首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isolation of endosome-derived vesicles from rat hepatocytes.   总被引:7,自引:3,他引:4       下载免费PDF全文
Intracellular 5'-nucleotidase involved in membrane circulation in rat hepatocytes is latent, and is protected from inhibition when whole cells are incubated with inhibiting antiserum at 2 degrees C [Stanley, Edwards & Luzio (1980) Biochem. J. 186, 59-69]. These two criteria were used to identify intracellular membrane vesicles containing 5'-nucleotidase on Ficoll density gradients. A sharply defined turbid band containing intracellular 5'-nucleotidase isolated on density gradients was further fractionated by immunoadsorption of plasma-membrane fragments derived from the cell surface of surface-inhibited cells on to an anti-(immunoglobulin G) immunoadsorbent. The resulting non-adsorbed membrane fraction consisted of vesicles of uniform size (approx. 65 nm diam.), but was not identifiable as any known organelle. This fraction could account for approx. 5% of the total cell 5'-nucleotidase activity, and the enzyme activity measured was 55% latent. The fraction had a restricted polypeptide composition but similar phospholipid composition compared with plasma membrane. We suggest that the vesicles observed in this fraction were derived from the endocytic pathway.  相似文献   

2.
ECL cells are numerous in the rat stomach. They produce and store histamine and chromogranin-A (CGA)-derived peptides such as pancreastatin and respond to gastrin with secretion of these products. Numerous electron-lucent vesicles of varying size and a few small, dense-cored granules are found in the cytoplasm. Using confocal and electron microscopy, we examined these organelles and their metamorphosis as they underwent intracellular transport from the Golgi area to the cell periphery. ECL-cell histamine was found to occur in both cytosol and secretory vesicles. Histidine decarboxylase, the histamine-forming enzyme, was in the cytosol, while pancreastatin (and possibly other peptide products) was confined to the dense cores of granules and secretory vesicles. Dense-cored granules and small, clear microvesicles were more numerous in the Golgi area than in the docking zone, i.e. close to the plasma membrane. Secretory vesicles were numerous in both Golgi area and docking zone, where they were sometimes seen to be attached to the plasma membrane. Upon acute gastrin stimulation, histamine was mobilized and the compartment size (volume density) of secretory vesicles in the docking zone was decreased, while the compartment size of microvesicles was increased. Based on these findings, we propose the following life cycle of secretory organelles in ECL cells: small, electron-lucent microvesicles (pro-granules) bud off the trans Golgi network, carrying proteins and secretory peptide precursors (such as CGA and an anticipated prohormone). They are transformed into dense-cored granules (approximate profile diameter 100 nm) while still in the trans Golgi area. Pro-granules and granules accumulate histamine, which leads to their metamorphosis into dense-cored secretory vesicles. In the Golgi area the secretory vesicles have an approximate profile diameter of 150 nm. By the time they reach their destination in the docking zone, their profile diameter is between 200 and 500 nm. Exocytosis is coupled with endocytosis (membrane retrieval), and microvesicles in the docking zone are likely to represent membrane retrieval vesicles (endocytotic vesicles).  相似文献   

3.
Plasma membranes were isolated from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5'-nucleotidase and (Na+ + K+)-ATPase were used. The yield of plasma membrane was 0.6-0.9 mg protein per g wet weight of liver. The recovery of 5'-nucleotidase and (Na+ +K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the activity of glucose-6-phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5'-nucleotidase, alkaline phosphatase, (Na+ +K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na2+ +K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphate was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

4.
Devaux PF 《Biochimie》2000,82(5):497-509
Stimulation of the aminophospholipid translocase, responsible for the transport of phosphatidylserine and phosphatidylethanolamine from the outer to the inner leaflet of the plasma membrane, provokes endocytic-like vesicles in erythrocytes and stimulates endocytosis in K562 cells. In this article arguments are given which support the idea that the active transport of lipids could be the driving force involved in membrane folding during the early step of endocytosis. The model is sustained by experiments on shape changes of pure lipid vesicles triggered by a change in the proportion of inner and outer lipids. It is shown that the formation of microvesicles with a diameter of 100-200 nm caused by the translocation of plasma membrane lipids implies a surface tension in the whole membrane. It is likely that cytoskeleton proteins and inner organelles prevent a real cell from undergoing overall shape changes of the type seen with giant unilamellar vesicles. Another hypothesis put forward in this article is the possible implication of the phospholipid 'scramblase' during exocytosis which could favor the unfolding of microvesicles.  相似文献   

