首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emerging data indicate that growth factors such as insulin-like growth factor-1 (IGF-1) prevent neuronal death due to nitric oxide (NO) toxicity. On the other hand, growth factors can promote cell survival by acting on phosphatidylinositol 3-kinase (PI3-kinase) and its downstream target, serine-threonine kinase Akt, in various types of cells. Here, we examined the mechanism by which IGF-1 inhibits neuronal apoptosis induced by NO in primary hippocampal neurons. IGF-1 was capable of preventing apoptosis and caspase-3-like activation induced by a NO donor, sodium nitroprusside or 3-morpholin-osydnonimine. Incubation of neurons with a P13-kinase inhibitor, wortmannin or LY294002, blocked the effects of IGF-1 on NO-induced neurotoxicity and caspase-3-like activation. In addition, the P13-kinase inhibitors blocked the effect of IGF-1 on down-regulation in Bcl-2 and upregulation in Bax expression induced by NO. Adenovirus-mediated overexpression of the activated form of Akt significantly inhibited NO-induced cell death, caspase-3-like activation, and changes in Bcl-2 and Bax expression. Moreover, expression of the kinase-defective form of Akt almost completely blocked the effects of IGF-1. These findings suggest that activation of Akt is necessary and sufficient for the effect of IGF-1 and is capable of preventing NO-induced apoptosis by modulating the NO-induced changes in Bcl-2 and Bax expression.  相似文献   

2.
Abstract: To clarify mechanisms of neuronal death in the postischemic brain, we examined whether astrocytes exposed to hypoxia/reoxygenation exert a neurotoxic effect, using a coculture system. Neurons cocultured with astrocytes subjected to hypoxia/reoxygenation underwent apoptotic cell death, the effect enhanced by a combination of interleukin-1β with hypoxia. The synergistic neurotoxic activity of hypoxia and interleukin-1β was dependent on de novo expression of inducible nitric oxide synthase (iNOS) and on nitric oxide (NO) production in astrocytes. Further analysis to determine the neurotoxic mechanism revealed decreased Bcl-2 and increased Bax expression together with caspase-3 activation in cortical neurons cocultured with NO-producing astrocytes. Inhibition of NO production in astrocytes by N G-monomethyl- l -arginine, an inhibitor of NOS, significantly inhibited neuronal death together with changes in Bcl-2 and Bax protein levels and in caspase-3-like activity. Moreover, treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by an NO donor, sodium nitroprusside. These data suggest that NO produced by astrocytes after hypoxic insult induces apoptotic death of neurons through mechanisms involving the caspase-3 activation after down-regulation of BCl-2 and up-regulation of Bax protein levels.  相似文献   

3.
P19 embryonal carcinoma (EC) cells undergo apoptosis during neuronal differentiation induced by all-trans retinoic acid (RA). Caspase-3-like proteases are activated and involved in the apoptosis of P19 EC cells during neuronal differentiation.1 Recently it has been shown that growth factor signals protect against apoptosis by phosphorylation of Bad. Phosphorylated Bad, an apoptotic member of the Bcl-2 family, cannot bind to Bcl-xL and results in Bcl-xL homodimer formation and subsequent antiapoptotic activity. In the present study, we demonstrate that this system is used generally to protect against apoptosis during neuronal differentiation. Bcl-xL inhibited the activation of caspase-3-like proteases. Basic fibroblast growth factor (bFGF) inhibited more than 90% of the caspase-3-like activity, inhibited processing of caspase-3 into its active form, and inhibited DNA fragmentation. bFGF activated phosphatidyl-inositol-3-kinase (PI3K) and stimulated the phosphorylation of Bad. Phosphorylation was inhibited by wortmannin, an inhibitor of PI3K and its downstream target Akt. Thus, Bad is a target of the FGF receptor-mediated signals involved in the protection against activation of caspase-3.  相似文献   

