首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By examining the consequences both of changes of [K+]o and of point mutations in the outer pore mouth, our goal was to determine if the mechanism of the block of Kv1.5 ionic currents by external Ni2+ is similar to that for proton block. Ni2+ block is inhibited by increasing [K+]o, by mutating a histidine residue in the pore turret (H463Q) or by mutating a residue near the pore mouth (R487V) that is the homolog of Shaker T449. Aside from a slight rightward shift of the Q-V curve, Ni2+ had no effect on gating currents. We propose that, as with Ho+, Ni2+ binding to H463 facilitates an outer pore inactivation process that is antagonized by Ko+ and that requires R487. However, whereas Ho+ substantially accelerates inactivation of residual currents, Ni2+ is much less potent, indicating incomplete overlap of the profiles of these two metal ions. Analyses with Co2+ and Mn2+, together with previous results, indicate that for the first-row transition metals the rank order for the inhibition of Kv1.5 in 0 mM Ko+ is Zn2+ (KD ~ 0.07 mM) ≥ Ni2+ (KD ~ 0.15 mM) > Co2+ (KD ~ 1.4 mM) > Mn2+ (KD > 10 mM).  相似文献   

2.
Anoxia induces a rapid elevation of the cytosolic Ca2+ concentration ([Ca2+]cyt) in maize (Zea mays L.) cells, which is caused by the release of the ion from intracellular stores. This anoxic Ca2+ release is important for gene activation and survival in O2-deprived maize seedlings and cells. In this study we examined the contribution of mitochondrial Ca2+ to the anoxic [Ca2+]cyt elevation in maize cells. Imaging of intramitochondrial Ca2+ levels showed that a majority of mitochondria released their Ca2+ in response to anoxia and took up Ca2+ upon reoxygenation. We also investigated whether the mitochondrial Ca2+ release contributed to the increase in [Ca2+]cyt under anoxia. Analysis of the spatial association between anoxic [Ca2+]cyt changes and the distribution of mitochondrial and other intracellular Ca2+ stores revealed that the largest [Ca2+]cyt increases occurred close to mitochondria and away from the tonoplast. In addition, carbonylcyanide p-trifluoromethoxyphenyl hydrazone treatment depolarized mitochondria and caused a mild elevation of [Ca2+]cyt under aerobic conditions but prevented a [Ca2+]cyt increase in response to a subsequent anoxic pulse. These results suggest that mitochondria play an important role in the anoxic elevation of [Ca2+]cyt and participate in the signaling of O2 deprivation.  相似文献   

3.
Schizosaccharomyces pombe cells respond to nutrient deprivation by altering G2/M cell size control. The G2/M transition is controlled by activation of the cyclin-dependent kinase Cdc2p. Cdc2p activation is regulated both positively and negatively. cdr2+ was identified in a screen for regulators of mitotic control during nutrient deprivation. We have cloned cdr2+ and have found that it encodes a putative serine-threonine protein kinase that is related to Saccharomyces cerevisiae Gin4p and S. pombe Cdr1p/Nim1p. cdr2+ is not essential for viability, but cells lacking cdr2+ are elongated relative to wild-type cells, spending a longer period of time in G2. Because of this property, upon nitrogen deprivation cdr2+ mutants do not arrest in G1, but rather undergo another round of S phase and arrest in G2 from which they are able to enter a state of quiescence. Genetic evidence suggests that cdr2+ acts as a mitotic inducer, functioning through wee1+, and is also important for the completion of cytokinesis at 36°C. Defects in cytokinesis are also generated by the overproduction of Cdr2p, but these defects are independent of wee1+, suggesting that cdr2+ encodes a second activity involved in cytokinesis.  相似文献   

