首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colicin M was earlier demonstrated to provoke Escherichia coli cell lysis via inhibition of cell wall peptidoglycan (murein) biosynthesis. As the formation of the O-antigen moiety of lipopolysaccharides was concomitantly blocked, it was hypothesized that the metabolism of undecaprenyl phosphate, an essential carrier lipid shared by these two pathways, should be the target of this colicin. However, the exact target and mechanism of action of colicin M was unknown. Colicin M was now purified to near homogeneity, and its effects on cell wall peptidoglycan metabolism reinvestigated. It is demonstrated that colicin M exhibits both in vitro and in vivo enzymatic properties of degradation of lipid I and lipid II peptidoglycan intermediates. Free undecaprenol and either 1-pyrophospho-MurNAc-pentapeptide or 1-pyrophospho-MurNAc-(pentapeptide)-Glc-NAc were identified as the lipid I and lipid II degradation products, respectively, showing that the cleavage occurred between the lipid moiety and the pyrophosphoryl group. This is the first time such an activity is described. Neither undecaprenyl pyrophosphate nor the peptidoglycan nucleotide precursors were substrates of colicin M, indicating that both undecaprenyl and sugar moieties were essential for activity. The bacteriolytic effect of colicin M therefore appears to be the consequence of an arrest of peptidoglycan polymerization steps provoked by enzymatic degradation of the undecaprenyl phosphate-linked peptidoglycan precursors.  相似文献   

2.
The photosynthetic organelles (cyanelles) of the protist Cyanophora paradoxa are surrounded by a peptidoglycan wall, modified through amidation with N-acetylputrescine. Cyanelle envelope membrane preparations were shown to catalyze the lipid-linked steps of peptidoglycan biosynthesis as well as the putrescinylation and subsequent acetylation, occurring at the stage of lipid I and/or lipid II.  相似文献   

3.
Inhibition of lipopolysaccharide O-antigen synthesis by colicin M   总被引:8,自引:0,他引:8  
Colicin M inhibits peptidoglycan biosynthesis at the level of the bactoprenyl carrier lipid. Since the synthesis of O-antigen also requires bactoprenyl carrier lipid, the effect of colicin M on O-antigen biosynthesis was studied using a colicin-sensitive strain of Salmonella typhimurium. Determination of O-antigen intermediates by two different methods showed that bactoprenyl-dependent O-antigen biosynthesis was inhibited by colicin M. Synthesis of both O-antigen and peptidoglycan was almost immediately inhibited following colicin addition. This was followed some 20 min later by cell lysis. The only known common step between O-antigen and peptidoglycan synthesis is formation of bactoprenyl phosphate by dephosphorylation of bactoprenyl pyrophosphate. Determination of bactoprenyl phosphates showed an accumulation of bactoprenyl pyrophosphate in colicin-treated cultures. It was concluded that dephosphorylation of the bactoprenyl lipid carrier was inhibited by colicin M, and this in turn prevented both O-antigen and peptidoglycan synthesis.  相似文献   

4.
Colicin M is unique among the colicins in that it causes lysis of cells. Synthesis of peptidoglycan was inhibited before colicin-induced cell lysis occurred. This suggested that inhibition of peptidoglycan synthesis was the primary effect of the colicin which was followed by cell lysis. Following colicin M treatment, soluble peptidoglycan nucleotide precursors accumulated, and radioactivity associated with the membrane-bound carrier lipid almost disappeared. Further metabolism of radiolabeled intermediates bound to the lipid carrier (lipid intermediates) was not inhibited by colicin M. The two lipid intermediates decreased to a level where equal amounts of both were present. The data indicated that translocation of nucleotide precursors to the lipid carrier was not inhibited. In vitro peptidoglycan synthesis agreed with the in vivo results. It is concluded that colicin M inhibits peptidoglycan biosynthesis by preventing regeneration of the lipid carrier.  相似文献   

5.
Cytoplasmic steps of peptidoglycan biosynthesis   总被引:2,自引:0,他引:2  
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.  相似文献   

