首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin increases the rate of glucose transport into fat and muscle cells by stimulating the translocation of intracellular Glut 4-containing vesicles to the plasma membrane. This results in a marked increase in the amount of the facilitative glucose transporter Glut 4 at the cell surface, allowing for an enhanced glucose uptake. This process requires a continuous cycling through the early endosomes, a Glut 4 specific storage compartment and the plasma membrane. The main effect of insulin is to increase the rate of Glut 4 trafficking from its specific storage compartment to the plasma membrane. The whole phenomenon involves signal transduction from the insulin receptor, vesicle trafficking (sorting and fusion processes) and actin cytoskeleton modifications, which are all supposed to require small GTPases. This review describes the potential role of the various members of the Ras, Rad, Rho, Arf and Rab families in the traffic of the Glut 4-containing vesicles.  相似文献   

2.
Insulin stimulates translocation of the glucose transporter isoform 4 (Glut4) from an intracellular storage compartment to the plasma membrane in fat and skeletal muscle cells. At present, the nature of the Glut4 storage compartment is unclear. According to one model, this compartment represents a population of preformed small vesicles that fuse with the plasma membrane in response to insulin stimulation. Alternatively, Glut4 may be retained in large donor membranes, and insulin stimulates the formation of transport vesicles that deliver Glut4 to the cell surface. Finally, insulin can induce plasma membrane fusion of the preformed vesicles and, also, stimulate the formation of new vesicles. In extracts of fat and skeletal muscle cells, Glut4 is predominantly found in small insulin-sensitive 60-70 S membrane vesicles that may or may not artificially derive from large donor membranes during cell homogenization. Here, we use a cell-free reconstitution assay to demonstrate that small Glut4-containing vesicles are formed from large rapidly sedimenting donor membranes in a cytosol-, ATP-, time-, and temperature-dependent fashion and, therefore, do not represent an artifact of homogenization. Thus, small insulin-responsive vesicles represent the major form of Glut4 storage in the living adipose cell. Fusion of these vesicles with the plasma membrane may be largely responsible for the primary effect of insulin on glucose transport in fat tissue. In addition, our results suggest that insulin may also stimulate the formation of Glut4 vesicles and accelerate Glut4 recycling to the plasma membrane.  相似文献   

3.
Syntaxin 6 regulates Glut4 trafficking in 3T3-L1 adipocytes   总被引:2,自引:0,他引:2       下载免费PDF全文
Insulin stimulates the movement of glucose transporter-4 (Glut4)-containing vesicles to the plasma membrane of adipose cells. We investigated the role of post-Golgi t-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the trafficking of Glut4 in 3T3-L1 adipocytes. Greater than 85% of syntaxin 6 was found in Glut4-containing vesicles, and this t-SNARE exhibited insulin-stimulated movement to the plasma membrane. In contrast, the colocalization of Glut4 with syntaxin 7, 8, or 12/13 was limited and these molecules did not translocate to the plasma membrane. We used adenovirus to overexpress the cytosolic domain of these syntaxin's and studied their effects on Glut4 traffic. Overexpression of the cytosolic domain of syntaxin 6 did not affect insulin-stimulated glucose transport, but increased basal deGlc transport and cell surface Glut4 levels. Moreover, the syntaxin 6 cytosolic domain significantly reduced the rate of Glut4 reinternalization after insulin withdrawal and perturbed subendosomal Glut4 sorting; the corresponding domains of syntaxins 8 and 12 were without effect. Our data suggest that syntaxin 6 is involved in a membrane-trafficking step that sequesters Glut4 away from traffic destined for the plasma membrane. We speculate that this is at the level of traffic of Glut4 into its unique storage compartment and that syntaxin 16 may be involved.  相似文献   