4.
Modulation of Ca2+ within cells is tightly regulated through complex and dynamic interactions between the plasma membrane and internal compartments. In this study, we exploit in vivo imaging strategies based on genetically encoded Ca2+ indicators to define changes in perikaryal Ca2+ concentration of intact photoreceptors. We developed double-transgenic zebrafish larvae expressing GCaMP3 in all cones and tdTomato in long-wavelength cones to test the hypothesis that photoreceptor degeneration induced by mutations in the phosphodiesterase-6 (Pde6) gene is driven by excessive [Ca2+]i levels within the cell body. Arguing against Ca2+ overload in Pde6 mutant photoreceptors, simultaneous analysis of cone photoreceptor morphology and Ca2+ fluxes revealed that degeneration of pde6cw59 mutant cones, which lack the cone-specific cGMP phosphodiesterase, is not associated with sustained increases in perikaryal [Ca2+]i. Analysis of [Ca2+]i in dissociated Pde6βrd1mouse rods shows conservation of this finding across vertebrates. In vivo, transient and Pde6-independent Ca2+ elevations (‘flashes'') were detected throughout the inner segment and the synapse. As the mutant cells proceeded to degenerate, these Ca2+ fluxes diminished. This study thus provides insight into Ca2+ dynamics in a common form of inherited blindness and uncovers a dramatic, light-independent modulation of [Ca2+]i that occurs in normal cones.  相似文献   

5.
ICRAC (the best characterized Ca2+ current activated by store depletion) was monitored concurrently for the first time with [Ca2+] changes in internal stores. To establish the quantitative and kinetic relationship between these two parameters, we have developed a novel means to clamp [Ca2+] within stores of intact cells at any level. The advantage of this approach, which is based on the membrane-permeant low-affinity Ca2+ chelator N,N,N′,N′-tetrakis (2-pyridylmethyl)ethylene diamine (TPEN), is that [Ca2+] within the ER can be lowered and restored to its original level within 10–15 s without modifications of Ca2+ pumps or release channels. Using these new tools, we demonstrate here that Ca2+ release–activated Ca2+ current (ICRAC) is activated (a) solely by reduction of free [Ca2+] within the ER and (b) by any measurable decrease in [Ca2+]ER. We also demonstrate that the intrinsic kinetics of inactivation are relatively slow and possibly dependent on soluble factors that are lost during the whole-cell recording.  相似文献   

6.
Al toxicity is a major problem that limits crop productivity on acid soils. It has been suggested that Al toxicity is linked to changes in cellular Ca homeostasis and the blockage of plasma membrane Ca2+-permeable channels. BY-2 suspension-cultured cells of tobacco (Nicotiana tabacum L.) exhibit rapid cell expansion that is sensitive to Al. Therefore, the effect of Al on changes in cytoplasmic free Ca concentration ([Ca2+]cyt) was followed in BY-2 cells to assess whether Al perturbed cellular Ca homeostasis. Al exposure resulted in a prolonged reduction in [Ca2+]cyt and inhibition of growth that was similar to the effect of the Ca2+ channel blocker La3+ and the Ca2+ chelator ethyleneglycol-bis(β-aminoethyl ether)-N,N′-tetraacetic acid. The Ca2+ channel blockers verapamil and nifedipine did not induce a decrease in [Ca2+]cyt in these cells and also failed to inhibit growth. Al and La3+, but not verapamil or nifedipine, reduced the rate of Mn2+ quenching of Indo-1 fluorescence, which is consistent with the blockage of Ca2+- and Mn2+-permeable channels. These results suggest that Al may act to block Ca2+ channels at the plasma membrane of plant cells and this action may play a crucial role in the phytotoxic activity of the Al ion.  相似文献   