5.
Treatment of the C6 glioblastoma cell with trinitrobenzenesulfonic acid (TNBS) resulted in the selective inactivation of ecto-5'-nucleotidase under conditions which maintained cell viability. Cells respond to ecto-enzyme inactivation by replacing 80% of lost activity within 24 hrs. A lag time of 4-6 hrs before ecto-5'-nucleotidase replacement began and its complete blockage by cycloheximide indicated that the source of replaced enzyme was de novo synthesis and not an intracellular pool. Release of 5'-nucleotidase activity into culture medium in the form of membraneous vesicles slowed during the active recovery period and then steadily increased with time as the plasma membrane enzyme level approached normal. TNBS did not exert a direct inhibitory action upon the exfoliative process as release of vesicular GM1 and protein were little affected. Decrease in exfoliated 5'-nucleotidase activity may be due to a selective conservation of the enzyme in the exfoliative process.  相似文献   

6.
We show in this study that human T cells purified from peripheral blood, T cell clones, and Jurkat T cells release microvesicles in the culture medium. These microvesicles have a diameter of 50-100 nm, are delimited by a lipidic bilayer membrane, and bear TCR beta, CD3epsilon, and zeta. This microvesicle production is regulated because it is highly increased upon TCR activation, whereas another mitogenic signal, such as PMA and ionomycin, does not induce any release. T cell-derived microvesicles also contain the tetraspan protein CD63, suggesting that they originate from endocytic compartments. They contain adhesion molecules such as CD2 and LFA-1, MHC class I and class II, and the chemokine receptor CXCR4. These transmembrane proteins are selectively sorted in microvesicles because CD28 and CD45, which are highly expressed at the plasma membrane, are not found. The presence of phosphorylated zeta in these microvesicles suggests that the CD3/TCR found in the microvesicles come from the pool of complexes that have been activated. Proteins of the transduction machinery, tyrosine kinases of the Src family, and c-Cbl are also observed in the T cell-derived microvesicles. Our data demonstrate that T lymphocytes produce, upon TCR triggering, vesicles whose morphology and phenotype are reminiscent of vesicles of endocytic origin produced by many cell types and called exosomes. Although the exact content of T cell-derived exosomes remains to be determined, we suggest that the presence of TCR/CD3 at their surface makes them powerful vehicles to specifically deliver signals to cells bearing the right combination of peptide/MHC complexes.  相似文献   

7.
1. Rat isolated fat-cells were coated with rabbit anti-(rat erythrocyte) antibody and incubated with fresh guinea-pig serum for 25 min at 37 degrees C, which resulted in a more than 95% release of the cytosolic enzyme lactate dehydrogenase. 2. Under these conditions fragmentation of the plasma membrane was examined by following the plasma-membrane markers 5'-nucleotidase, adrenaline-sensitive adenylate cyclase and membrane-bound rabbit immunoglobulin G through a differential-centrifugation fractionation procedure. 3. Approx. 50% of the plasma-membrane markers remained associated with triacylglycerol. Of the remainder more than half was pelleted by centrifugation at 10 000 g for 30 min. 4. The 10 000 g supernatant was fractionated by centrifugation on a sucrose density gradient (15-50%, w/w). This procedure resulted in the production of two visible white bands on the density gradient. The bands consisted of vesicles derived from the plasma membrane, since they coincided with peaks of 5'-nucleotidase activity, contained membrane-bound immunoglobulin G and the denser one had adenylate cyclase activity. The phospholipid and protein contents of the vesicles were determined and compared with those in purified plasma membrane. 5. It is suggested that complement-mediated lysis of rat fat-cells caused the production of plasma-membrane vesicles that differ in composition from the whole plasma membrane.  相似文献   

