during spontaneous and metronome-guided breathing differs at most by very small amounts. This variability is several logarithmic units less than the wide discrepancies observed between healthy subjects and cardiac patients with a heterogeneous group of cardiovascular disorders. In addition, HF power is relatively constant across the range of typical breathing rates. These data indicate that there is no need to control breathing rate to interpret HF power when RR variability (and specifically HF power) is used to identify high-risk cardiac patients.  相似文献   

6.
The effects of endurance training on endurance performance characteristics and cardiac autonomic modulation during night sleep were investigated during two 4-week training periods. After the first 4-week training period (3 x 40 min per week, at 75% of HRR) the subjects were divided into HIGH group (n = 7), who performed three high-intensity endurance training sessions per week; and CONTROL group (n = 8) who did not change their training. An incremental treadmill test was performed before and after the two 4-week training periods. Furthermore, nocturnal RR-intervals were recorded after each training day. In the second 4-week training period HIGH group increased their VO2max (P = 0.005) more than CONTROL group. At the same time, nocturnal HR decreased (P = 0.039) and high-frequency power (HFP) increased (P = 0.003) in HIGH group while no changes were observed in CONTROL group. Furthermore, a correlation was observed between the changes in nocturnal HFP and changes in VO2max during the second 4-week training period (r = 0.90, P < 0.001). The present study showed that the increased HFP is related to improved VO2max in sedentary subjects suggesting that nocturnal HFP can provide a useful method in monitoring individual responses to endurance training.  相似文献   

7.
Incidence of cardiovascular events follows a circadian rhythm with peak occurrence during morning. Disturbance of autonomic control caused by exercise had raised the question of the safety in morning exercise and its recovery. Furthermore, we sought to investigate whether light aerobic exercise performed at night would increase HR and decrease HRV during sleep. Therefore, the aim of this study was to test the hypothesis that morning exercise would delay HR and HRV recovery after light aerobic exercise, additionally, we tested the impact of late night light aerobic exercise on HR and HRV during sleep in sedentary subjects. Nine sedentary healthy men (age 24 ± 3 yr; height 180 ± 5 cm; weight 79 ± 8 kg; fat 12 ± 3%; mean±SD) performed 35 min of cycling exercise, at an intensity of first anaerobic threshold, at three times of day (7 a.m., 2 p.m. and 11 p.m.). R-R intervals were recorded during exercise and during short-time (60 min) and long-time recovery (24 hours) after cycling exercise. Exercise evoked increase in HR and decrease in HRV, and different times of day did not change the magnitude (p < 0.05 for time). Morning exercise did not delay exercise recovery, HR was similar to rest after 15 minutes recovery and HRV was similar to rest after 30 minutes recovery at morning, afternoon, and night. Low frequency power (LF) in normalized unites (n.u.) decreased during recovery when compared to exercise, but was still above resting values after 60 minutes of recovery. High frequency power (HF-n.u.) increased after exercise cessation (p < 0.05 for time) and was still below resting values after 60 minutes of recovery. The LF/HF ratio decreased after exercise cessation (p < 0.05 for time), but was still different to baseline levels after 60 minutes of recovery. In conclusion, morning exercise did not delay HR and HRV recovery after light aerobic cycling exercise in sedentary subjects. Additionally, exercise performed in the night did change autonomic control during the sleep. So, it seems that sedentary subjects can engage physical activity at any time of day without higher risk.  相似文献   

8.
Effect of training/detraining on submaximal exercise responses in humans   总被引:2,自引:0,他引:2  
Human subjects participated in a training/detraining paradigm which consisted of 7 wk of intense endurance training followed by 3 wk of inactivity. In previously sedentary subjects, training produced a 23.9 +/- 7.2% increase in maximal aerobic power (V02max) (group S). Detraining did not affect group S V02max. In previously trained subjects (group T), the training/detraining paradigm did not affect V02max. In group S, training produced an increase in vastus lateralis muscle citrate synthase (CS) activities (nmol.mg protein-1. min-1) from 67.1 +/- 14.5 to 106.9 +/- 22.0. Detraining produced a decrease in CS activity to 80 +/- 14.6. In group T, pretraining CS activity (139.5 +/- 14.9) did not change in response to training. Detraining, however, produced a decrease in CS activity (121.5 +/- 7.8 to 66.8 +/- 5.9). Group S respiratory exchange ratios obtained during submaximal exercise at 60% V02max (R60) decreased in response to training (1.00 +/- 0.02 to 0.87 +/- 0.02) and increased (0.96 +/- 0.02) after detraining. Group T R60 (0.91 +/- 0.01) was not affected by training but increased (0.89 +/- 0.02 to 0.95 +/- 0.02) after detraining. R60 was correlated to changes in CS activity but was unrelated to changes in V02max. These data support the hypothesis that the mitochondrial content of working skeletal muscle is an important determinant of substrate utilization during submaximal exercise.  相似文献   