7.
Two recombinant aequorin isoforms with different Ca2+ affinities, specifically targeted to the endoplasmic reticulum (ER), were used in parallel to investigate free Ca2+ homeostasis in the lumen of this organelle. Here we show that, although identically and homogeneously distributed in the ER system, as revealed by both immunocytochemical and functional evidence, the two aequorins measured apparently very different concentrations of divalent cations ([Ca2+]er or [Sr2+]er). Our data demonstrate that this contradiction is due to the heterogeneity of the [Ca2+] of the aequorin-enclosing endomembrane system. Because of the characteristics of the calibration procedure used to convert aequorin luminescence into Ca2+ concentration, the [Ca2+]er values obtained at steady state tend, in fact, to reflect not the average ER values, but those of one or more subcompartments with lower [Ca2+]. These subcompartments are not generated artefactually during the experiments, as revealed by the dynamic analysis of the ER structure in living cells carried out by means of an ER-targeted green fluorescent protein. When the problem of ER heterogeneity was taken into account (and when Sr2+ was used as a Ca2+ surrogate), the bulk of the organelle was shown to accumulate free [cation2+]er up to a steady state in the millimolar range. A theoretical model, based on the existence of multiple ER subcompartments of high and low [Ca2+], that closely mimics the experimental data obtained in HeLa cells during accumulation of either Ca2+ or Sr2+, is presented. Moreover, a few other key problems concerning the ER Ca2+ homeostasis have been addressed with the following conclusions: (a) the changes induced in the ER subcompartments by receptor generation of InsP3 vary depending on their initial [Ca2+]. In the bulk of the system there is a rapid release whereas in the small subcompartments with low [Ca2+] the cation is simultaneously accumulated; (b) stimulation of Ca2+ release by receptor-generated InsP3 is inhibited when the lumenal level is below a threshold, suggesting a regulation by [cation2+]er of the InsP3 receptor activity (such a phenomenon had already been reported, however, but only in subcellular fractions analyzed in vitro); and (c) the maintenance of a relatively constant level of cytosolic [Ca2+], observed when the cells are incubated in Ca2+-free medium, depends on the continuous release of the cation from the ER, with ensuing activation in the plasma membrane of the channels thereby regulated (capacitative influx).  相似文献   

8.
Abundant evidences demonstrate that deuterium oxide (D2O) modulates various secretory activities, but specific mechanisms remain unclear. Using AtT20 cells, we examined effects of D2O on physiological processes underlying β-endorphin release. Immunofluorescent confocal microscopy demonstrated that 90% D2O buffer increased the amount of actin filament in cell somas and decreased it in cell processes, whereas β-tubulin was not affected. Ca2+ imaging demonstrated that high-K+-induced Ca2+ influx was not affected during D2O treatment, but was completely inhibited upon D2O washout. The H2O/D2O replacement in internal solutions of patch electrodes reduced Ca2+ currents evoked by depolarizing voltage steps, whereas additional extracellular H2O/D2O replacement recovered the currents, suggesting that D2O gradient across plasma membrane is critical for Ca2+ channel kinetics. Radioimmunoassay of high-K+-induced β-endorphin release demonstrated an increase during D2O treatment and a decrease upon D2O washout. These results demonstrate that the H2O-to-D2O-induced increase in β-endorphin release corresponded with the redistribution of actin, and the D2O-to-H2O-induced decrease in β-endorphin release corresponded with the inhibition of voltage-sensitive Ca2+ channels. The computer modeling suggests that the differences in the zero-point vibrational energy between protonated and deuterated amino acids produce an asymmetric distribution of these amino acids upon D2O washout and this causes the dysfunction of Ca2+ channels.  相似文献   

9.
In Paramecium tetraurelia, polyamine-triggered exocytosis is accompanied by the activation of Ca2+-activated currents across the cell membrane (Erxleben, C., and H. Plattner. 1994. J. Cell Biol. 127:935– 945). We now show by voltage clamp and extracellular recordings that the product of current × time (As) closely parallels the number of exocytotic events. We suggest that Ca2+ mobilization from subplasmalemmal storage compartments, covering almost the entire cell surface, is a key event. In fact, after local stimulation, Ca2+ imaging with high time resolution reveals rapid, transient, local signals even when extracellular Ca2+ is quenched to or below resting intracellular Ca2+ concentration ([Ca2+]e [Ca2+]i). Under these conditions, quenched-flow/freeze-fracture analysis shows that membrane fusion is only partially inhibited. Increasing [Ca2+]e alone, i.e., without secretagogue, causes rapid, strong cortical increase of [Ca2+]i but no exocytosis. In various cells, the ratio of maximal vs. minimal currents registered during maximal stimulation or single exocytotic events, respectively, correlate nicely with the number of Ca stores available. Since no quantal current steps could be observed, this is again compatible with the combined occurrence of Ca2+ mobilization from stores (providing close to threshold Ca2+ levels) and Ca2+ influx from the medium (which per se does not cause exocytosis). This implies that only the combination of Ca2+ flushes, primarily from internal and secondarily from external sources, can produce a signal triggering rapid, local exocytotic responses, as requested for Paramecium defense.  相似文献   

