首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cassava mosaic disease is a major constraint for cassava production in Africa, resulting in significant economic losses. We have engineered transgenic cassava with resistance to African cassava mosaic virus (ACMV), by expressing ACMV AC1-homologous hairpin double-strand RNAs. Transgenic cassava lines with high levels of AC1-homologous small RNAs have ACMV immunity with increasing viral load and different inoculation methods. We report a correlation between the expression of the AC1-homologous small RNAs and the ACMV resistance of the transgenic cassava lines. Characterization of the small RNAs revealed that only some of the hairpin-derived small RNAs fall into currently known small interfering RNA classes in plants. The method is scalable to stacking by targeting multiple virus isolates with additional hairpins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) is the vector of cassava mosaic geminiviruses (CMGs), which are the main production constraint to cassava [Manihot esculenta Crantz (Euphorbiaceae)], both in Uganda and elsewhere in Africa. Two B. tabaci genotype clusters, Ug1 and Ug2, differentiated at 8% nucleotide (nt) divergence within the mitochondrial cytochrome oxidase I (mtCOI) gene, have been shown to occur on cassava in Uganda. However, the role of alternative hosts in the ecology of cassava B. tabaci genotypes and their possible involvement in the epidemiology of cassava mosaic disease (CMD) in Uganda remain unknown. In this study, we investigated the restriction of cassava B. tabaci genotypes to cassava and the colonization of alternative host species in select cassava‐growing areas of the country in 2003 and 2004. Bemisia tabaci adults and 4th instar nymphs were collected from cassava and 11 other cultivated and uncultivated species occurring adjacent to the sampled cassava fields. Phylogenetic analysis of mtCOI sequences revealed that only a single genotype cluster, Ug1, was present on both cassava and non‐cassava plant species sampled in this study. The Ug1 genotypes (n = 49) shared 97–99% nt identity with the previously described cassava‐associated B. tabaci populations in southern Africa, and were ~8% and ~13% divergent from Ug2 and the ‘Ivory Coast cassava’ genotypes in Uganda and Ivory Coast, respectively. The Ug1 genotypes occurred (as adults) on all 12 source‐plant species sampled. However, based on the presence of B. tabaci 4th instar nymphs, the Ug1 genotypes (n = 13) colonized cassava and five other non‐cassava plant species: Manihot glaziovii, Jatropha gossypifolia, Euphorbia heterophylla, Aspilia africana, and Abelmoschus esculentus, suggesting that cassava B. tabaci (Ug1 genotypes) are not restricted to cassava in Uganda. No Ug2‐like genotypes were detected on any of the plant species sampled, including cassava, in this study. The identification of additional hosts for at least one genotype cluster, Ug1, known also to colonize cassava, and which was hitherto thought to be ‘cassava‐restricted’ may have important epidemiological significance for the spread of CMGs in Uganda.  相似文献   

3.
The first committed steps in the biosynthesis of the two cyanogenic glucosides linamarin and lotaustralin in cassava are the conversion of L-valine and L-isoleucine, respectively, to the corresponding oximes. Two full-length cDNA clones that encode cytochromes P-450 catalyzing these reactions have been isolated. The two cassava cytochromes P-450 are 85% identical, share 54% sequence identity to CYP79A1 from sorghum, and have been assigned CYP79D1 and CYP79D2. Functional expression has been achieved using the methylotrophic yeast, Pichia pastoris. The amount of CYP79D1 isolated from 1 liter of P. pastoris culture exceeds the amounts that putatively could be isolated from 22,000 grown-up cassava plants. Each cytochrome P-450 metabolizes L-valine as well as L-isoleucine consistent with the co-occurrence of linamarin and lotaustralin in cassava. CYP79D1 was isolated from P. pastoris. Reconstitution in lipid micelles showed that CYP79D1 has a higher k(c) value with L-valine as substrate than with L-isoleucine, which is consistent with linamarin being the major cyanogenic glucoside in cassava. Both CYP79D1 and CYP79D2 are present in the genome of cassava cultivar MCol22 in agreement with cassava being allotetraploid. CYP79D1 and CYP79D2 are actively transcribed, and production of acyanogenic cassava plants would therefore require down-regulation of both genes.  相似文献   