9.
We studied the effect of regular physical activity on cardiac and vascular autonomic modulation during a 5-yr controlled randomized training intervention in a representative sample of older Finnish men. Heart rate variability (HRV) and blood pressure variability (BPV) are markers of cardiac and vascular health, reflecting cardiac and vascular autonomic modulation. One hundred and forty randomly selected 53- to 63-yr-old men were randomized into two identical groups: an intervention (EX) group and a reference (CO) group, of which 89 men remained until the final analysis (EX: n = 47; CO: n = 42). The EX group trained for 30-60 min three to five times a week with an intensity of 40-60% of maximal oxygen consumption. The mean weekly energy expenditure of the training program for the 5-yr training period was 3.80 MJ, and 71% of the EX group exceeded the mean. The EX group had a significantly (P < 0.01) higher oxygen consumption at ventilatory aerobic threshold (VO2VT) than the CO group at the 5-yr time point. VO2VT had a tendency to increase in the EX group and decrease in the CO group (interaction P < 0.001) from the baseline to the 5-yr time point. Peak performance did not change. Low-frequency power of R-R interval variability decreased in the EX group (P < 0.01, by 6%) from the baseline to the 5-yr time point. BPV did not change. In conclusion, low-intensity regular exercise training did not prevent HRV from decreasing or change BPV in 5 yr in older Finnish men.  相似文献   

10.
Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n = 8), trained sham (n = 8), sedentary HF (n = 8), or trained HF (n = 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P < 0.01), increased LV systolic pressure (P < 0.01), and reduced right ventricular hypertrophy (P < 0.01) and pulmonary (P < 0.001) and hepatic (P < 0.001) congestion. It also decreased resting heart rate (HR; P < 0.05), indicating a decrease in the sympathetic and an increase in the vagal modulation of HR. There was also an increase in baroreflex gain (P < 0.05). The respiratory system resistance was reduced (P < 0.001), which was associated with the reduction in tissue resistance after RMT (P < 0.01). The respiratory system and tissue elastance (Est) were also reduced by RMT (P < 0.01 and P < 0.05, respectively). Additionally, the quasistatic Est was reduced after RMT (P < 0.01). These findings show that a 6-wk RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction.  相似文献   

11.
This study evaluated the hypothesis that active muscle blood flow is lower during exercise at a given submaximal power output after aerobic conditioning as a result of unchanged cardiac output and blunted splanchnic vasoconstriction. Eight untrained subjects (4 men, 4 women, 23-31 yr) performed high-intensity aerobic training for 9-12 wk. Leg blood flow (femoral vein thermodilution), splanchnic blood flow (indocyanine green clearance), cardiac output (acetylene rebreathing), whole body O(2) uptake (VO(2)), and arterial-venous blood gases were measured before and after training at identical submaximal power outputs (70 and 140 W; upright 2-leg cycling). Training increased (P < 0.05) peak VO(2) (12-36%) but did not significantly change submaximal VO(2) or cardiac output. Leg blood flow during both submaximal power outputs averaged 18% lower after training (P = 0.001; n = 7), but these reductions were not correlated with changes in splanchnic vasoconstriction. Submaximal leg VO(2) was also lower after training. These findings support the hypothesis that aerobic training reduces active muscle blood flow at a given submaximal power output. However, changes in leg and splanchnic blood flow resulting from high-intensity training may not be causally linked.  相似文献   

12.
Older, obese, and sedentary individuals are at high risk of developing diabetes and cardiovascular disease. Exercise training improves metabolic anomalies associated with such diseases, but the effects of caloric restriction in addition to exercise in such a high-risk group are not known. Changes in body composition and metabolism during a lifestyle intervention were investigated in 23 older, obese men and women (aged 66 +/- 1 yr, body mass index 33.2 +/- 1.4 kg/m(2)) with impaired glucose tolerance. All volunteers undertook 12 wk of aerobic exercise training [5 days/wk for 60 min at 75% maximal oxygen consumption (Vo(2max))] with either normal caloric intake (eucaloric group, 1,901 +/- 277 kcal/day, n = 12) or a reduced-calorie diet (hypocaloric group, 1,307 +/- 70 kcal/day, n = 11), as dictated by nutritional counseling. Body composition (decreased fat mass; maintained fat-free mass), aerobic fitness (Vo(2max)), leptinemia, insulin sensitivity, and intramyocellular lipid accumulation (IMCL) in skeletal muscle improved in both groups (P < 0.05). Improvements in body composition, leptin, and basal fat oxidation were greater in the hypocaloric group. Following the intervention, there was a correlation between the increase in basal fat oxidation and the decrease in IMCL (r = -0.53, P = 0.04). In addition, basal fat oxidation was associated with circulating leptin after (r = 0.65, P = 0.0007) but not before the intervention (r = 0.05, P = 0.84). In conclusion, these data show that exercise training improves resting substrate oxidation and creates a metabolic milieu that appears to promote lipid utilization in skeletal muscle, thus facilitating a reversal of insulin resistance. We also demonstrate that leptin sensitivity is improved but that such a trend may rely on reducing caloric intake in addition to exercise training.  相似文献   