10.
The divalent cation Sr2+ induced repetitive transient spikes of the cytosolic Ca2+ activity [Ca2+]cy and parallel repetitive transient hyperpolarizations of the plasma membrane in the unicellular green alga Eremosphaera viridis. [Ca2+]cy measurements, membrane potential measurements, and cation analysis of the cells were used to elucidate the mechanism of Sr2+-induced [Ca2+]cy oscillations. Sr2+ was effectively and rapidly compartmentalized within the cell, probably into the vacuole. The [Ca2+]cy oscillations cause membrane potential oscillations, and not the reverse. The endoplasmic reticulum (ER) Ca2+-ATPase blockers 2,5-di-tert-butylhydroquinone and cyclopiazonic acid inhibited Sr2+-induced repetitive [Ca2+]cy spikes, whereas the compartmentalization of Sr2+ was not influenced. A repetitive Ca2+ release and Ca2+ re-uptake by the ER probably generated repetitive [Ca2+]cy spikes in E. viridis in the presence of Sr2+. The inhibitory effect of ruthenium red and ryanodine indicated that the Sr2+-induced Ca2+ release from the ER was mediated by a ryanodine/cyclic ADP-ribose type of Ca2+ channel. The blockage of Sr2+-induced repetitive [Ca2+]cy spikes by La3+ or Gd3+ indicated the necessity of a certain influx of divalent cations for sustained [Ca2+]cy oscillations. Based on these data we present a mathematical model that describes the baseline spiking [Ca2+]cy oscillations in E. viridis.  相似文献   

11.
Two different Cd2+ uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn2+ uptake system which also takes up Cd2+ and is induced by Mn2+ starvation. The calculated Km and Vmax are 0.26 μM and 3.6 μmol g of dry cell−1 min−1, respectively. Unlike Mn2+ uptake, which is facilitated by citrate and related tricarboxylic acids, Cd2+ uptake is weakly inhibited by citrate. Cd2+ and Mn2+ are competitive inhibitors of each other, and the affinity of the system for Cd2+ is higher than that for Mn2+. The other Cd2+ uptake system is expressed in Mn2+-sufficient cells, and no Km can be calculated for it because uptake is nonsaturable. Mn2+ does not compete for transport through this system, nor does any other tested cation, i.e., Zn2+, Cu2+, Co2+, Mg2+, Ca2+, Fe2+, or Ni2+. Both systems require energy, since uncouplers completely inhibit their activities. Two Mn2+-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn2+ for growth as the parental strain. Mn2+ starvation-induced Cd2+ uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn2+ or Cd2+ accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn2+ and Cd2+ uptake system.  相似文献   

12.
The quadruplex structures of the human telomere sequences AG3(T2AG3)3 I and (T2AG3)4 II were investigated in the presence of Na+ and K+ ions, through the cross-linking of adenines and guanines by the cis- and trans-[Pt(NH3)2(H2O)2](NO3)2 complexes 1 and 2. The bases involved in chelation of the cis- and trans-Pt(NH3)2 moieties were identified by chemical and 3′-exonuclease digestions of the products isolated after denaturing gel electrophoresis. These are the four adenines of each sequence and four out of the 12 guanines. Two largely different structures have been reported for I: A from NMR data in Na+ solution and B from X-ray data of a K+-containing crystal. Structure A alone agrees with our conclusions about the formation of the A1–G10, A13–G22, A1–A13 platinum chelates at the top of the quadruplex and A7–A19, G4–A19 and A7–G20 at the bottom, whether the Na+ or K+ ion is present. At variance with a recent proposal that structures A and B could be the major species in Na+ and K+ solutions, respectively, our results suggest that structure A exists predominantly in the presence of both ions. They also suggest that covalent platinum cross-linking of a human telomere sequence could be used to inhibit telomerase.  相似文献   