4.
5.
This study aimed to investigate the protective effect of Apocynum venetum leaf extract (AVLE) on an in vitro model of ischemia-reperfusion induced by oxygen and glucose deprivation (OGD) and further explored the possible mechanisms underlying protection. Cell injury was assessed by morphological examination using phase-contrast microscopy and quantified by measuring the amount of lactate dehydrogenase (LDH) leakage; cell viability was measured by XTT reduction. Neuronal apoptosis was determined by flow cytometry, and electron microscopy was used to study morphological changes of neurons. Caspase-3,?-8, and?-9 activation and Bcl-2/Bax protein expression were determined by Western blot analysis. We report that treatment with AVLE (5 and 50?μg/mL) effectively reduced neuronal cell death and relieved cell injury induced by OGD. Moreover, AVLE decreased the percentage of apoptotic neurons, relieved neuronal morphological damage, suppressed overexpression of active caspase-3 and?-8 and Bax, and inhibited the reduction of Bcl-2 expression. These findings indicate that AVLE protects against OGD-induced injury by inhibiting apoptosis in rat cortical neurons by down-regulating caspase-3 activation and modulating the Bcl-2/Bax ratio.  相似文献   

6.
Ebselen, a selenium-containing heterocyclic compound, prevents ischemia-induced cell death. However, the molecular mechanism through which ebselen exerts its cytoprotective effect remains to be elucidated. Using sodium nitroprusside (SNP) as a nitric oxide (NO) donor, we show here that ebselen potently inhibits NO-induced apoptosis of differentiated PC12 cells. This was associated with inhibition of NO-induced phosphatidyl Serine exposure, cytochrome c release, and caspase-3 activation by ebselen. Analysis of key apoptotic regulators during NO-induced apoptosis of differentiated PC12 cells showed that ebselen blocks the activation of the apoptosis signaling-regulating kinase 1 (ASK1), and inhibits phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal protein kinase (JNK). Moreover, ebselen inhibits NO-induced p53 phosphorylation at Ser15 and c-Jun phosphorylation at Ser63 and Ser73. It appears that inhibition of p38 MAPK and p53 phosphorylation by ebselen occurs via a thiol-redox-dependent mechanism. Interestingly, ebselen also activates p44/42 MAPK, and inhibits the downregulation of the antiapoptotic protein Bcl-2 in SNP-treated PC12 cells. Together, these findings suggest that ebselen protects neuronal cells from NO cytotoxicity by reciprocally regulating the apoptotic and antiapoptotic signaling cascades.  相似文献   

7.
The dihydrochalcone phloretin induced apoptosis in B16 mouse melanoma 4A5 cells and HL60 human leukemia cells. Phloretin was suggested to induce apoptosis in B16 cells mainly through the inhibition of glucose transmembrane transport. The phloretin-induced apoptosis in B16 cells was inhibited by actinomycin D, Ac-YVAD-CHO caspase-1-like inhibitor, and Ac-DEVD-CHO caspase-3-like inhibitor. During the induction of apoptosis by phloretin, the expression of Bax protein in B16 cells increased and the levels of p53, Bcl-2, and Bcl-XL proteins did not change. Our results suggested that phloretin induced apoptosis through the promotion of Bax protein expression and caspases activation. On the other hand, phloretin may induce apoptosis in HL60 cells through the inhibition of protein kinase C activity because phloretin inhibited protein kinase C activity in HL60 cells more than that in B16 cells. The phloretin induced-apoptosis in HL60 cells was not inhibited by actinomycin D and the caspase-1-like inhibitor, but slightly inhibited by the caspase-3-like inhibitor. Phloretin reduced the level of caspase 3 protein in HL60 cells, but not the level of the Bcl-2 protein. Phloretin did not increase the level of Bax protein. Phloretin was suggested to induce apoptosis in HL60 cells through the inhibition of protein kinase C activity, followed by the pathway, which is different from that in B16 cells.  相似文献   

8.
To define the signaling pathways during NO-induced apoptotic events and their possible modulation by two protein kinase systems, we explored the involvement of three structurally related mitogen-activated protein kinase subfamilies. Exposure of HL-60 cells to sodium nitroprusside (SNP) strongly activated p38 kinase, but did not activate c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). In addition, SNP-induced apoptosis was markedly blocked by the selective p38 kinase inhibitor (SB203580) but not by MEK1 kinase inhibitor (PD098059), indicating that p38 kinase serves as a mediator of NO-induced apoptosis. In contrast, treatment of cells with phorbol 12-myristate 13-acetate (PMA) strongly activated not only JNK but also ERK, while not affecting p38 kinase. However, although SNP by itself weakly activated CPP32-like protease, SNP in combination with PMA markedly increased the extent of CPP32-like protease activation. Interestingly, N6,O2-dibutylyl cAMP (DB-cAMP) significantly blocked SNP- or SNP plus PMA-induced activation of CPP32-like protease and the resulting induction of apoptosis. DB-cAMP also blocked PMA-induced JNK activation. Collectively, these findings demonstrate the presence of specific up- or down-modulatory mechanisms of cell death pathway by NO in which (1) p38 kinase serves as a mediator of NO-induced apoptosis, (2) PKC acts at the point and/or upstream of JNK and provides signals to potentiate NO-induced CPP32-like protease activation, and (3) PKA lies upstream of either JNK or CPP32-like protease to protect NO- or NO plus PMA-induced apoptotic cell death in HL-60 cells.  相似文献   