8.
Extracellular vesicles (EVs) are bilayer membrane fragments that are released by different cell types upon activation or death. The most well studied EVs are those of blood plasma. Two types of EVs are usually distinguished: exosomes (formed by the membranes of intracellular compartments, 50–100 nm in diameter) and ectosomes (also called microparticles or microvesicles, formed from plasma membrane, 100–1000 nm in diameter). The real picture is much more complicated and is still poorly understood. EVs are enriched by various proteins, mRNA and miRNA, and the EV lipid and protein composition can substantially differ from that of the parental cells, from which EV originate. The blood concentration of EVs greatly increases in many diseases and conditions. EVs have a wide spectrum of biological activities, from pro-coagulant to immunomodulating ones. This activity can be physiologically important and is believed to be absolutely important pathophysiologically. In recent studies, EVs are considered to be important not only as objects of basic research, but also as potential biomarkers, drug candidates, drug carriers, or therapeutic targets.  相似文献   

9.
Mouse L-fibroblasts internalized large amounts of cationized ferritin (CF) by pinocytosis. Initially (60-90 s after addition of CF to cell monolayers at 37 degrees C), CF was found in vesicles measuring 100-400 nm (sectioned diameter) and as small clusters adhering to the inner aspect of the limiting membrane of a few large (greater than 600 nm) vacuoles. After 5-30 min, CF labeling of large vacuoles was pronounced and continuous. Moreover, 70-80% of all labeled structures were tiny (less than 100 nm) vesicles. However, the absolute frequency of tiny vesicles increased more than twofold from 5 min to 30 min. When the cells were incubated with CF for 30 min, then washed and further incubated for 3 h without CF, almost all CF was present in dense bodies (100-500 nm). When L-cells were first incubated with horseradish peroxidase (HRP), then washed and incubated with CF, double-labeled vacuoles were observed. Tiny vesicles also contained HRP-CF, and small HRP-CF patches were localized on the cell surface. Distinct labeling of stacked Golgi cisterns was not observed in any experiment. These observations suggest that the numerous tiny vesicles are not endocytic but rather pinch off from the large vacuoles and move towards the cell surface to fuse with the plasma membrane. Thus, ultrastructural evidence is provided in favor of a direct membrane shuttle between the plasma membrane and the lysosomal compartment.  相似文献   

10.
Isolation and characterization of Neurospora crassa plasma membranes.   总被引:7,自引:0,他引:7  
The isolation and characterization of plasma membranes from a cell wall-less mutant of Neurospora crassa are described. The plasma membranes are stabilized against fragmentation and vesiculation by treatment of intact cells with concanavalin A just prior to lysis. After lysis, the concanavalin A-stabilized plasma membrane ghosts are isolated by low speed centrifugation techniques and the purified ghosts subsequently converted to vesicles by removal of the bulk of the concanavalin A. The yield of ghosts is about 50% whereas the yield of vesicles is about 20%. The isolated plasma membrane vesicles have a characteristically high sterol to phospholipid ratio, Mg2+-dependent ATPase activity and (Na+ plus K+)-stimulated Mg2+ATPase activity. Only traces of succinate dehydrogenase and 5'-nucleotidase are present in the plasma membrane preparations.  相似文献   

11.
The enzyme activity of Mg++-ATPase, Na+-K+-ATPase, 5'-nucleotidase and NAD(P)H-oxidase was cytochemically detected at the ultrastructural level in mouse peritoneal macrophages infected with untreated and with specific antibody-coated Toxoplasma gondii tachyzoites. The Mg++-ATPase and 5'-nucleotidase were distributed throughout the macrophages' plasma membrane but were not observed in the membrane lining endocytic vacuoles containing ingested parasites; however, Na+-K+-ATPase activity was detected in the macrophages' plasma membrane as well as in the parasitophorous vacuoles that contained untreated or specific antibody-coated parasites. Reaction product, indicative of NAD(P)H-oxidase, was detected in the parasitophorous vacuoles that contained only specific antibody-coated parasites.  相似文献   