6.
Cultures of a stable L-phase variant of Streptococcus faecium F24 produced and retained peptidoglycan precursors intracellularly over the entire growth cycle in a chemically defined medium. The identity of the most abundant precursor, UDP N-acetylmuramyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine (UDP-MurNAc-pentapeptide), was confirmed by demonstrating in vitro the presence of enzymes required for the cytoplasmic stage of peptidoglycan biosynthesis. The initial membrane-bound reaction in peptidoglycan biosynthesis involving phospho-MurNAc-pentapeptide translocase and undecaprenyl-phosphate membrane carrier was catalyzed by protoplast membrane preparations but not by L-phase membrane preparations. However, both protoplast and L-phase membranes incorporated radioactivity from dTDP-L-[14C]rhamnose, the presumed precursor to a non-peptidoglycan cell surface component, into high-molecular-weight material. dTDP-L-rhamnose did not accumulate in growing cultures but was synthesized from D-glucose-1-phosphate and dTTP by cell-free extracts of the streptococcus and L-phase variant. Neither rhamnose- nor muramic acid-containing compounds were detected in culture fluids. It is suggested that continued inhibition of cell wall biosynthesis in this stable L-phase variant is the result of a defect expressed at the membrane stage of peptidoglycan biosynthesis specifically involving the translocation step.  相似文献   

7.
Chen L  Men H  Ha S  Ye XY  Brunner L  Hu Y  Walker S 《Biochemistry》2002,41(21):6824-6833
MurG, the last enzyme involved in the intracellular phase of peptidoglycan synthesis, is a membrane-associated glycosyltransferase that couples N-acetyl glucosamine to the C4 hydroxyl of a lipid-linked N-acetyl muramic acid derivative (lipid I) to form the beta-linked disaccharide (lipid II) that is the minimal subunit of peptidoglycan. Lipid I is anchored to the bacterial membrane by a 55 carbon undecaprenyl chain. Because this long lipid chain impedes kinetic analysis of MurG, we have been investigating alternative substrates containing shortened lipid chains. We now describe the intrinsic lipid preferences of MurG and show that the optimal substrate for MurG in the absence of membranes is not the natural substrate. Thus, while the undecaprenyl carrier lipid may be critical for certain steps in the biosynthetic pathway to peptidoglycan, it is not required-in fact, is not preferred-by MurG. Using synthetic substrate analogues and products containing different length lipid chains, as well as a synthetic dead-end acceptor analogue, we have also shown that MurG follows a compulsory ordered Bi Bi mechanism in which the donor sugar binds first. This information should facilitate obtaining crystals of MurG with substrates bound, an important goal because MurG belongs to a major superfamily of NDP-glycosyltransferases for which no structures containing intact substrates have yet been solved.  相似文献   

8.
Both the synthesis of lipopolysaccharide O-antigen and the synthesis of peptidoglycan in Salmonella typhimurium proceed via membrane-bound glycosylated lipid intermediates. The first enzyme of each pathway transfers a sugar phosphate from a nucleotide sugar to the glycosyl carrier lipid (P-GCL). Each enzyme catalyzes an exchange reaction between the reaction product urine monophosphate, and the nucleotide sugar substrate. Several strains of S. typhimurium defective in lipopolysaccharide synthesis accumulate glycosylated lipid intermediates under appropriate conditions. In addition, strains lysogenic for phage P22 synthesize a glucose derivative of the carrier lipid. These strains were used to demonstrate the P/GCL requirement of the exchange reaction catalyzed by galactose-diphosphoglycosyl carrier lipid (GCL-PP-Gal) synthetase, the first enzyme of O-antigen synthesis. Enzyme activity is greatly reduced when glycosylated P-GCL accumulates on the cytoplasmic membrane. The exchange reaction catalyzed by the first enzyme of peptidoglycan synthesis is unaffected by the accumulation of O-antigen fragments on the carrier lipid and may interact with a different pool of P-GCL within the membrane. GCL-PP-Gal synthetase activity cannot be detected in the membranes of two rfa mutants that synthesize incomplete lipopolysaccharide core. Either the synthesis of GCL-PP-Gal synthetase or the stable integration of the enzyme into the membrane structure may be disrupted in the rfa mutants. Peptidoglycan synthesis is unaffected by the mutations affecting the core glycosyltransferases.  相似文献   