9.
Brain-derived neurotrophic factor (BDNF) prevents the loss of striatal neurons caused by excitotoxicity. We examined whether these neuroprotective effects are mediated by changes in the regulation of Bcl-2 family members. We first analyzed the involvement of the phosphatidylinositol 3-kinase/Akt pathway in this regulation, showing a reduction in phosphorylated Akt (p-Akt) levels after both quinolinate (QUIN, an NMDA receptor agonist) and kainate (KA, a non-NMDA receptor agonist) intrastriatal injection. Our results also show that Bcl-2, Bcl-x(L) and Bax protein levels and heterodimerization are selectively regulated by NMDA and non-NMDA receptor stimulation. Striatal cell death induced by QUIN is mediated by an increase in Bax and a decrease in Bcl-2 protein levels, leading to reduced levels of Bax:Bcl-2 heterodimers. In contrast, changes in Bax protein levels are not required for KA-induced apoptotic cell death, but decreased levels of both Bax:Bcl-2 and Bax:Bcl-x(L) heterodimer levels are necessary. Furthermore, QUIN and KA injection activated caspase-3. Intrastriatal grafting of a BDNF-secreting cell line counter-regulated p-AKT, Bcl-2, Bcl-x(L) and Bax protein levels, prevented changes in the heterodimerization between Bax and pro-survival proteins, and blocked caspase-3 activation induced by excitotoxicity. These results provide a possible mechanism to explain the anti-apoptotic effect of BDNF against to excitotoxicity in the striatum through the regulation of Bcl-2 family members, which is probably mediated by Akt activation.  相似文献   

10.
There is increasing evidence suggesting that chondrocyte death may contribute to the progression of osteoarthritis (OA). This study focused on the characterization of signaling cascade during NO-induced cell death in human OA chondrocytes. The NO generator, sodium nitroprusside (SNP), promoted chondrocyte death in association with DNA fragmentation, caspase-3 activation, and down-regulation of Bcl-2. Both caspase-3 inhibitor Z-Asp(OCH3)-Glu(OCH3)-Val-Asp(OCH3)-CH2F and caspase-9 inhibitor Z-Leu-Glu(OCH3)-His-Asp(OCH3)-CH2F prevented the chondrocyte death. Blocking the mitogen-activated protein kinase pathway by the mitogen-activated protein kinase kinase 1/2 inhibitor PD98059 or p38 kinase inhibitor SB202190 also inhibited the SNP-mediated cell death, suggesting possible requirements of both extracellular signal-related protein kinase 1/2 and p38 kinase for the NO-induced cell death. Furthermore, the selective inhibition of cyclooxygenase (COX)-2 by NS-398 or the inhibition of COX-1/COX-2 by indomethacin blocked the SNP-induced cell death. The chondrocyte death induced by SNP was associated with an overexpression of COX-2 protein (as determined by Western blotting) and an increase in PGE2 release. PD98059 and SB202190, but neither Z-DEVD FMK nor Z-LEHD FMK completely inhibited the SNP-mediated PGE2 production. Analysis of interactions between PGE2 and the cell death showed that PGE2 enhanced the SNP-mediated cell death, whereas PGE2 alone did not induce the chondrocyte death. These data indicate that NO-induced chondrocyte death signaling includes PGE2 production via COX-2 induction and suggest that both extracellular signal-related protein kinase 1/2 and p38 kinase pathways are upstream signaling of the PGE2 production. The results also demonstrate that exogenous PGE2 may sensitize human OA chondrocytes to the cell death induced by NO.  相似文献   