4.
Cassava mosaic disease (CMD) exists throughout Africa, and cassava latent virus (CLV) has been implicated as the etiological agent in Kenya and West Africa. However, in Southern Africa, the causal agent of CMD was not until recently associated with CLV, and the possibility of a second flexuous virus particle has not been ignored. Attempts to isolate and visualize CLV antigen have been successful with Nicotiana benthamiana, an indicator host plant of CLV, but all efforts to isolate and visualize particles in infected cassava plants have failed. Immunocytochemical studies were undertaken in an attempt to localize virus antigen in infected cassava tissue.Cytochemical staining (light microscope) of infected cassava leaf material revealed the presence of inclusion bodies in epidermal and palaside mesophyll cells, and in epidermal collenchyma and outer parenchyma cells from the petiole and stem. However, transmission electron-microscopical (TEM) investigations revealed electron dense bodies in the cytoplasm, and no characteristic CLV nuclear inclusion bodies were evident. Transmission experiments to N. benthamiana and N. tabacum were attempted and leaves, exhibiting symptoms, examined microscopically. The nuclei appeared swollen (in comparison to uninfected leaves), a characteristic of CLV- infected N. benthamiana. However at the TEM level, no characteristic fibrillar-ring inclusion bodies or particles, could be visualized.Further immunocytochemical investigations were initiated, employing antisera raised against CLV isolated from N. benthamiana, and antisera for cassava common mosaic virus (CCMV), cassava brown streak virus (CBSV) and cassava X virus (CsXV). Goat anti-rabbit IgG-gold was used as a direct stain. No labelling occurred with CCMV and CBSV antisera. Intense gold labelling was located in the cytoplasm of phloem, mesophyll and epidermal cells of infected cassava and to a lesser extent in N. tabacum and N. benthamiana using affinity chromatography purified CLV antiserum. Little labelling was observed in nuclei of infected cells. Inconclusive results were obtained with CsXV antiserum.Immunogold labelling located CLV viral antigens in infected cassava leaf tissue. This observation, together with positive ELISA, transmission and DNA hybridization experiments, proves conclusively that CLV viral antigen is present in infected cassava in Southern Africa. However, most viral antigen in infected cassava, unlike N. benthamiana (fibrillar and granular nuclear inclusions) appears to be in the cytoplasm. This may tentatively suggest that the CLV protein is synthesized in the cytoplasm of its natural host, cassava, even though the virus may assemble in the nucleus at the appropriate time. However, as yet no virus inclusions have been observed in nuclei of infected cassava. Due to previous isolation of a flexuous rod and ambiguous staining results, the possibility of two viruses in cassava cannot be ruled out.  相似文献   

5.
6.
7.
Nassar NM  Collevatti RG 《Hereditas》2005,142(2005):33-37
Apomixis genes have successfully been transferred to cassava by hybridization with the wild species, Manihot glaziovii. The interspecific hybrid of cassava and M. glaziovii was left for open pollination during the subsequent three generations. Seven sibs and their maternal progenitor of the fourth generation were genotyped using five microsatellite loci previously developed for cassava. All sibs were identical with each other and with their maternal progenitor. Sibs from M. glaziovii itself proved to be identical when examined by the same microsatellite loci. These results lead to the conclusion that apomixis do occur in wild cassava relatives and apparently has played an important role in Manihot speciation.  相似文献   

8.
Studies have been carried out into the production of microbial protein from cassava using Trichoderma reesei and yeast. In monoculture studies, T. reesei was grown on whole cassava medium to give 0.74g dry cell/g cassava. The dry material contained 42% protein. The culture filtrate contained 5.8 g/l glucose, which supported the growth of yeast. Mixed culture fermentation was also carried out with the two microorganisms. Besides accelerating the rate of degradation and conversion of cassava to cells (0.85g cell/g cassava) the yeast boosted the protein content of the growth product to 51%.  相似文献   

9.
Controlled and natural hybridization between cassava and wild relatives does occur. Barriers within the genus appear to be weak due to recent evolution of the group. All Manihot species examined cytogenetically have a chromosome number of 2n = 36. However, they behave meiotically as diploids. The weak interspecific barriers have led to an extremely heterozygous gene pool that may begin a sequence of hybridization followed by speciation. Introgression from cassava into a number of wild species (M. neusana, M. alutacea, M. reptans and M. anomala) has been detected by both morphological marker genes and molecular techniques. Winged fruit, setaceous bracteoles, and wide leaf sinus were dominant genes that came from cassava and appeared in the hybrids. The characteristic protein bands of cassava were recognized in the hybrid seed protein electrophoresis.  相似文献   

10.
Abstract:  The cassava biotype of Bemisia tabaci (Gennadius) is known to colonize cassava ( Manihot esculenta Crantz) whereas the sweet potato biotype colonizes various plant and weed species but not cassava. Both biotypes have Solanum melongena L. and Solanum aethiopicum L. as common host plant species. This study shows for the first time that both biotypes can successfully feed, survive and reproduce on a new host plant species, Nicotiana debneyi Domin. These findings have important implications for better understanding the disease epidemics, related to whitefly transmissible geminiviruses.  相似文献   