13.
Aerobic exercise training combined with resistance training (RT) might prevent the deterioration of vascular function. However, how aerobic exercise performed before or after a bout of RT affects vascular function is unknown. The present study investigates the effect of aerobic exercise before and after RT on vascular function. Thirty-three young, healthy subjects were randomly assigned to groups that ran before RT (BRT: 4 male, 7 female), ran after RT (ART: 4 male, 7 female), or remained sedentary (SED: 3 male, 8 female). The BRT and ART groups performed RT at 80% of one repetition maximum and ran at 60% of the targeted heart rate twice each week for 8 wk. Both brachial-ankle pulse wave velocity (baPWV) and flow-mediated dilation (FMD) after combined training in the BRT group did not change from baseline. In contrast, baPWV after combined training in the ART group reduced from baseline (from 1,025 +/- 43 to 910 +/- 33 cm/s, P < 0.01). Moreover, brachial artery FMD after combined training in the ART group increased from baseline (from 7.3 +/- 0.8 to 9.6 +/- 0.8%, P < 0.01). Brachial artery diameter, mean blood velocity, and blood flow in the BRT and ART groups after combined training increased from baseline (P < 0.05, P < 0.01, and P < 0.001, respectively). These values returned to the baseline during the detraining period. These values did not change in the SED group. These results suggest that although vascular function is not improved by aerobic exercise before RT, performing aerobic exercise thereafter can prevent the deteriorating of vascular function.  相似文献   

14.
Previous studies have demonstrated that frail octogenarians have an attenuated capacity for cardiovascular adaptations to endurance exercise training. In the present study, we determined the magnitude of cardiovascular and metabolic adaptations to high-intensity endurance exercise training in healthy, nonfrail elderly subjects. Ten subjects [8 men, 2 women, 80.3 yr (SD2.5)] completed 10-12 mo (108 exercise sessions) of a supervised endurance exercise training program consisting of 2.5 sessions/wk (SD 0.2), 58 min/session (SD 6), at an intensity of 83% (SD 5) of peak heart rate. Primary outcomes were maximal attainable aerobic power [peak aerobic capacity (Vo(2peak))]; serum lipids, oral glucose tolerance, and insulin action during a hyperglycemic clamp; body composition by dual-energy X-ray absorptiometry, and energy expenditure using doubly labeled water and indirect calorimetry. The training program resulted in an increase in Vo(2peak) of 15% (SD 7) [22.9 (SD 3.3) to 26.2 ml.kg(-1).min(-1) (SD 4.0); P < 0.0001]. Favorable lipid changes included reductions in total cholesterol (-8%; P = 0.002) and LDL cholesterol (-10%; P = 0.003), with no significant change in HDL cholesterol or triglycerides. Insulin action improved, as evidenced by a 29% increase in glucose disposal rate relative to insulin concentration during the hyperglycemic clamp. Fat mass decreased by 1.8 kg (SD 1.4) (P = 0.003); lean mass did not change. Total energy expenditure increased by 400 kcal/day because of an increase in physical activity. No change occurred in resting metabolism. In summary, healthy nonfrail octogenarians can adapt to high-intensity endurance exercise training with improvements in aerobic power, insulin action, and serum lipid and lipoprotein risk factors for coronary heart disease; however, the adaptations in aerobic power and insulin action are attenuated compared with middle-aged individuals.  相似文献   

