首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copy-number polymorphisms: mining the tip of an iceberg   总被引:5,自引:0,他引:5  
Copy-number polymorphisms (CNPs) represent a greatly underestimated aspect of human genetic variation. Recently, two landmark studies reported genome-wide analyses of CNPs in normal individuals and represent the beginning of an understanding of this type of large-scale variation. Future array-CGH-based CNP analyses should include standard criteria on a common microarray platform. It is only when parallel analyses of CNPs and SNPs are performed in an integrated format that we will obtain a global picture of our genetic diversity.  相似文献   

2.

Background

To date, the complexity of the plasma proteome exceeds the analytical capacity of conventional approaches to isolate lower abundance proteins that may prove to be informative biomarkers. Only complex multistep separation strategies have been able to detect a substantial number of low abundance proteins (<100 ng/ml). The first step of these protocols is generally the depletion of high abundance proteins by the use of immunoaffinity columns or, alternatively, the enrichment of by the use of solid phase hexapeptides ligand libraries.

Methodology/Principal Findings

Here we present a direct comparison of these two approaches. Following either approach, the plasma sample was further fractionated by SCX chromatography and analyzed by RP-LC-MS/MS with a Q-TOF mass spectrometer. The depletion of the 20 most abundant plasma proteins allowed the identification of about 25% more proteins than those detectable following low abundance proteins enrichment. The two datasets are partially overlapping and the identified proteins belong to the same order of magnitude in terms of plasma concentration.

Conclusions/Significance

Our results show that the two approaches give complementary results. However, the enrichment of low abundance proteins has the great advantage of obtaining much larger amount of material that can be used for further fractionations and analyses and emerges also as a cheaper and technically simpler approach. Collectively, these data indicate that the enrichment approach seems more suitable as the first stage of a complex multi-step fractionation protocol.  相似文献   

3.
Alternative splicing has recently emerged as one of the most significant generators of functional complexity in several relatively well-studied animal genomes, but little is known about the extent of this phenomenon in higher plants. However, recent computational and experimental studies discussed here suggest that alternative splicing probably plays a far more significant role in the generation of proteome diversity in plants than was previously thought.  相似文献   

4.
Ideally, shotgun proteomics would facilitate the identification of an entire proteome with 100% protein sequence coverage. In reality, the large dynamic range and complexity of cellular proteomes results in oversampling of abundant proteins, while peptides from low abundance proteins are undersampled or remain undetected. We tested the proteome equalization technology, ProteoMiner, in conjunction with Multidimensional Protein Identification Technology (MudPIT) to determine how the equalization of protein dynamic range could improve shotgun proteomics methods for the analysis of cellular proteomes. Our results suggest low abundance protein identifications were improved by two mechanisms: (1) depletion of high abundance proteins freed ion trap sampling space usually occupied by high abundance peptides and (2) enrichment of low abundance proteins increased the probability of sampling their corresponding more abundant peptides. Both mechanisms also contributed to dramatic increases in the quantity of peptides identified and the quality of MS/MS spectra acquired due to increases in precursor intensity of peptides from low abundance proteins. From our large data set of identified proteins, we categorized the dominant physicochemical factors that facilitate proteome equalization with a hexapeptide library. These results illustrate that equalization of the dynamic range of the cellular proteome is a promising methodology to improve low abundance protein identification confidence, reproducibility, and sequence coverage in shotgun proteomics experiments, opening a new avenue of research for improving proteome coverage.  相似文献   

5.
Elements that excise and integrate, such as prophages, and transfer by conjugation, such as plasmids, have been found in various bacteria. These elements appear to have a diversified set of characteristics including cell-to-cell contact using pili or cell aggregation, transfer of single-stranded or double-stranded DNA, low or high specificity of integration and serine or tyrosine recombinases. This has led to a highly heterogeneous nomenclature, including conjugative transposons, integrative 'plasmids', genomic islands and numerous unclassified elements. However, all these elements excise by site-specific recombination, transfer the resulting circular form by conjugation and integrate by recombination between a specific site of this circular form and a site in the genome of their host. Whereas replication of the circular form probably occurs during conjugation, this replication is not involved in the maintenance of the element. In this review, we show that these elements share very similar characteristics and, therefore, we propose to classify them as integrative and conjugative elements (ICEs). These elements evolve by acquisition or exchanges of modules with various transferable elements including at least ICEs and plasmids. The ICEs are probably widespread among the bacteria.  相似文献   