13.
Rotavirus infection modifies Ca2+ homeostasis, provoking an increase in Ca2+ permeation, the cytoplasmic Ca2+ concentration ([Ca2+]cyto), and total Ca2+ pools and a decrease in Ca2+ response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca2+ and the amount of Ca2+ sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca2+ pools were evaluated as 45Ca2+ uptake. Infection with SA11 clone 28 induced an increase in Ca2+ permeability and 45Ca2+ uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca2+ homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased 45Ca2+ uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca2+ homeostasis of infected cells through an initial increase of cell membrane permeability to Ca2+.  相似文献   

14.
Pollen tube growth is crucial for the delivery of sperm cells to the ovule during flowering plant reproduction. Previous in vitro imaging of Lilium longiflorum and Nicotiana tabacum has shown that growing pollen tubes exhibit a tip-focused Ca2+ concentration ([Ca2+]) gradient and regular oscillations of the cytosolic [Ca2+] ([Ca2+]cyt) in the tip region. Whether this [Ca2+] gradient and/or [Ca2+]cyt oscillations are present as the tube grows through the stigma (in vivo condition), however, is still not clear. We monitored [Ca2+]cyt dynamics in pollen tubes under various conditions using Arabidopsis (Arabidopsis thaliana) and N. tabacum expressing yellow cameleon 3.60, a fluorescent calcium indicator with a large dynamic range. The tip-focused [Ca2+]cyt gradient was always observed in growing pollen tubes. Regular oscillations of the [Ca2+]cyt, however, were rarely identified in Arabidopsis or N. tabacum pollen tubes grown under the in vivo condition or in those placed in germination medium just after they had grown through a style (semi-in vivo condition). On the other hand, regular oscillations were observed in vitro in both growing and nongrowing pollen tubes, although the oscillation amplitude was 5-fold greater in the nongrowing pollen tubes compared with growing pollen tubes. These results suggested that a submicromolar [Ca2+]cyt in the tip region is essential for pollen tube growth, whereas a regular [Ca2+] oscillation is not. Next, we monitored [Ca2+] dynamics in the endoplasmic reticulum ([Ca2+]ER) in relation to Arabidopsis pollen tube growth using yellow cameleon 4.60, which has a lower affinity for Ca2+ compared with yellow cameleon 3.60. The [Ca2+]ER in pollen tubes grown under the semi-in vivo condition was between 100 and 500 μm. In addition, cyclopiazonic acid, an inhibitor of ER-type Ca2+-ATPases, inhibited growth and decreased the [Ca2+]ER. Our observations suggest that the ER serves as one of the Ca2+ stores in the pollen tube and cyclopiazonic acid-sensitive Ca2+-ATPases in the ER are required for pollen tube growth.In many flowering plants, a pollen grain that lands on the top surface of a stigma will hydrate and germinate a pollen tube. Following germination, the pollen tube enters the style and grows through the wall of transmitting tract cells on the way to the ovary, where the tube emerges to release the sperm for double fertilization. Therefore, pollen tube growth is essential for reproduction in flowering plants.Since Brewbaker and Kwack (1963) revealed that Ca2+ is essential for in vitro pollen tube cultures, the relationship between the Ca2+ concentration ([Ca2+]) and pollen tube growth has been further examined under in vitro germination culture conditions. Ratiometric ion imaging using fluorescent dye has revealed that the apical domain of a pollen tube grown in vitro contains a tip-focused [Ca2+] gradient (Pierson et al., 1994, 1996; Cheung and Wu, 2008) and that the cytoplasmic [Ca2+] ([Ca2+]cyt) in the tip region and the growth rate oscillate with the same periodicity (Pierson et al., 1996; Holdaway-Clarke et al., 1997; Messerli