12.
We have characterized ATP-dependent Ca2+ transport into highly purified plasma membrane fraction isolated from guinea pig ileum smooth muscle. The membrane fraction contained inside-out sealed vesicles and was enriched 30-40-fold in 5'-nucleotidase and phosphodiesterase I activity as compared to post nuclear supernatant. Plasma membrane vesicles showed high rate (76 nmol/mg/min) and high capacity for ATP dependent Ca2+ transport which was inhibited by addition of Ca2+ ionophore A23187. The inhibitors of mitochondrial Ca2+ transport, i.e., sodium azide, oligomycin and ruthenium red did not inhibit ATP-dependent Ca2+ uptake into plasma membrane vesicles. The energy dependent Ca2+ uptake into plasma membranes showed very high specificity for ATP as energy source and other nucleotide triphosphates were ineffective in supporting Ca2+ transport. Phosphate was significantly better as Ca2+ trapping anion to potentiate ATP-dependent Ca2+ uptake into plasma membrane fraction as compared to oxalate. Orthovanadate, an inhibitor of cell membrane (Ca2+-Mg2+)-ATPase activity, completely inhibited ATP-dependent Ca2+ transport and the Ki was approximately 0.6 microM. ATP-dependent Ca2+ transport and formation of alkali labile phosphorylated intermediate of (Ca2+-Mg2+)-ATPase increased with increasing concentrations of free Ca2+ in the incubation mixture and the Km value for Ca2+ was approximately 0.6-0.7 microM for both the reactions.  相似文献   

13.
The effects of phospholipids on the properties of hepatic 5'-nucleotidase   总被引:1,自引:0,他引:1  
Arrhenius plots of 5'-nucleotidase activity in microsomes or plasma membranes from rat liver exhibited transitions at approximately 35 degrees C. The enzyme was purified from homogenates after solubilization in 2% Triton X-100 and 1% sodium deoxycholate. After the initial steps of the purification, the enzyme was recovered in membranes, as judged by both thin section and freeze-fracture electron microscopy, which contained sphingomyelin, phosphatidylcholine, and phosphatidylethanolamine. The purest fractions of 5'-nucleotidase were enriched approximate 3,000-fold, consisted of similar membranes, but only contained sphingomyelin. Thermal transitions were detected in Arrhenius plots of 5'-nucleotidase after detergent solubilization, in the membranes which contained the three phospholipids, but not in the purified fraction which contained only sphingomyelin; transitions were also detected after reassociation of the purified enzyme with microsomal or plasma membrane lipids and phosphatidylcholine but not with phosphatidylethanolamine. Phosphatidylcholines containing specific fatty acids all affected the energy of activation of 5'-nucleotidase, and the detergent Sarkosyl, which has been shown to dissociate phospholipids from 5'-nucleotidase (Evans, W. H., and Gurd, J. W. (1973) Biochem. J. 133, 189-199), caused a marked decrease in the stability of the enzyme to heating. Inhibition of 5'-nucleotidase by concanavalin A followed by reactivation with alpha-methyl-D-mannoside resulted in linear Arrhenius plots of 5'-nucleotidase activity in membrane fractions, and in lower transition temperatures for the detergent, solubilized enzyme. It is concluded that in situ, 5'-nucleotidase interacts with both sphingomyelin and phosphatidylcholine; the first apparently influences the stability of the enzyme and the second, the energy of activation. In addition, the lipid environment of the enzyme seems to be altered as a result of lectin binding.  相似文献   