6.
Short proteins play key roles in cell signalling and other processes, but their abundance in the mammalian proteome is unknown. Current catalogues of mammalian proteins exhibit an artefactual discontinuity at a length of 100 aa, so that protein abundance peaks just above this length and falls off sharply below it. To clarify the abundance of short proteins, we identify proteins in the FANTOM collection of mouse cDNAs by analysing synonymous and non-synonymous substitutions with the computer program CRITICA. This analysis confirms that there is no real discontinuity at length 100. Roughly 10% of mouse proteins are shorter than 100 aa, although the majority of these are variants of proteins longer than 100 aa. We identify many novel short proteins, including a “dark matter” subset containing ones that lack detectable homology to other known proteins. Translation assays confirm that some of these novel proteins can be translated and localised to the secretory pathway.  相似文献   

7.
8.
LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.  相似文献   

9.
10.
Pathogenicity islands represent distinct genetic elements encoding virulence factors of pathogenic bacteria. Pathogenicity islands belong to the class of genomic islands, which are common genetic elements sharing a set of unifying features. Genomic islands have been acquired by horizontal gene transfer. In recent years many different genomic islands have been discovered in a variety of pathogenic as well as non-pathogenic bacteria. Because they promote genetic variability, genomic islands play an important role in microbial evolution.  相似文献   

11.
The vertebrate segmentation clock was identified 10 years ago as a molecular oscillator associated with the rhythmic production of embryonic somites. Since then, three major signaling pathways--Notch, FGF, and Wnt--have been shown to be activated periodically during segmentation and proposed to constitute the clockwork of the system. However, recent results from zebrafish embryonic studies demonstrate that Notch signaling is involved in the coupling of oscillations among cells rather than in the pacemaker of the oscillator. Furthermore, genetic analyses in mouse indicate that Wnt and FGF play only a permissive role in the control of the oscillations. Therefore, the nature of the segmentation clock pacemaker still remains elusive.  相似文献   

12.
Genomics and proteomics have added valuable information to our knowledgebase of the human biological system including the discovery of therapeutic targets and disease biomarkers. However, molecular profiling studies commonly result in the identification of novel proteins of unknown localization. A class of proteins of special interest is membrane proteins, in particular plasma membrane proteins. Despite their biological and medical significance, the 3-dimensional structures of less than 1% of plasma membrane proteins have been determined. In order to aid in identification of membrane proteins, a number of computational methods have been developed. These tools operate by predicting the presence of transmembrane segments. Here, we utilized five topology prediction methods (TMHMM, SOSUI, waveTM, HMMTOP, and TopPred II) in order to estimate the ratio of integral membrane proteins in the human proteome. These methods employ different algorithms and include a newly-developed method (waveTM) that has yet to be tested on a large proteome database. Since these tools are prone for error mainly as a result of falsely predicting signal peptides as transmembrane segments, we have utilized an additional method, SignalP. Based on our analyses, the ratio of human proteins with transmembrane segments is estimated to fall between 15% and 39% with a consensus of 13%. Agreement among the programs is reduced further when both a positive identification of a membrane protein and the number of transmembrane segments per protein are considered. Such a broad range of prediction depends on the selectivity of the individual method in predicting integral membrane proteins. These methods can play a critical role in determining protein structure and, hence, identifying suitable drug targets in humans.  相似文献   

13.
14.
15.
Magnesium transport and function in plants: the tip of the iceberg   总被引:19,自引:0,他引:19  
Orit Shaul 《Biometals》2002,15(3):307-321
The maintenance of Mg2+ homeostasis in the plant is essential for viability. This review describes Mg2+ functions and balancing in plants, with special focus on the existing knowledge of the involved transport mechanisms. Mg2+ is essential for the function of many cellular enzymes and for the aggregation of ribosomes. Mg2+ concentrations also modulate ionic currents across the chloroplast and the vacuolar membranes, and might thus regulate ion balance in the cell and stomatal opening. The significance of Mg2+ homeostasis has been particularly established with regard to Mg2+'s role in photosynthesis. Mg2+ is the central atom of the chlorophyll molecule, and fluctuations in its levels in the chloroplast regulate the activity of key photosynthetic enzymes. Relatively little is known of the proteins mediating Mg2+ uptake and transport in plants. The plant vacuole seem to play a key role in Mg2+ homeostasis in plant cells. Physiological and molecular evidence indicate that Mg2+ entry to the vacuole is mediated by Mg2+/H+ exchangers. The Arabidopsis vacuolar Mg2+/H+ exchanger, AtMHX, is highly transcribed at the vascular tissue, apparently most abundantly at the xylem parenchyma. Inclusion of Mg2+ ions into the vacuoles of this tissue may determine their partitioning between the various plant organs. Impacts of Mg2+ imbalance are described with respect for both plant physiology and for its nutritional value to animal and human.  相似文献   

