首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Microbiology.  相似文献   

4.
5.
Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs) mostly target the cell wall, a microbial ‘Achilles heel’, it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient ‘weapons’ of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs) do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the ‘Achilles heel’ has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.  相似文献   

6.
7.
8.
9.
Staphylococcus and biofilms   总被引:14,自引:0,他引:14  
The genetic and molecular basis of biofilm formation in staphylococci is multifaceted. The ability to form a biofilm affords at least two properties: the adherence of cells to a surface and accumulation to form multilayered cell clusters. A trademark is the production of the slime substance PIA, a polysaccharide composed of beta-1,6-linked N-acetylglucosamines with partly deacetylated residues, in which the cells are embedded and protected against the host's immune defence and antibiotic treatment. Mutations in the corresponding biosynthesis genes (ica operon) lead to a pleiotropic phenotype; the cells are biofilm and haemagglutination negative, less virulent and less adhesive on hydrophilic surfaces. ica expression is modulated by various environmental conditions, appears to be controlled by SigB and can be turned on and off by insertion sequence (IS) elements. A number of biofilm-negative mutants have been isolated in which polysaccharide intercellular adhesin (PIA) production appears to be unaffected. Two of the characterized mutants are affected in the major autolysin (atlE) and in D-alanine esterification of teichoic acids (dltA). Proteins have been identified that are also involved in biofilm formation, such as the accumulation-associated protein (AAP), the clumping factor A (ClfA), the staphylococcal surface protein (SSP1) and the biofilm-associated protein (Bap). Concepts for the prevention of obstinate polymer-associated infections include the search for new anti-infectives active in biofilms and new biocompatible materials that complicate biofilm formation and the development of vaccines.  相似文献   

10.
11.
12.
Over the years, antibiotics have provided an effective treatment for a number of microbial diseases. However recently, there has been an increase in resistant microorganisms that have adapted to our current antibiotics. One of the most dangerous pathogens is methicillin-resistant Staphylococcus aureus (MRSA). With the rise in the cases of MRSA and other resistant pathogens such as vancomycin-resistant Staphylococcus aureus, the need for new antibiotics increases every day. Many challenges face the discovery and development of new antibiotics, making it difficult for these new drugs to reach the market, especially since many of the pharmaceutical companies have stopped searching for antibiotics. With the advent of genome sequencing, new antibiotics are being found by the techniques of genome mining, offering hope for the future.  相似文献   

13.
14.
Bacteria are microscopic, single-celled organisms known for their ability to adapt to their environment. In response to stressful environmental conditions or in the presence of a contact surface, they commonly form multicellular aggregates called biofilms. Biofilms form on various abiotic or biotic surfaces through a dynamic stepwise process involving adhesion, growth, and extracellular matrix production. Biofilms develop on tissues as well as on implanted devices during infections, providing the bacteria with a mechanism for survival under harsh conditions including targeting by the immune system and antimicrobial therapy. Like pathogenic bacteria, members of the human microbiota can form biofilms. Biofilms formed by enteric bacteria contribute to several human diseases including autoimmune diseases and cancer. However, until recently the interactions of immune cells with biofilms had been mostly uncharacterized. Here, we will discuss how components of the enteric biofilm produced in vivo, specifically amyloid curli and extracellular DNA, could be interacting with the host's immune system causing an unpredicted immune response.  相似文献   

15.
16.
Antimicrobials: new solutions badly needed   总被引:2,自引:0,他引:2  
  相似文献   

17.
18.
Medical biofilms     
For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell:product separation. Unwanted biofilms can create enormous increases in fluid frictional resistances, unacceptable reductions in heat transfer efficiency, product contamination, enhanced material deterioration, and accelerated corrosion. Missing from B&B has been an equivalent research dialogue regarding the basic molecular microbiology, immunology, and biotechnological aspects of medical biofilms. Presented here are the current problems related to medical biofilms; current concepts of biofilm formation, persistence, and interactions with the host immune system; and emerging technologies for controlling medical biofilms.  相似文献   

19.
Candida biofilms   总被引:5,自引:0,他引:5  
In response to attachment to a surface, fungal cells produce biofilms, three-dimensional structures composed of cells surrounded by exopolymeric matrices. Surface attachment causes Candida albicans cells to enter a special physiological state in which they are highly resistant to antifungal drugs and express the drug efflux determinants CDR1, CDR2 and MDR1. C. albicans biofilms produced under different conditions differ in their cellular morphology and matrix content, which suggests that biofilms formed within a host, for example on indwelling medical devices, would also differ depending on the nature of the device and its location. The mechanisms by which surface attachment leads to biofilm formation are presently not understood.  相似文献   

20.
A selection of World Wide Web sites relevant to the reviews published in this issue of Current Opinion in Microbiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号