14.
H. C. Hoch  R. J. Howard 《Protoplasma》1980,103(3):281-297
Summary The ultrastructure of freeze-substituted (FS) hyphae ofLaetisaria arvalis is described and compared to that of similar hyphae preserved by conventional chemical fixation (CF). The outline of membrane-bound organelles as well as the plasma membrane was smooth in FS cells. In contrast, hyphae preserved by CF exhibited membrane profiles that were extremely irregular. Centers of presumed Golgi activity were best preserved by FS. Microvesicles, 27–45 nm diameter and hexagonal in transverse section, were observed most readily in FS cells. Filasomes (= microvesicles within a filamentous matrix) were only observed in FS cells. Apical vesicles, 70–120 nm diameter, associated with the centers of Golgi activity and within the Spitzenkörper region exhibited finely granular matrices in FS hyphae, whereas in CF hyphae the contents were coarsely fibrous and less electron-dense. Microvesicles were present at hyphal apices and regions of septa formation. Filasomes were also found at regions of septa formation as well as along lateral hyphal tip cell walls. Microvesicles, but not filasomes, were observed in membrane-bound vesicles (= multivesicular bodies) and in larger vacuoles. Filaments, 5.2–5.4 nm wide, were juxtaposed with centripetally developing septa. Cytoplasmic inclusions, 20–40 m in length, composed of bundles of 6.7–8.0 nm wide filaments were observed in both FS and CF hyphae.  相似文献   

15.
Purified splenic and thymic lymphocytes from the ACI and F344 strains of inbred rats were disrupted by controlled hypotonic treatment, and their plasma membranes were prepared by sucrose density gradient centrifugation. The plasma membrane preparations were highly purified as judged by the structural appearance of the smooth membrane vesicles, by the 10- to 15-fold enrichment of 5'-nucleotidase, which cytochemically localized exclusively in the plasma membranes of intact lymphocytes, by the high cholesterol to phospholipid molar ratio (0.7-1.0), and by the very low specific activities of the enzymes associated predominantly with mitochondria, lysosomes, and endoplasmic reticulum. The protein and the lipid contents of the membranes were 48-55 and 37-48%, respectively. The total lipid content of plasma membranes was characteristically higher in thymic than splenic lymphocytes from both ACI and F344 strains. The specific activity of 5'-nucleotidase was similar in splenic lymphocyte membranes of the ACI strain, and in both the thymic and splenic lymphocyte membranes of the F344 strain. In contrast, the thymic lymphocyte membranes in the ACI strain showed half as much 5'-nucleotidase specific activity. Cytochemical results indicated that the 5'-nucleotidase is located on the outside surface of the lymphocyte plasma membranes.  相似文献   

16.
MFG-E8 (milk fat globule-EGF factor 8) is a peripheral membrane glycoprotein, which is expressed abundantly in lactating mammary glands and is secreted in association with fat globules. This protein consists of two-repeated EGF-like domains, a mucin-like domain and two-repeated discoidin-like domains (C-domains), and contains an integrin-binding motif (RGD sequence) in the EGF-like domain. To clarify the role of each domain on the peripheral association with the cell membrane, several domain-deletion mutants of MFG-E8 were expressed in COS-7 cells. The immunofluorescent staining of intracellular and cell-surface proteins and biochemical analyses of cell-surface-biotinylated and secreted proteins demonstrated that both of the two C-domains were required for the membrane association. During the course of these studies for domain functions, MFG-E8, but not C-domain deletion mutants, was shown to be secreted as membrane vesicle complexes. By size-exclusion chromatography and ultracentrifugation analyses, the complexes were characterized to have a high-molecular mass, low density and higher sedimentation velocity and to be detergent-sensitive. Not only such a exogenously expressed MFG-E8 but also that endogenously expressed in a mammary epithelial cell line, COMMA-1D, was secreted as the membrane vesicle-like complex. Scanning electron microscopic analyses revealed that MFG-E8 was secreted into the culture medium in association with small membrane vesicles with a size from 100 to 200 nm in diameter. Furthermore, the expression of MFG-E8 increased the number of these membrane vesicle secreted into the culture medium. These results suggest a possible role of MFG-E8 in the membrane vesicle secretion, such as budding or shedding of plasma membrane (microvesicles) and exocytosis of endocytic multivesicular bodies (exosomes).  相似文献   