11.
Nitric oxide regulates cartilage destruction by causing dedifferentiation and apoptosis of chondrocytes. We investigated the role of the mitogen-activated protein kinase subtypes, extracellular signal-regulated protein kinase (ERK)-1/2, and p38 kinase in NO-induced apoptosis of rabbit articular chondrocytes and their involvement in dedifferentiation. Generation of NO with sodium nitroprusside (SNP) caused dedifferentiation, as indicated by the inhibition of type II collagen expression and proteoglycan synthesis. NO additionally caused apoptosis, accompanied by p53 accumulation and caspase-3 activation. SNP treatment stimulated activation of ERK-1/2 and p38 kinase. Inhibition of ERK-1/2 with PD98059 rescued SNP-induced dedifferentiation but enhanced apoptosis up to 2-fold, whereas inhibition of p38 kinase with SB203580 enhanced dedifferentiation, with significant blockage of apoptosis. The stimulation of apoptosis by ERK inhibition was accompanied by increased p53 accumulation and caspase-3 activity, whereas the inhibitory effect of p38 kinase blockade was associated with reduced p53 accumulation and caspase-3 activity. Our results indicate that NO-induced p38 kinase functions as an induction signal for apoptosis and in the maintenance of chondrocyte phenotype, whereas ERK activity causes dedifferentiation and operates as an anti-apoptotic signal. NO generation is less proapoptotic in chondrocytes that are dedifferentiated by serial monolayer culture or phorbol ester treatment. NO-induced p38 kinase activity is low in dedifferentiated cells compared with that in differentiated chondrocytes, with lower levels of p53 accumulation and caspase-3 activity. Our findings collectively suggest that ERK-1/2 and p38 kinase oppositely regulate NO-induced apoptosis of chondrocytes, in association with p53 accumulation, caspase-3 activation, and differentiation status.  相似文献   

12.
Previously we demonstrated that insulin protects against neuronal oxidative stress by restoring antioxidants and energy metabolism. In this study, we analysed how insulin influences insulin-(IR) and insulin growth factor-1 receptor (IGF-1R) intracellular signaling pathways after oxidative stress caused by ascorbate/Fe2+ in rat cortical neurons. Insulin prevented oxidative stress-induced decrease in tyrosine phosphorylation of IR and IGF-1R and Akt inactivation. Insulin also decreased the active form of glycogen synthase kinase-3beta (GSK-3beta) upon oxidation. Since phosphatidylinositol 3-kinase (PI-3K)/Akt-mediated inhibition of GSK-3beta may stimulate protein synthesis and decrease apoptosis, we analysed mRNA and protein expression of "candidate" proteins involved in antioxidant defense, glucose metabolism and apoptosis. Insulin prevented oxidative stress-induced increase in glutathione peroxidase-1 and decrease in hexokinase-II expression, supporting previous findings of changes in glutathione redox cycle and glycolysis. Moreover, insulin precluded Bcl-2 decrease and caspase-3 increased expression. Concordantly, insulin abolished caspase-3 activity and DNA fragmentation caused by oxidative stress. Thus, insulin-mediated activation of IR/IGF-1R stimulates PI-3K/Akt and inhibits GSK-3beta signaling pathways, modifying neuronal antioxidant defense-, glucose metabolism- and anti-apoptotic-associated protein synthesis. These and previous data implicate insulin as a promising neuroprotective agent against oxidative stress associated with neurodegenerative diseases.  相似文献   

13.
Nitric oxide is a chemical messenger implicated in neuronal damage associated with ischemia, neurodegenerative disease, and excitotoxicity. Excitotoxic injury leads to increased NO formation, as well as stimulation of the p38 mitogen-activated protein (MAP) kinase in neurons. In the present study, we determined if NO-induced cell death in neurons was dependent on p38 MAP kinase activity. Sodium nitroprusside (SNP), an NO donor, elevated caspase activity and induced death in human SH-SY5Y neuroblastoma cells and primary cultures of cortical neurons. Concomitant treatment with SB203580, a p38 MAP kinase inhibitor, diminished caspase induction and protected SH-SY5Y cells and primary cultures of cortical neurons from NO-induced cell death, whereas the caspase inhibitor zVAD-fmk did not provide significant protection. A role for p38 MAP kinase was further substantiated by the observation that SB203580 blocked translocation of the cell death activator, Bax, from the cytosol to the mitochondria after treatment with SNP. Moreover, expressing a constitutively active form of MKK3, a direct activator of p38 MAP kinase promoted Bax translocation and cell death in the absence of SNP. Bax-deficient cortical neurons were resistant to SNP, further demonstrating the necessity of Bax in this mode of cell death. These results demonstrate that p38 MAP kinase activity plays a critical role in NO-mediated cell death in neurons by stimulating Bax translocation to the mitochondria, thereby activating the cell death pathway.  相似文献   