11.
Some original observations have been made on the process of cassava fermentation to produce “foofoo”, a local nigerian diet. During the period of fermentation the pH of the fermenting liquor decreases from 6.1 to 3.4 at the end of the 6th day. The change in pH is uniform throughout the fermentation period. Decreases in dry weight of the fermenting cassava have been recorded; there is a very rapid decline during the third and fourth days of fermentation. Free reducing sugars decrease drastically within the first and second days. Total sugar concentration which is an indication of the starch content of the cassava also declines with fermentation time, and more so during the third and fourth days. Protein concentration in the liquor increases very rapidly during the first and second days of fermentation. It is believed that cassava protein is converted to microbial protein.  相似文献   

12.
M/o基因家族是植物重要的抗病基因。本文通过系统分析木薯基因组数据库,从中共鉴定出21个M/o成员,其中20个具有完整序列,1个只有部分序列。对其中20个具有完整序列的基因与其他物种的Mlo基因进行聚类关系分析,结果显示,可将木薯Mlo基因家族分为6类(I~VI),其中4类都包括有来自拟南芥的Mlo基因,第vI类只包括2个木薯Mlo基因,可能是木薯中特有的一类Mlo;6个木薯Mlo与已知的抗病Mlo基因分别聚在第1V和第V类,这6个基因可能是木薯基因组中具有抗病功能的Mlo。对所有的木薯Mlo蛋白进行结构分析发现,除了MeMl020外,其他蛋白均具有6~8个跨膜结构,其中3个蛋白具有N端信号肽。  相似文献   

13.
Plant viruses typically have highly condensed genomes, yet the plant-pathogenic viruses Cassava brown streak virus, Ugandan cassava brown streak virus, and Euphorbia ringspot virus are unusual in encoding an enzyme not yet found in any other virus, the “house-cleaning” enzyme inosine triphosphatase. Inosine triphosphatases (ITPases) are highly conserved enzymes that occur in all kingdoms of life and perform a house-cleaning function by hydrolysing the noncanonical nucleotide inosine triphosphate to inosine monophosphate. The ITPases encoded by cassava brown streak virus and Ugandan cassava brown streak virus have been characterized biochemically and are shown to have typical ITPase activity. However, their biological role in virus infection has yet to be elucidated. Here we review what is known of viral-encoded ITPases and speculate on potential roles in infection with the aim of generating a greater understanding of cassava brown streak viruses, a group of the world's most devastating viruses.  相似文献   

14.
Incidence of African cassava mosaic (ACMD), cassava bacterial blight (CBB), and cassava anthracnose (CA) on local susceptible cassava cultivars planted in December, February, and April was investigated. December cassava planting had a higher incidence of ACMD, CBB, and CA diseases compared with February and April plantings. CA seemed to be more prevalent at an older stage (8 months old) of plant growth. April planting had significantly lower incidence of major cassava diseases, and higher mean tuber, yield than the same cassava cultivars planted earlier. The length of exposure of cassava plants to the inocula and/or to the vector during the rainy season determines the occurrence of diseases. In the absence of resistant cassava cultivars and through, partial disease escape of susceptible cultivars from ACMD, CBB, and CA, planting the same cultivars in April can still produce a profitable cassava crop.  相似文献   

15.
This paper examines the impacts of climate change on cassava production in Africa, and questions whether cassava can play an important role in climate change adaptation. First, we examine the impacts that climate change will likely have on cassava itself, and on other important staple food crops for Africa including maize, millets, sorghum, banana, and beans based on projections to 2030. Results indicate that cassava is actually positively impacted in many areas of Africa, with ?3.7% to +17.5% changes in climate suitability across the continent. Conversely, for other major food staples, we found that they are all projected to experience negative impacts, with the greatest impacts for beans (?16%?±?8.8), potato (?14.7?±?8.2), banana (?2.5%?±?4.9), and sorghum (?2.66%?±?6.45). We then examined the likely challenges that cassava will face from pests and diseases through the use of ecological niche modeling for cassava mosaic disease, whitefly, brown streak disease and cassava mealybug. The findings show that the geographic distribution of these pests and diseases are projected to change, with both new areas opening up and areas where the pests and diseases are likely to leave or reduce in pressure. We finish the paper by looking at the abiotic traits of priority for crop adaptation for a 2030 world, showing that greater drought tolerance could bring some benefits in all areas of Africa, and that cold tolerance in Southern Africa will continue to be a constraint for cassava despite a warmer 2030 world, hence breeding needs to keep a focus on this trait. Importantly, heat tolerance was not found to be a major priority for crop improvement in cassava in the whole of Africa, but only in localized pockets of West Africa and the Sahel. The paper concludes that cassava is potentially highly resilient to future climatic changes and could provide Africa with options for adaptation whilst other major food staples face challenges.  相似文献   