17.
The gene encoding the membrane-bound 5'-nucleotidase of Vibrio parahaemolyticus was cloned and expressed in Escherichia coli. Cells of E. coli harboring a plasmid, pNUT5, which carries the 5'-nucleotidase gene were able to grow on ATP as the sole source of carbon, although the original cells were not. The 5'-nucleotidase activity was detected in whole cells of E. coli harboring pNUT5 and in membrane vesicles prepared from these cells. Most properties of the 5'-nucleotidase produced in E. coli, that is, its requirements for Cl- and Mg2+, substrate specificity, and inhibition by Zn2+, were similar to those observed in V. parahaemolyticus, but some alterations in properties were observed: The 5'-nucleotidase was partially inducible in V. parahaemolyticus, but its expression in E. coli was completely constitutive. The specific activity of the 5'-nucleotidase in membrane vesicles of E. coli harboring the plasmid was 30 times that observed in whole cells, whereas the specific activities in membrane vesicles and in whole cells of V. parahaemolyticus were almost the same. A new, dense band of protein with an apparent molecular mass of 63 kDa was detected when membrane proteins of E. coli harboring the plasmid were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

18.
1. Plasma membranes were isolated from Krebs II ascite cells grown in the mouse. Cells were disrupted by nitrogen cavitation in an isotonic alkaline buffer containing magnesium and ATP. Isolation was performed in an alkaline-buffered self-generating gradient of Percoll with an angular rotor. At each step of the preparation, the pH appeared as the critical aspect of our procedure. 2. External membrane markers were concanavalin A and 5'-nucleotidase (EC 3.1.3.5). They reached a relative specific activity of 10, whereas this value was only of 0.7 for the endoplasmic reticulum marker, NADH dehydrogenase (EC 1.6.99.3). 3. Plasma membrane from 4 ml packed cells were isolated within 1 h after homogenization with good yield: 50% and 67% of total [3H]concanavalin A and 5'-nucleotidase, respectively, were recovered in the two plasma membrane fractions. 4. Electron microscopy examination showed the presence of vesicles of different sizes devoid of other structural contaminants. 5. Using the specific binding of concanavalin A to the external cell membrane, it was calculated that about 50% of the total cell phospholipid and 10% protein are located in the plasma membrane. Their sphingomyelin content is much higher than in the whole cell, in contrast to phosphatidylinositol, known as a more specific endoplasmic reticulum phospholipid.  相似文献   

19.
Approximately 40% of the 5'-nucleotidase activity in cultured rat embryo fibroblasts was patent, as judged by enzymatic assays comparing the activity of intact cells with detergent-solubilized cells. The patent activity was inhibited when cells were incubated with anti-5'-nucleotidase serum at 2 degrees C, whereas latent activity (calculated as the difference between total and patent activity) was not. Latent activity was inhibited by antibody when the antiserum was added directly to detergent-solubilized cells or when cells were cultured in the presence of antiserum for several hours. Patent activity was inhibited by antibody, and cells were returned to culture in antibody-free medium; after 12 hr, 30% of the total activity was expressed in intact cells and 60% of the anti-5'-nucleotidase, assayed by the binding of sheep antirabbit antibodies to intact cells, was lost from the cell surface, indicating an exchange of 5'-nucleotidase between the latent and patent compartments. Cytochemical studies showed that the patent activity was located on the cell surface and that latent activity was present in cytoplasmic vacuoles and vesicles, and in the Golgi complex. Over 30% of the anti-5'-nucleotidase internalized during 6 hr in culture returned to the cell surface after a further 9 hr, indicating a continual exchange of the enzyme between the cell surface and cytoplasmic membranes.  相似文献   

20.
A method for the preparation of HeLa cell plasma membrane ghosts is described. The purity of the plasma membrane fraction was examined by phase contrast and electron microscopy, by chemical analysis, and by assay of marker enzymes. Data on the composition of the plasma membrane fraction are given. It was observed that the distribution pattern of 5'-nucleotidase activity among the subcellular fractions differed from that of ouabain-sensitive ATPase. In addition, the specific activity of 5'-nucleotidase did not follow the distribution of the membrane ghosts. Thus, this enzyme would seem unsuitable as a plasma membrane marker. A complete balance sheet for marker enzyme activities during the fractionation is necessary for the calculation of increase in specific activity because the activities of both 5'-nucleotidase and ouabain-sensitive ATPase might change during the fractionation procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号