and Robinson, 1997). Therefore, oscillation of the [Ca2+]cyt has been thought to correlate with pollen tube growth. It is not clear, however, whether regular [Ca2+]cyt oscillations in the tip region occur in pollen tubes growing through stigmas and styles.The [Ca2+]cyt is controlled temporally and spatially by transporters in the membranes of intracellular compartments and in the plasma membrane (Sze et al., 2000). Studies using a Ca2+-sensitive vibrating electrode revealed Ca2+ influx in the tip region of the pollen tube (Pierson et al., 1994; Holdaway-Clarke et al., 1997; Franklin-Tong et al., 2002). Stretch-activated Ca2+ channels have been found in the plasma membrane using patch-clamp electrophysiology (Kuhtreiber and Jaffe, 1990; Dutta and Robinson, 2004). Recently, CNGC18 was identified as a Ca2+-permeable channel in the plasma membrane that is essential for pollen tube growth (Frietsch et al., 2007). The intracellular compartments that store Ca2+ in the pollen tube and the relevant Ca2+ transporters, however, have yet to be identified.Yellow cameleons are genetically encoded Ca2+ indicators that were developed to monitor the [Ca2+] in living cells (Miyawaki et al., 1997). These indicators are chimeric proteins consisting of enhanced cyan fluorescent protein (ECFP), calmodulin (CaM), a glycylglycine linker, the CaM-binding domain of myosin light chain kinase (M13), and enhanced yellow fluorescent protein (EYFP). When the CaM domain binds Ca2+, the domain associates with the M13 peptide and induces fluorescence resonance energy transfer (FRET) between ECFP and EYFP. Several types of cameleons have been developed by tuning the CaM domain binding affinity for Ca2+. Yellow cameleon 2.1 (YC2.1) is a high-affinity indicator that has been used to monitor the [Ca2+]cyt in Arabidopsis (Arabidopsis thaliana) guard cells (Allen et al., 1999, 2000, 2001), Lilium longiflorum and Nicotiana tabacum pollen tubes (Watahiki et al., 2004), and the root hair of Medicago truncatula (Miwa et al., 2006). YC3.1 is a low-affinity indicator that has been used to monitor the [Ca2+]cyt during pollen germination and in papilla cells of Arabidopsis (Iwano et al., 2004).Recently, YC3.60 was developed as a new YC variant (Nagai et al., 2004), in which the acceptor fluorophore is a circularly permuted version of Venus rather than EYFP (Nagai et al., 2002). YC3.60 has a monophasic Ca2+ dependency with a dissociation constant (Kd) of 0.25 μm. Compared with YC3.1, YC3.60 is equally bright with a 5- to 6-fold larger dynamic range. Thus, YC3.60 results in a markedly enhanced signal-to-noise ratio, thereby enabling Ca2+ imaging experiments that were not possible with conventional YCs. On the other hand, YC4.60 was developed by mutating the Ca2+-binding loop of CaM in YC3.60. Because YC4.60 has a significantly lower Ca2+ affinity with a biphasic Ca2+ dependency (Kd: 58 nm and 14.4 μm), it allows changes in [Ca2+] dynamics to be detected against a high background [Ca2+] (Nagai et al., 2004).To examine whether the [Ca2+]cyt oscillates in pollen tubes growing through a stigma after pollination (in vivo condition), in those placed in germination medium immediately after passing through a style (semi-in vivo condition), or in those grown in germination medium (in vitro condition), we generated transgenic Arabidopsis and N. tabacum lines expressing the YC3.60 gene in their pollen grains and monitored Ca2+ dynamics in the pollen tube tip. We also examined how inhibitors of pollen tube growth affect Ca2+ dynamics in pollen tubes growing under the semi-in vivo condition. To examine Ca2+ dynamics in the endoplasmic reticulum (ER), we generated transgenic Arabidopsis plants expressing YC4.60 in the pollen tube ER. The results are discussed in relation to the physiological relevance of [Ca2+] oscillations for pollen tube growth.  相似文献   