9.
The two membrane precursors (pentapeptide lipids I and II) of peptidoglycan are present in Escherichia coli at cell copy numbers no higher than 700 and 2,000 respectively. Conditions were determined for an optimal accumulation of pentapeptide lipid II from UDP-MurNAc-pentapeptide in a cell-free system and for its isolation and purification. When UDP-MurNAc-tripeptide was used in the accumulation reaction, tripeptide lipid II was formed, and it was isolated and purified. Both lipids II were compared as substrates in the in vitro polymerization by transglycosylation assayed with PBP 1b or PBP 3. With PBP 1b, tripeptide lipid II was used as efficiently as pentapeptide lipid II. It should be stressed that the in vitro PBP 1b activity accounts for at best to 2 to 3% of the in vivo synthesis. With PBP 3, no polymerization was observed with either substrate. Furthermore, tripeptide lipid II was detected in D-cycloserine-treated cells, and its possible in vivo use in peptidoglycan formation is discussed. In particular, it is speculated that the transglycosylase activity of PBP 1b could be coupled with the transpeptidase activity of PBP 3, using mainly tripeptide lipid II as precursor.  相似文献   

10.
Lipid intermediates in the biosynthesis of bacterial peptidoglycan.   总被引:1,自引:0,他引:1  
This review is an attempt to bring together and critically evaluate the now-abundant but dispersed data concerning the lipid intermediates of the biosynthesis of bacterial peptidoglycan. Lipid I, lipid II, and their modified forms play a key role not only as the specific link between the intracellular synthesis of the peptidoglycan monomer unit and the extracytoplasmic polymerization reactions but also in the attachment of proteins to the bacterial cell wall and in the mechanisms of action of antibiotics with which they form specific complexes. The survey deals first with their detection, purification, structure, and preparation by chemical and enzymatic methods. The recent important advances in the study of transferases MraY and MurG, responsible for the formation of lipids I and II, are reported. Various modifications undergone by lipids I and II are described, especially those occurring in gram-positive organisms. The following section concerns the cellular location of the lipid intermediates and the translocation of lipid II across the cytoplasmic membrane. The great efforts made since 2000 in the study of the glycosyltransferases catalyzing the glycan chain formation with lipid II or analogues are analyzed in detail. Finally, examples of antibiotics forming complexes with the lipid intermediates are presented.  相似文献   

11.
Abstract The peptidoglycan layer of bacterial cell walls is biosynthesised using a lipid carrier undecaprenyl phosphate to assemble and transport the MurNAc(GlcNAc)-pentapeptide precursor. Similar lipid-linked cycles are involved in the biosynthesis of other bacterial exopolysaccharides and eukaryotic asparagine-linked glycoproteins, the latter involving the structurally related dolichyl phosphate as a lipid carrier. Recent protein sequence data and common inhibitors of the bacterial and eukaryotic systems have revealed functional similarities between the two systems. Biological and physical studies on the lipid carriers themselves have provided clues to their role in oligosaccharide translocation, but have not revealed significant differences in function between undecaprenyl phosphate and dolichyl phosphate. The presence of dolichyl phosphate and a family of saturated isoprenoid lipids in Archaebacteria suggests a possible evolutionary link between the two systems.  相似文献   

12.
Staphylococcus aureus peptidoglycan is cross-linked via a characteristic pentaglycine interpeptide bridge. Genetic analysis had identified three peptidyltransferases, FemA, FemB and FemX, to catalyse the formation of the interpeptide bridge, using glycyl t-RNA as Gly donor. To analyse the pentaglycine bridge formation in vitro, we purified the potential substrates for FemA, FemB and FemX, UDP-MurNAc-pentapeptide, lipid I and lipid II and the staphylococcal t-RNA pool, as well as His-tagged Gly-tRNA-synthetase and His-tagged FemA, FemB and FemX. We found that FemX used lipid II exclusively as acceptor for the first Gly residue. Addition of Gly 2,3 and of Gly 4,5 was catalysed by FemA and FemB, respectively, and both enzymes were specific for lipid II-Gly1 and lipid II-Gly3 as acceptors. None of the FemABX enzymes required the presence of one or two of the other Fem proteins for activity; rather, bridge formation was delayed in the in vitro system when all three enzymes were present. The in vitro assembly system described here will enable detailed analysis of late, membrane-associated steps of S. aureus peptidoglycan biosynthesis.  相似文献   