15.
This investigation evaluated training responses to prolonged electrical muscle stimulation (EMS) in sedentary adults. Fifteen healthy subjects (10 men, 5 women) with a sedentary lifestyle completed a 6-wk training program during which they completed an average of 29 1-h EMS sessions. The form of EMS used by the subjects was capable of eliciting a cardiovascular exercise response without loading the limbs or joints. It achieved this by means of inducing rapid, rhythmical contractions in the large leg muscles. A crossover study design was employed with subjects undergoing their habitual activity levels during the nontraining phase of the study. The training effect was evaluated by means of a treadmill test to determine peak aerobic capacity [peak oxygen consumption (Vo(2))], a 6-min walking distance test, and measurement of body mass index (BMI) and quadriceps muscle strength. At baseline, the mean values for peak Vo(2), 6-min walking distance, quadriceps strength, and BMI were 2.46 +/- 0.57 l/min, 493.3 +/- 36.8 m, 360.8 +/- 108.7 N, and 26.9 +/- 3.4 kg/m(2), respectively. After training, subjects demonstrated statistically significant improvements in all variables except BMI. Peak Vo(2) increased by an average of 0.24 +/- 0.16 l/min (P < 0.05), walking distance increased by 36.6 +/- 19.7 m (P < 0.005), and quadriceps strength increased by 87.5 +/- 55.9 N (P < 0.005); we did not observe a significant effect due to training on BMI (P > 0.05). These results suggest that EMS can be used in sedentary adults to improve physical fitness. It may provide a viable alternative to more conventional forms of exercise in this population.  相似文献   

16.
Animal studies suggest that nitric oxide (NO) plays an important role in buffering short-term arterial pressure variability, but data from humans addressing this hypothesis are scarce. We evaluated the effects of NO synthase (NOS) inhibition on arterial blood pressure (BP) variability in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). Systemic NOS was blocked by intravenous infusion of N(G)-monomethyl-L-arginine (L-NMMA). Electrocardiogram and beat-by-beat BP in the finger (Finapres) were recorded continuously for 6 min, and brachial cuff BP was recorded before and after L-NMMA in each body position. BP and R-R variability and their transfer functions were quantified by power spectral analysis in the low-frequency (LF; 0.05-0.15 Hz) and high-frequency (HF; 0.15-0.35 Hz) ranges. L-NMMA infusion increased supine BP (systolic, 109 +/- 4 vs. 122 +/- 3 mmHg, P = 0.03; diastolic, 68 +/- 2 vs. 78 +/- 3 mmHg, P = 0.002), but it did not affect supine R-R interval or BP variability. Before L-NMMA, HUT decreased HF R-R variability (P = 0.03), decreased transfer function gain (LF, 12 +/- 2 vs. 5 +/- 1 ms/mmHg, P = 0.007; HF, 18 +/- 3 vs. 3 +/- 1 ms/mmHg, P = 0.002), and increased LF BP variability (P < 0.0001). After L-NMMA, HUT resulted in similar changes in BP and R-R variability compared with tilt without L-NMMA. Increased supine BP after L-NMMA with no effect on BP variability during HUT suggests that tonic release of NO is important for systemic vascular tone and thus steady-state arterial pressure, but NO does not buffer dynamic BP oscillations in humans.  相似文献   

17.
Several investigations demonstrated that aerobic fitness is associated with a tendency towards orthostatic hypotension whereas other reports did not show any differences in cardiovascular adjustment to orthostatic challenges between endurance trained and sedentary subjects. In the present work, the time course of changes in heart rate (HR), systolic time intervals (STI), stroke volume (SV), cardiac output (CO) and blood pressure was studied during 8 minutes following standing up from supine position in 7 healthy volunteers before and after 10 weeks of endurance training on bicycle ergometer. Impedance cardiography was used for measurement of cardiac postural responses. The training program applied in this study increased the subjects' aerobic capacity (VO2max) by approx. 18%. After training, the steady-state supine HR and contribution of the pre-ejection period and ejection time to the total R-R interval in ECG were lowered while SV was significantly increased. No significant training-induced changes were found in magnitude and time-courses of HR, STI, SV and CO changes following standing up. Diastolic blood pressure during standing was greater after than before training. It is concluded that the short-time endurance training does not affect adversely cardiovascular orthostatic response and may even improve orthostatic tolerance due to the augmentation of diastolic blood pressure response.  相似文献   