15.
An N-carbamoyl-β-alanine amidohydrolase of industrial interest from Agrobacterium tumefaciens C58 (βcarAt) has been characterized. βcarAt is most active at 30°C and pH 8.0 with N-carbamoyl-β-alanine as a substrate. The purified enzyme is completely inactivated by the metal-chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQSA), and activity is restored by the addition of divalent metal ions, such as Mn2+, Ni2+, and Co2+. The native enzyme is a homodimer with a molecular mass of 90 kDa from pH 5.5 to 9.0. The enzyme has a broad substrate spectrum and hydrolyzes nonsubstituted N-carbamoyl-α-, -β-, -γ-, and -δ-amino acids, with the greatest catalytic efficiency for N-carbamoyl-β-alanine. βcarAt also recognizes substrate analogues substituted with sulfonic and phosphonic acid groups to produce the β-amino acids taurine and ciliatine, respectively. βcarAt is able to produce monosubstituted β2- and β3-amino acids, showing better catalytic efficiency (kcat/Km) for the production of the former. For both types of monosubstituted substrates, the enzyme hydrolyzes N-carbamoyl-β-amino acids with a short aliphatic side chain better than those with aromatic rings. These properties make βcarAt an outstanding candidate for application in the biotechnology industry.  相似文献   

16.

Background

Thromboxane A2 (TxA2)-induced smooth muscle contraction has been implicated in cardiovascular, renal and respiratory diseases. This contraction can be partly attributed to TxA2-induced Ca2+ influx, which resulted in vascular contraction via Ca2+-calmodulin-MLCK pathway. This study aims to identify the channels that mediate TxA2-induced Ca2+ influx in vascular smooth muscle cells.

Methodology/Principal Findings

Application of U-46619, a thromboxane A2 mimic, resulted in a constriction in endothelium-denuded small mesenteric artery segments. The constriction relies on the presence of extracellular Ca2+, because removal of extracellular Ca2+ abolished the constriction. This constriction was partially inhibited by an L-type Ca2+ channel inhibitor nifedipine (0.5–1 µM). The remaining component was inhibited by L-cis-diltiazem, a selective inhibitor for CNG channels, in a dose-dependent manner. Another CNG channel blocker LY83583 [6-(phenylamino)-5,8-quinolinedione] had similar effect. In the primary cultured smooth muscle cells derived from rat aorta, application of U46619 (100 nM) induced a rise in cytosolic Ca2+ ([Ca2+]i), which was inhibited by L-cis-diltiazem. Immunoblot experiments confirmed the presence of CNGA2 protein in vascular smooth muscle cells.

Conclusions/Significance

These data suggest a functional role of CNG channels in U-46619-induced Ca2+ influx and contraction of smooth muscle cells.  相似文献   

17.
In leaves of Egeria densa Planchon, N-ethylmaleimide (NEM) and other sulfhydryl-binding reagents induce a temporary increase in nonmitochondrial respiration (ΔQO2) that is inhibited by diphenylene iodonium and quinacrine, two known inhibitors of the plasma membrane NADPH oxidase, and are associated with a relevant increase in electrolyte leakage (M. Bellando, S. Sacco, F. Albergoni, P. Rocco, M.T. Marré [1997] Bot Acta 110: 388–394). In this paper we report data indicating further analogies between the oxidative burst induced by sulfhydryl blockers in E. densa and that induced by pathogen-derived elicitors in animal and plant cells: (a) NEM- and Ag+-induced ΔQO2 was associated with H2O2 production and both effects depended on the presence of external Ca2+; (b) Ca2+ influx was markedly increased by treatment with NEM; (c) the Ca2+ channel blocker LaCl3 inhibited ΔQO2, electrolyte release, and membrane depolarization induced by the sulfhydryl reagents; and (d) LaCl3 also inhibited electrolyte leakage induced by the direct infiltration of the leaves with H2O2. These results suggest a model in which the interaction of sulfhydryl blockers with sulfhydryl groups of cell components would primarily induce an increase in the Ca2+ cytosolic concentration, followed by membrane depolarization and activation of a plasma membrane NADPH oxidase. This latter effect, producing active oxygen species, might further influence plasma membrane permeability, leading to the massive release of electrolytes from the tissue.  相似文献   