13.
In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.  相似文献   

14.
Cyanelle containing organisms, notably Cyanophora paradoxa, the best studied among them, are unique with respect to the occurrence of peptidoglycan (murein) within an eukaryotic cell. Enzyme activities involved in the biosynthesis of UDP-N-acetyl-muramylpentapeptide could be localized within the cyanelle compartment. Some of the enzymes performing later steps of murein biosynthesis were detected in the postcyanelle supernatant rather than in the cyanelle lysate. This is taken to reflect a 'periplasmic' location of these enzymes that are partially liberated upon rupture of the cyanelle outer membrane.  相似文献   

15.
Novel glycopeptide analogs are known that have activity on vancomycin resistant enterococci despite the fact that the primary site for drug interaction, D-ala-D-ala, is replaced with D-ala-D-lactate. The mechanism of action of these compounds may involve dimerization and/or membrane binding, thus enhancing interaction with D-ala-D-lactate, or a direct interaction with the transglycosylase enzymes involved in peptidoglycan polymerization. We evaluated the ability of vancomycin (V), desleucyl-vancomycin (desleucyl-V), chlorobiphenyl-vancomycin (CBP-V), and chlorobiphenyl-desleucyl-vancomycin (CBP-desleucyl-V) to inhibit (a) peptidoglycan synthesis in vitro using UDP-muramyl-pentapeptide and UDP-muramyl-tetrapeptide substrates and (b) growth and peptidoglycan synthesis in vancomycin resistant enterococci. Compared to V or CBP-V, CBP-desleucyl-V retained equivalent potency in these assays, whereas desleucyl-V was inactive. In addition, CBP-desleucyl-V caused accumulation of N-acetylglucosamine-beta-1, 4-MurNAc-pentapeptide-pyrophosphoryl-undecaprenol (lipid II). These data show that CBP-desleucyl-V inhibits peptidoglycan synthesis at the transglycosylation stage in the absence of binding to dipeptide.  相似文献   

16.
Neisseria meningitidis serogroup B strain M986 was examined for the involvement of lipid intermediate(s) participating in the biosynthesis of the sialic acid capsular polysaccharide. The addition of exogenous undecaprenyl phosphate, phosphatidylethanolamine, or phosphatidylglycerol to particulate membranes, in the presence of cytidine 5'-monophosphosialic acid, resulted in the stimulation of sialyltransferase activity specifically by undecaprenyl phosphate. Sialyltransferase activity, after delipidation of particulate membrane proteins, was specifically reconstituted by undecaprenyl phosphate. After the addition of 14C-labeled cytidine 5'-monophosphosialic acid to particulate membranes, the level of labeled lipid intermediate(s), extracted by chloroform-methanol (2:1), increased up to a maximum level between 3.75 and 5.0 min, which subsequently decreased to a lower steady-state level. Pulse-chase experiments revealed a transient, solvent-extractable, lipid-linked component. The extracted N-acetylneuraminic acid was in polymeric form. Sequential oxidation and reduction of the extracted radioactivity followed by neuraminidase treatment revealed an average degree of polymerization of four or five N-acetylneuraminic acid residues. Bacitracin-sensitive peptidoglycan was synthesized in vitro by particulate membranes. Cross-competition experiments between peptidoglycan and capsular polysaccharide synthesis by preincubation of precursors of one pathway during synthesis of the other revealed a competitive effect for a common component. This component was believed to be a common pool of undecaprenyl phosphate. A model for the production and regulation of the capsular polysaccharide is proposed.  相似文献   