18.
Chronic heart failure (CHF) may impair lung gas diffusion, an effect that contributes to exercise limitation. We investigated whether diffusion improvement is a mechanism whereby physical training increases aerobic efficiency in CHF. Patients with CHF (n = 16) were trained (40 min of stationary cycling, 4 times/wk) for 8 wk; similar sedentary patients (n = 15) were used as controls. Training increased lung diffusion (DlCO, +25%), alveolar-capillary conductance (DM, +15%), pulmonary capillary blood volume (VC, +10%), peak exercise O2 uptake (peak VO2, +13%), and VO2 at anaerobic threshold (AT, +20%) and decreased the slope of exercise ventilation to CO2 output (VE/VCO2, -14%). It also improved the flow-mediated brachial artery dilation (BAD, from 4.8 +/- 0.4 to 8.2 +/- 0.4%). These changes were significant compared with baseline and controls. Hemodynamics were obtained in the last 10 patients in each group. Training did not affect hemodynamics at rest and enhanced the increase of cardiac output (+226 vs. +187%) and stroke volume (+59 vs. +49%) and the decrease of pulmonary arteriolar resistance (-28 vs. -13%) at peak exercise. Hemodynamics were unchanged in controls after 8 wk. Increases in DlCO and DM correlated with increases in peak VO2 (r = 0.58, P = 0.019 and r = 0.51, P = 0.04, respectively) and in BAD (r = 0.57, P < 0.021 and r = 0.50, P = 0.04, respectively). After detraining (8 wk), DlCO, DM, VC, peak VO2, VO2 at AT, VE/VCO2 slope, cardiac output, stroke volume, pulmonary arteriolar resistance at peak exercise, and BAD reverted to levels similar to baseline and to levels similar to controls. Results document, for the first time, that training improves DlCO in CHF, and this effect may contribute to enhancement of exercise performance.  相似文献   

19.
Stroke volume (SV) increases above the resting level during exercise and then declines at higher intensities of exercise in sedentary subjects. The purpose of this study was to determine whether an attenuation of the decline in SV at higher exercise intensities contributes to the increase in maximal cardiac output (Qmax) that occurs in response to endurance training. We studied six men and six women, 25 +/- 1 (SE) yr old, before and after 12 wk of endurance training (3 days/wk running for 40 min, 3 days/wk interval training). Cardiac output was measured at rest and during exercise at 50 and 100% of maximal O2 uptake (Vo2max) by the C2H2-rebreathing method. VO2max was increased by 19% (from 2.7 +/- 0.2 to 3.2 +/- 0.3 l/min, P less than 0.001) in response to the training program. Qmax was increased by 12% (from 18.1 +/- 1 to 20.2 +/- 1 l/min, P less than 0.01), SV at maximal exercise was increased by 16% (from 97 +/- 6 to 113 +/- 8 ml/beat, P less than 0.001) and maximal heart rate was decreased by 3% (from 185 +/- 2 to 180 +/- 2 beats/min, P less than 0.01) after training. The calculated arteriovenous O2 content difference at maximal exercise was increased by 7% (14.4 +/- 0.4 to 15.4 +/- 0.4 ml O2/100 ml blood) after training. Before training, SV at VO2max was 9% lower than during exercise at 50% VO2max (P less than 0.05). In contrast, after training, the decline in SV between 50 and 100% VO2max was only 2% (P = NS). Furthermore, SV was significantly higher (P less than 0.01) at 50% VO2max after training than it was before. Left ventricular hypertrophy was evident, as determined by two-dimensional echocardiography at the completion of training. The results indicate that in young healthy subjects the training-induced increase in Qmax is due in part to attenuation of the decrease in SV as exercise intensity is increased.  相似文献   

20.
Sixty healthy men in three physical fitness categories (sedentary, on no organized fitness program; joggers, running 5-15 miles/wk; and marathoners, running greater than 50 miles/wk) were evaluated for changes in blood clotting and fibrinolytic activity before and after maximum exercise on a treadmill according to the Bruce protocol. The rate of blood clotting, as measured by prothrombin times, partial thromboplastin times and thrombin times, was accelerated by exercise (all P less than 0.005). The ability of euglobulin clots and plasma clots to lyse incorporated 125I-fibrin, termed 125I-euglobulin clot lysis (IEL) and 125I-plasma clot lysis (IPCL), were used as indexes of fibrinolytic activity. Marathoners had greater increases in fibrinolytic activity with exercise (76% compared with 63% for joggers and 55% for sedentary subjects by IEL; 427% compared with 418% for joggers and 309% for sedentary subjects by IPCL; all P less than 0.05). Fibrin degradation products increased with exercise (P less than 0.005 for the total group of 60 subjects). The absolute concentrations of alpha 2-plasmin inhibitor, alpha 2-macroglobulin, and antithrombin III increased with exercise (all P less than 0.005), but when concentrations were corrected for acute shifts of plasma water during exercise, the quantity of these inhibitors actually decreased (all P less than 0.005). The changes in clotting assays with exercise were not significantly correlated with changes in whole blood lactate, blood pyruvate, or rectal temperatures. Fibrinolytic assays before and after exercise correlated poorly to moderately with blood lactates (IEL: r = 0.441 and r = 0.425, respectively; IPCL: r = 0.294 and r = 0.544, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号