4.
Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion.  相似文献   

5.
Rat adipocytes were biotinylated with cell-impermeable reagents, sulfo-N-hydroxysuccinimide-biotin and sulfo-N-hydroxysuccinimide-S-S-biotin in the absence and presence of insulin. Biotinylated and nonbiotinylated populations of the insulin-like growth factor-II/mannose 6-phosphate receptor, the transferrin receptor, and insulin-responsive aminopeptidase were separated by adsorption to streptavidin-agarose to determine the percentage of the biotinylated protein molecules versus their total amount in different subcellular compartments. Results indicate that adipose cells possess at least two distinct cell surface recycling pathways for insulin-like growth factor-II/mannose 6-phosphate receptor (MPR) and transferrin receptor (TfR): one which is mediated by glucose transporter isoform 4(Glut4)-vesicles and another that bypasses this compartment. Under basal conditions, the first pathway is not active, and cell surface recycling of TfR and, to a lesser extent, MPR proceeds via the second pathway. Insulin dramatically stimulates recycling through the first pathway and has little effect on the second. Within the Glut4-containing compartment, insulin has profoundly different effects on intracellular trafficking of insulin-responsive aminopeptidase on one hand and MPR and TfR on the other. After insulin administration, insulin-responsive aminopeptidase is redistributed from Glut4-containing vesicles to the plasma membrane and stays there for at least 30 min with minimal detectable internalization and recycling, whereas MPR and TfR rapidly shuttle between Glut4 vesicles and the plasma membrane in such a way that after 30 min of insulin treatment, virtually every receptor molecule in this compartment completes at least one trafficking cycle to the cell surface. Thus, different recycling proteins, which compose Glut4-containing vesicles, are internalized into this compartment at their own distinctive rates.  相似文献   

6.
The regulated delivery of Glut4-containing vesicles to the plasma membrane is a specialised example of regulated membrane trafficking. Present models favour the transporter trafficking through two inter-related endosomal cycles. The first is the proto-typical endosomal system. This is a fast trafficking event that, in the absence of insulin, serves to internalise Glut4 from the plasma membrane. Once in this pathway, Glut4 is further sorted into a slowly recycling pathway that operates between recycling endosomes, the trans Golgi network, and a population of vesicles often referred to as Glut4-storage vesicles. Little is known about the molecules that regulate these distinct sorting steps. Here, we have studied the role of Stx16 in Glut4 trafficking. Using two independent strategies, we show that Stx16 plays a crucial role in Glut4 traffic in 3T3-L1 adipocytes. Over-expression of a mutant form of Stx16 devoid of a transmembrane anchor was found to significantly slow the reversal of insulin-stimulated glucose transport. Depletion of Stx16 using antisense approaches profoundly reduced insulin-stimulated glucose transport but was without effect on cell surface transferrin receptor levels, and also reduced the extent of Glut4 translocation to the plasma membrane in response to insulin. These data support a model in which Stx16 is crucial in the sorting of Glut4 from the fast cycling to the slow cycling intracellular trafficking pathways in adipocytes.  相似文献   

7.
Although Glut4 traffic is routinely described as translocation from an "intracellular storage pool" to the plasma membrane, it has been long realized that Glut4 travels through at least two functionally distinct intracellular membrane compartments on the way to and from the cell surface. Biochemical separation and systematic studies of the individual Glut4-containing compartments have been limited by the lack of appropriate reagents. We have prepared a monoclonal antibody against a novel component protein of Glut4 vesicles and have identified this protein as cellugyrin, a ubiquitously expressed homologue of a major synaptic vesicle protein, synaptogyrin. By means of sucrose gradient centrifugation, immunoadsorption, and confocal microscopy, we have shown that virtually all cellugyrin is co-localized with Glut4 in the same vesicles. However, unlike Glut4, cellugyrin is not re-distributed to the plasma membrane in response to insulin stimulation, and at least 40-50% of the total population of Glut4 vesicles do not contain this protein. We suggest that cellugyrin represents a specific marker of a functionally distinct population of Glut4 vesicles that permanently maintains its intracellular localization and is not recruited to the plasma membrane by insulin.  相似文献   

8.
The Glut4 glucose transporter undergoes complex insulin-regulated subcellular trafficking in adipocytes. Much effort has been expended in an attempt to identify targeting motifs within Glut4 that direct its subcellular trafficking, but an amino acid motif responsible for the targeting of the transporter to insulin-responsive intracellular compartments in the basal state or that is directly responsible for its insulin-stimulated redistribution to the plasma membrane has not yet been delineated. In this study we define amino acid residues within the C-terminal cytoplasmic tail of Glut4 that are essential for its insulin-stimulated translocation to the plasma membrane. The residues were identified based on sequence similarity (LXXLXPDEXD) between cytoplasmic domains of Glut4 and the insulin-responsive aminopeptidase (IRAP). Alteration of this putative targeting motif (IRM, insulin-responsive motif) resulted in the targeting of the bulk of the mutant Glut4 molecules to dispersed membrane vesicles that lacked detectable levels of wild-type Glut4 in either the basal or insulin-stimulated states and completely abolished the insulin-stimulated translocation of the mutant Glut4 to the plasma membrane in 3T3L1 adipocytes. The bulk of the dispersed membrane vesicles containing the IRM mutant did not contain detectable levels of any subcellular marker tested. A fraction of the total IRM mutant was also detected in a wild-type Glut4/Syntaxin 6-containing perinuclear compartment. Interestingly, mutation of the IRM sequence did not appreciably alter the subcellular trafficking of IRAP. We conclude that residues within the IRM are critical for the targeting of Glut4, but not of IRAP, to insulin-responsive intracellular membrane compartments in 3T3-L1 adipocytes.  相似文献   