16.
Amino acid profile in cassava and its interspecific hybrid   总被引:1,自引:0,他引:1  
Cassava roots have a low-protein content (0.7-2%). Amino acids such as lysine and methionine are also low, and some research reports have indicated the absence of methionine. The amino acid profiles of a common cassava cultivar and an interspecific hybrid, namely ICB 300, were determined using the computerized amino acid analyzer Hitachi L-8500. The interspecific hybrid has 10 times more lysine and 3 times more methionine than the common cassava cultivar: lysine content was 0.010 g per 100 g in the common cassava cultivar while it reached 0.098 in the interspecific hybrid. Methionine in the common cassava cultivar was 0.014 g per 100 g whereas it reached 0.041 g per 100 g in the interspecific hybrid. Total amino acid content in the common cassava cultivar was 0.254 g per 100 g viz. a viz. 1.664 g per 100 g in the interspecific hybrid. The genetic variability of the profile and quantity of amino acids indicate the feasibility of selecting interspecific hybrids that are rich in both crude protein and amino acids. This is the first report of high true protein in cassava root.  相似文献   

17.
The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (<5%) compared with the level in starch granules from the wild-type (about 25%). The inner structure of the waxy starch granules differed from that of the untransformed ones, as revealed by transmission electron microscopy analysis as well as morphological changes in the iodine-starch complex. Endothermic enthalpy was reduced in waxy cassava starches, according to differential scanning calorimeter analysis. Except B9, all waxy starches displayed the A-type X-ray diffraction pattern. Amylogram patterns of the waxy cassava starches were analyzed using a rapid viscosity analyzer and found to have increased values for clarity, peak viscosity, gel breakdown, and swelling index. Setback, consistency, and solubility were notably reduced. Therefore, waxy cassava with novel starch in its storage roots was produced using the biotechnological approach, promoting its industrial utilization.  相似文献   

18.
木薯中的纤维素成分约占木薯干重的10%(W/W).文中以木薯燃料乙醇生产的木薯纤维素酒渣为原料,从纤维素酶成本角度评估了三种利用木薯纤维素组分发酵生产乙醇的方法,包括木薯纤维素酒渣的直接糖化和乙醇发酵、木薯纤维素酒渣预处理后的糖化与乙醇发酵、木薯乙醇发酵中同步淀粉与纤维素糖化以及乙醇发酵.结果表明,前两种方法的纤维素利用效率不高,酶成本分别达到13602、11659元/吨乙醇.第三种方法,即在木薯乙醇发酵过程同时加入糖化酶和纤维素酶,进行同步淀粉与纤维素糖化,进而进行乙醇发酵,木薯纤维素乙醇的收益最高.发酵结束时的乙醇浓度从101.5g/L提高到107.0g/L,纤维素酶成本为3 589元/吨乙醇.此方法利用木薯纤维素与木薯淀粉同时进行,不会带来额外的设备及操作投入,酶成本低于产品乙醇价格,可实现盈利,因此第三种方法为木薯纤维用于乙醇发酵的最适方法,本研究结果将为木薯乙醇产业深度利用木薯纤维提供依据.  相似文献   

19.
Sub-Saharan Africa could have a shortfall of nearly 90Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cassava mosaic virus. Parasitic weeds such as Striga attack the roots of crops such as maize, millet, sorghum and upland rice. Field trials in Kenya using a variety of maize resistant to a herbicide have proven very successful. Drought-tolerant crops are also under development as are improved varieties of local African crops such as bananas, cassava, sorghum and sweet potatoes.  相似文献   

20.
The bioavailability of beta-carotene from cassava (Manihot esculenta Crantz) leaves was assayed in vitamin A deficient Wistar rats (Rattus norvegicus). Rats were separated into three groups and fed with a modified AIN-93G--vitamin A deficient--diet. Deficient rat received this diet without any additional vitamin A source. Controls received the diet with 7200 microg of synthetic beta-carotene (control), while experimentals (test) received 19.5 g of cassava leaves powder per kg of diet. The cassava leaves with beta-carotene promotes similar growth and tissue weight in rats to the synthetic beta-carotene. The relative bioavailability, estimated as the Retinol Accumulation Factor (RAF), was 16.5 and 27.5 for control and test groups, respectively, indicating that control and test rats should have an intake of 16.5 microg or 27.5 microg of beta-carotene from synthetic form or cassava leaves powder for each 1 microg of hepatic retinol stored, respectively. The cassava leaves beta-carotene bioavailability was lower than the synthetic beta-carotene probably because the beta-carotene from the leaf matrix may be bounded to protein complex or inside organelles, which impair carotenoid absorption. Our findings showed that beside the hepatic retinol recovery, cassava leaf beta-carotene could maintain rat growth and avoid vitamin A deficient symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号