14.
Wang Y  Han R  Liang ZQ  Wu JC  Zhang XD  Gu ZL  Qin ZH 《Autophagy》2008,4(2):214-226
Previous studies found that kainic acid (KA)-induced apoptosis involved the lysosomal enzyme cathepsin B, suggesting a possible mechanism of autophagy in excitotoxicity. The present study was sought to investigate activation and contribution of autophagy to excitotoxic neuronal injury mediated by KA receptors. The formation of autophagosomes was observed with transmission electron microscope after excitotoxin exposure. The contribution of autophagic mechanisms to KA-induced upregulation of microtubule-associated protein 1A/1B light chain 3 (LC3), lysosome- associated membrane protein 2 (LAMP2) and cathepsin B, release of cytochrome c, activation of caspase-3, down-regulation of Bcl-2, upregulation of Bax, p53, puma and apoptotic death of striatal neurons were assessed with co-administration of the autophagy inhibitor 3-methyladenine (3-MA). These studies showed that KA brought about an increase in the formation of autophagosomes and autolysosomes in the cytoplasm of striatal cells. KA-induced increases in the ratio of LC3-II/LC3-I, LAMP2, cathepsin B, release of cytochrome c and activation of caspase-3 were blocked by pre-treatment with 3-MA. 3-MA also reversed KA-induced down-regulation of Bcl-2 and upregulation of Bax protein levels, LC3, p53 and puma mRNA levels in the striatum. KA-induced internucleosomal DNA fragmentation and loss of striatal neurons were robustly inhibited by 3-MA. These results suggest that over-stimulation of KA receptors can activate autophagy. The autophagic mechanism participates in programmed cell death through regulating the mitochondria-mediated apoptotic pathway.  相似文献   

15.
16.
Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostaglandin synthesis, is induced in many cells by numerous inflammatory mediators, including nitric oxide (NO). Upregulation of COX-2 expression has been implicated in the pathophysiology of neuronal cell death. In the present study, we have found that the NO-induced upregulation of COX-2 via activation of activator protein-1 (AP-1) signaling leads to apoptotic cell death. Cultured rat pheochromocytoma (PC12) cells treated with sodium nitroprusside (SNP), a NO-releasing compound, exhibited marked induction of COX-2 expression, which was associated with apoptotic cell death as evidenced by internucleosomal DNA fragmentation, cleavage of poly(ADP-ribose) polymerase, activation of caspase-3, accumulation of p53, increased Bax/Bcl-XL ratio, and dissipation of mitochondrial membrane potential. In addition to the upregulation of COX-2 expression, SNP treatment led to activation of AP-1. Pretreatment of PC12 cells with c-fos antisense oligonucleotide abolished the NO-induced increase in DNA binding of AP-1 and upregulation of COX-2 expression. Furthermore, pretreatment with a selective COX-2 inhibitor (SC58635) rescued the PC12 cells from the apoptotic cell death induced by NO. Similar results were obtained when the NO-induced upregulation of COX-2 expression was blocked by the siRNA interference. These results suggest that excessive NO production during inflammation induces apoptosis in PC12 cells through AP-1-mediated upregulation of COX-2 expression.  相似文献   

17.
Nitric oxide (NO) induces apoptotic cell death in murine RAW 264.7 macrophages. To elucidate the inhibitory effects of protein kinase C (PKC) on NO-induced apoptosis, we generated clones of RAW 264.7 cells that overexpress one of the PKC isoforms and explored the possible interactions between PKC and three structurally related mitogen-activated protein (MAP) kinases in NO actions. Treatment of RAW 264.7 cells with sodium nitroprusside (SNP), a NO-generating agent, activated both c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinase, but did not activate extracellular signal-regulated kinase (ERK)-1 and ERK-2. In addition, SNP-induced apoptosis was slightly blocked by the selective p38 kinase inhibitor (SB203580) but not by the MAP/ERK1 kinase inhibitor (PD098059). PKC transfectants (PKC-beta II, -delta, and -eta) showed substantial protection from cell death induced by the exposure to NO donors such as SNP and S-nitrosoglutathione (GSNO). In contrast, in RAW 264.7 parent or in empty vector-transformed cells, these NO donors induced internucleosomal DNA cleavage. Moreover, overexpression of PKC isoforms significantly suppressed SNP-induced JNK/SAPK and p38 kinase activation, but did not affect ERK-1 and -2. We also explored the involvement of CPP32-like protease in the NO-induced apoptosis. Inhibition of CPP32-like protease prevented apoptosis in RAW 264.7 parent cells. In addition, SNP dramatically activated CPP32 in the parent or in empty vector-transformed cells, while slightly activated CPP32 in PKC transfectants. Therefore, we conclude that PKC protects NO-induced apoptotic cell death, presumably nullifying the NO-mediated activation of JNK/SAPK, p38 kinase, and CPP32-like protease in RAW 264.7 macrophages.  相似文献   