16.
Proteomic analysis of bacterial pathogens isolated from in vivo sources, such as infected tissues, provides many challenges not the least of which is the limited quantity of sample available for analysis. It is, therefore, highly desirable to develop a one-step cellular lysis and protein solubilization method that minimizes protein losses and allows the maximum possible coverage of the proteome. Here, we have used standard sample buffer constituents including urea, thiourea and DTT, but varied the detergent composition of the buffers in order to achieve the best quality of gels and the greatest spot resolution. We found that the most efficient solubilizing solution in this case consisted of 7 M urea, 2 M thiourea, 1% DTT, 0.5% amidosulfobetaine-14 (ASB-14) and 4% 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Inclusion of low levels of ASB-14 in solutions allowed visualization of a subset of 24 new protein spots in the Live Vaccine Strain (LVS) of Francisella tularensis and 21 spots in a virulent A-strain of the pathogen. Further investigation showed that 15 of the 24 enriched LVS spots were membrane or membrane-associated proteins suggesting that the optimized lysis and solubilization solution aids in the detection of more hydrophobic proteins. This methodology is now being applied to the analysis of Francisella obtained from in vivo sources.  相似文献   

17.
Biomarkers: mining the biofluid proteome   总被引:8,自引:0,他引:8  
Proteomics has brought with it the hope of identifying novel biomarkers for diseases such as cancer. This hope is built on the ability of proteomic technologies, such as mass spectrometry (MS), to identify hundreds of proteins in complex biofluids such as plasma and serum. There are many factors that make this research very challenging beginning with the lack of standardization of sample collection and continuing through the entire analytical process. Fortunately the advances made in the characterization of biofluids using proteomic techniques have been rapid and suggest that these mainly discovery driven approaches will lead to the development of highly specific platforms for diagnosing diseases and monitoring responses to different treatments in the near future.  相似文献   

18.
Semeiks J  Grishin NV 《PloS one》2012,7(6):e38595
Evolutionary theory suggests that the force of natural selection decreases with age. To explore the extent to which this prediction directly affects protein structure and function, we used multiple regression to find longevity-selected positions, defined as the columns of a sequence alignment conserved in long-lived but not short-lived mammal species. We analyzed 7,590 orthologous protein families in 33 mammalian species, accounting for body mass, phylogeny, and species-specific mutation rate. Overall, we found that the number of longevity-selected positions in the mammalian proteome is much higher than would be expected by chance. Further, these positions are enriched in domains of several proteins that interact with one another in inflammation and other aging-related processes, as well as in organismal development. We present as an example the kinase domain of anti-müllerian hormone type-2 receptor (AMHR2). AMHR2 inhibits ovarian follicle recruitment and growth, and a homology model of the kinase domain shows that its longevity-selected positions cluster near a SNP associated with delayed human menopause. Distinct from its canonical role in development, this region of AMHR2 may function to regulate the protein's activity in a lifespan-specific manner.  相似文献   

19.
20.
To attain a comprehensive membrane proteome of two strains of Corynebacterium glutamicum (l-lysine-producing and the characterized model strains), both sample pretreatment and analysis methods were optimized. Isolated bacterial membranes were digested with trypsin/cyanogen bromide or trypsin/chymotrypsin, and a complementary protein set was identified using the multidimensional protein identification technology (MudPIT). Besides a distinct number of cytosolic or membrane-associated proteins, the combined data analysis from both digests yielded 326 integral membrane proteins ( approximately 50% of all predicted) covering membrane proteins both with small and large numbers of transmembrane helices. Also membrane proteins with a high GRAVY score were identified, and basic and acidic membrane proteins were evenly represented. A significant increase in hydrophobic peptides with distinctly higher sequence coverage of transmembrane regions was achieved by trypsin/chymotrypsin digestion in an organic solvent. The percentage of identified membrane proteins increased with protein size, yielding 80% of all membrane proteins above 60 kDa. Most prominently, almost all constituents of the respiratory chain and a high number of ATP-binding cassette transport systems were identified. This newly developed protocol is suitable for the quantitative comparison of membrane proteomes and will be especially useful for applications such as monitoring protein expression under different growth and fermentation conditions in bacteria such as C. glutamicum. Moreover with more than 50% coverage of all predicted membrane proteins (including the non-expressed species) this improved method has the potential for a close-to-complete coverage of membrane proteomes in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号