17.
O-antigen units are nonuniformly distributed among lipid A-core molecules in lipopolysaccharide (LPS) from gram-negative bacteria, as revealed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the actual distribution patterns are complex, multimodal, and strain specific. Although the basic biochemical steps involved in synthesis and polymerization of O-antigen monomers and their subsequent attachment to lipid A-core are known, the mechanism by which specific multimodal distribution patterns are attained in mature LPS has not been previously considered theoretically or experimentally. We have developed probability equations which completely describe O-antigen distribution among lipid A-core molecules in terms of the probability of finding a nascent polymer (O antigen linked to carrier lipid) of length k (Tk) and the probability that a nascent polymer of length k will be extended to k + 1 by polymerase (pk) or transferred to lipid A-core by ligase (qk). These equations were used to show that multimodal distribution patterns in mature LPS cannot be produced if all pk are equal to p and all qk are equal to q, conditions which indicate a lack of selectivity of polymerase and ligase, respectively, for nascent O-antigen chain lengths. A completely stochastic model (pk = p, qk = q) of O-antigen polymerization and transfer to lipid A-core was also inconsistent with observed effects of mutations which resulted in partial inhibition of O-antigen monomer synthesis, lipid A-core synthesis, or ligase activity. The simplest explanation compatible with experimental observations is that polymerase or ligase, or perhaps both, have specificity for certain O-antigen chain lengths during biosynthesis of LPS. Our mathematical model indicates selectively probably was associated with the polymerase reaction. Although one may argue for a multimodal distribution pattern based on a kinetic mechanism i.e., varying reaction parameters in space or in time during cell growth, such a model requires complex sensory and regulatory mechanisms to explain the mutant data and mechanisms for sequestering specific components of LPS biosynthesis to explain the distribution pattern in normal cells. We favor the simple alternative of enzyme specificity and present generalized equations which should be useful in analysis of other analogous biochemical systems.  相似文献   

18.
Neisseria meningitidis PglL belongs to a novel family of bacterial oligosaccharyltransferases (OTases) responsible for O-glycosylation of type IV pilins. Although members of this family are widespread among pathogenic bacteria, there is little known about their mechanism. Understanding the O-glycosylation process may uncover potential targets for therapeutic intervention, and can open new avenues for the exploitation of these pathways for biotechnological purposes. In this work, we demonstrate that PglL is able to transfer virtually any glycan from the undecaprenyl pyrophosphate (UndPP) carrier to pilin in engineered Escherichia coli and Salmonella cells. Surprisingly, PglL was also able to interfere with the peptidoglycan biosynthetic machinery and transfer peptidoglycan subunits to pilin. This represents a previously unknown post-translational modification in bacteria. Given the wide range of glycans transferred by PglL, we reasoned that substrate specificity of PglL lies in the lipid carrier. To test this hypothesis we developed an in vitro glycosylation system that employed purified PglL, pilin, and the lipid farnesyl pyrophosphate (FarPP) carrying a pentasaccharide that had been synthesized by successive chemical and enzymatic steps. Although FarPP has different stereochemistry and a significantly shorter aliphatic chain than the natural lipid substrate, the pentasaccharide was still transferred to pilin in our system. We propose that the primary roles of the lipid carrier during O-glycosylation are the translocation of the glycan into the periplasm, and the positioning of the pyrophosphate linker and glycan adjacent to PglL. The unique characteristics of PglL make this enzyme a promising tool for glycoengineering novel glycan-based vaccines and therapeutics.  相似文献   

19.
Coenzyme Q (Q) is a lipid that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. There are eight complementation groups of Q-deficient Saccharomyces cerevisiae mutants, designated coq1-coq8. Here we have isolated the COQ6 gene by functional complementation and, in contrast to a previous report, find it is not an essential gene. coq6 mutants are unable to grow on nonfermentable carbon sources and do not synthesize Q but instead accumulate the Q biosynthetic intermediate 3-hexaprenyl-4-hydroxybenzoic acid. The Coq6 polypeptide is imported into the mitochondria in a membrane potential-dependent manner. Coq6p is a peripheral membrane protein that localizes to the matrix side of the inner mitochondrial membrane. Based on sequence homology to known proteins, we suggest that COQ6 encodes a flavin-dependent monooxygenase required for one or more steps in Q biosynthesis.  相似文献   

20.
Summary α-Dihydroheptaprenyl-pyrophosphoryl-N-acetylmuramoyl-L-Ala-γ-D-Glu-meso-diaminopimeloyl(N -dansyl)-D-Ala-D-Ala (1), an analogue of lipid I of peptidoglycan biosynthesis, was synthesized from natural UDP-N-acetylmuramoyl-pentapeptide in three steps. Compound1 was shown to be a substrate for the MurG transferase fromEscherichia coli, even in the absence of membranes. When membranes were present, dansylated peptidoglycan was also formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号