18.
Neural progenitor cells (NPC) can proliferate, differentiate into neurons or glial cells, or undergo a form of programmed cell death called apoptosis. Although death of NPC occurs during development of the nervous system and in the adult, the underlying mechanisms are unknown. Here we show that nitric oxide (NO) can induce death of C17.2 NPC by a mechanism requiring activation of p38 MAP kinase, poly(ADP-ribose) polymerase, and caspase-3. Nitric oxide causes release of cytochrome c from mitochondria, and Bcl-2 protects the neural progenitor cells against nitric oxide-induced death, consistent with a pivotal role for mitochondrial changes in controlling the cell death process. Inhibition of p38 MAP kinase by SB203580 abolished NO-induced cell death, cytochrome c release, and activation of caspase-3, indicating that p38 activation serves as an upstream mediator in the cell death process. The anti-apoptotic protein Bcl-2 protected NPC against nitric oxide-induced apoptosis and suppressed activation of p38 MAP kinase. The ability of nitric oxide to trigger death of NPC by a mechanism involving p38 MAP kinase suggests that this diffusible gas may regulate NPC fate in physiological and pathological settings in which NO is produced.  相似文献   

19.
Akt regulates cell survival and apoptosis at a postmitochondrial level   总被引:26,自引:0,他引:26  
Phosphoinositide 3 kinase/Akt pathway plays an essential role in neuronal survival. However, the cellular mechanisms by which Akt suppresses cell death and protects neurons from apoptosis remain unclear. We previously showed that transient expression of constitutively active Akt inhibits ceramide-induced death of hybrid motor neuron 1 cells. Here we show that stable expression of either constitutively active Akt or Bcl-2 inhibits apoptosis, but only Bcl-2 prevents the release of cytochrome c from mitochondria, suggesting that Akt regulates apoptosis at a postmitochondrial level. Consistent with this, overexpressing active Akt rescues cells from apoptosis without altering expression levels of endogenous Bcl-2, Bcl-x, or Bax. Akt inhibits apoptosis induced by microinjection of cytochrome c and lysates from cells expressing active Akt inhibit cytochrome c induced caspase activation in a cell-free assay while lysates from Bcl-2-expressing cells have no effect. Addition of cytochrome c and dATP to lysates from cells expressing active Akt do not activate caspase-9 or -3 and immunoprecipitated Akt added to control lysates blocks cytochrome c-induced activation of the caspase cascade. Taken together, these data suggest that Akt inhibits activation of caspase-9 and -3 by posttranslational modification of a cytosolic factor downstream of cytochrome c and before activation of caspase-9.  相似文献   

20.
Insulin-like growth factor-1 (IGF-1) is a growth factor of the thyroid that has been shown in our previous study to possess proliferative and antiapoptotic effects in FRTL-5 cell lines through the upregulation of cyclin D and Fas-associated death domain-like interleukin-1-converting enzyme (FLICE)-inhibitory protein (FLIP). Diosgenin, a natural steroid sapogenin from plants, has been shown to induce apoptosis in many cell lines, with the exception of thyroid cells. In this report, we investigated the apoptotic effect and mechanism of diosgenin in IGF-1-stimulated primary human thyrocytes. Primary human thyrocytes were preincubated with or without IGF-1 for 24h and subsequently exposed to varying concentrations of diosgenin for different times. We found that diosgenin induced apoptosis in human thyrocytes pretreated with IGF-1 in a dose-dependent manner through the activation of caspase cascades. Moreover, diosgenin inhibited FLIP and activated caspase-8 in the FAS-related apoptotic pathway. Diosgenin increased the production of ROS, regulated the balance of Bax and Bcl-2 and cleaved caspase-9 in the mitochondrial apoptotic pathway. These results indicate that diosgenin induces apoptosis in IGF-1-stimulated primary human thyrocytes through two caspase-dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号