18.
A purified and electrophoretically homogeneous blue laccase from the litter-decaying basidiomycete Stropharia rugosoannulata with a molecular mass of approximately 66 kDa oxidized Mn2+ to Mn3+, as assessed in the presence of the Mn chelators oxalate, malonate, and pyrophosphate. At rate-saturating concentrations (100 mM) of these chelators and at pH 5.0, Mn3+ complexes were produced at 0.15, 0.05, and 0.10 μmol/min/mg of protein, respectively. Concomitantly, application of oxalate and malonate, but not pyrophosphate, led to H2O2 formation and tetranitromethane (TNM) reduction indicative for the presence of superoxide anion radical. Employing oxalate, H2O2 production, and TNM reduction significantly exceeded those found for malonate. Evidence is provided that, in the presence of oxalate or malonate, laccase reactions involve enzyme-catalyzed Mn2+ oxidation and abiotic decomposition of these organic chelators by the resulting Mn3+, which leads to formation of superoxide and its subsequent reduction to H2O2. A partially purified manganese peroxidase (MnP) from the same organism did not produce Mn3+ complexes in assays containing 1 mM Mn2+ and 100 mM oxalate or malonate, but omitting an additional H2O2 source. However, addition of laccase initiated MnP reactions. The results are in support of a physiological role of laccase-catalyzed Mn2+ oxidation in providing H2O2 for extracellular oxidation reactions and demonstrate a novel type of laccase-MnP cooperation relevant to biodegradation of lignin and xenobiotics.  相似文献   

19.
In cardiac muscle, intracellular Ca2+ and Mg2+ are potent regulators of calcium release from the sarcoplasmic reticulum (SR). It is well known that the free [Ca2+] in the SR ([Ca2+]L) stimulates the Ca2+ release channels (ryanodine receptor [RYR]2). However, little is known about the action of luminal Mg2+, which has not been regarded as an important regulator of Ca2+ release.  相似文献   

20.
In cardiac muscle, Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) defines the amplitude and time course of the Ca2+ transient. The global elevation of the intracellular Ca2+ concentration arises from the spatial and temporal summation of elementary Ca2+ release events, Ca2+ sparks. Ca2+ sparks represent the concerted opening of a group of ryanodine receptors (RYRs), which are under the control of several modulatory proteins and diffusible cytoplasmic factors (e.g., Ca2+, Mg2+, and ATP). Here, we examined by which mechanism the free intracellular Mg2+ ([Mg2+]free) affects various Ca2+ spark parameters in permeabilized mouse ventricular myocytes, such as spark frequency, duration, rise time, and full width, at half magnitude and half maximal duration. Varying the levels of free ATP and Mg2+ in specifically designed solutions allowed us to separate the inhibition of RYRs by Mg2+ from the possible activation by ATP and Mg2+-ATP via the adenine binding site of the channel. Changes in [Mg2+]free generally led to biphasic alterations of the Ca2+ spark frequency. For example, lowering [Mg2+]free resulted in an abrupt increase of spark frequency, which slowly recovered toward the initial level, presumably as a result of SR Ca2+ depletion. Fitting the Ca2+ spark inhibition by [Mg2+]free with a Hill equation revealed a Ki of 0.1 mM. In conclusion, our results support the notion that local Ca2+ release and Ca2+ sparks are modulated by Mg2+ in the intracellular environment. This seems to occur predominantly by hindering Ca2+-dependent activation of the RYRs through competitive Mg2+ occupancy of the high-affinity activation site of the channels. These findings help to characterize CICR in cardiac muscle under normal and pathological conditions, where the levels of Mg2+ and ATP can change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号