9.
Insulin stimulates glucose uptake by promoting translocation of the Glut4 glucose transporter from intracellular storage compartments to the plasma membrane. In the absence of insulin, Glut4 is retained intracellularly; the mechanism underlying this process remains uncertain. Using the TC10-interacting protein CIP4 as bait in a yeast two-hybrid screen, we cloned a RasGAP and VPS9 domain-containing protein, Gapex-5/RME-6. The VPS9 domain is a guanine nucleotide exchange factor for Rab31, a Rab5 subfamily GTPase implicated in trans-Golgi network (TGN)-to-endosome trafficking. Overexpression of Rab31 blocks insulin-stimulated Glut4 translocation, whereas knockdown of Rab31 potentiates insulin-stimulated Glut4 translocation and glucose uptake. Gapex-5 is predominantly cytosolic in untreated cells; its overexpression promotes intracellular retention of Glut4 in adipocytes. Insulin recruits the CIP4/Gapex-5 complex to the plasma membrane, thus reducing Rab31 activity and permitting Glut4 vesicles to translocate to the cell surface, where Glut4 docks and fuses to transport glucose into the cell.  相似文献   

10.
Insulin stimulates glucose transport in muscle and adipose tissue by producing translocation of the glucose transporter Glut4. The exocyst, an evolutionarily conserved vesicle tethering complex, is crucial for targeting Glut4 to the plasma membrane. Here we report that insulin regulates this process via the G protein RalA, which is present in Glut4 vesicles and interacts with the exocyst in adipocytes. Insulin stimulates the activity of RalA in a PI 3-kinase-dependent manner. Disruption of RalA function by dominant-negative mutants or siRNA-mediated knockdown attenuates insulin-stimulated glucose transport. RalA also interacts with Myo1c, a molecular motor implicated in Glut4 trafficking. This interaction is modulated by Calmodulin, which functions as the light chain for Myo1c during insulin-stimulated glucose uptake. Thus, RalA serves two functions in insulin action: as a cargo receptor for the Myo1c motor, and as a signal for the unification of the exocyst to target Glut4 vesicles to the plasma membrane.  相似文献   

11.
Insulin stimulates glucose transport in adipocytes and muscle by inducing the redistribution of Glut4 from intracellular locations to the plasma membrane. The fusion of Glut4-containing vesicles at the plasma membrane is known to involve the target SNAREs syntaxin 4 and SNAP-23 and the vesicle SNARE VAMP2. Little is known about the initial docking of Glut4 vesicles with the plasma membrane. A recent report has implicated Exo70, a component of the mammalian exocyst complex, in the initial interaction of Glut4 vesicles with the adipocyte plasma membrane. Here, we have examined the role of two other exocyst components, rsec6 and rsec8. We show that insulin promotes a redistribution of rsec6 and rsec8 to the plasma membrane and to cytoskeletal fractions within 3T3-L1 adipocytes but does not modulate levels of these proteins co-localized with Glut4. We further show that adenoviral-mediated overexpression of either rsec6 or rsec8 increases the magnitude of insulin-stimulated glucose transport in 3T3-L1 adipocytes. By contrast, overexpression of rsec6 or rsec8 did not increase the extent of the secretion of adipsin or ACRP30 from adipocytes and had no discernible effect on transferrin receptor traffic. Collectively, our data support a role for the exocyst in insulin-stimulated glucose transport and suggest a model by which insulin-dependent relocation of the exocyst to the plasma membrane may contribute to the specificity of Glut4 vesicle docking and fusion with the adipocyte plasma membrane.  相似文献   

12.
Insulin increases cellular glucose uptake and metabolism in the postprandial state by acutely stimulating the translocation of the Glut4 glucose transporter from intracellular membrane compartments to the cell surface in muscle and fat cells. The intracellular targeting of Glut4 is dictated by specific structural motifs within cytoplasmic domains of the transporter. We demonstrate that two leucine residues at the extreme C-terminus of Glut4 are critical components of a motif (IRM, insulin responsive motif) involved in the sorting of the transporter to insulin responsive vesicles in 3T3L1 adipocytes. Light microscopy, immunogold electron microscopy, subcellular fractionation, and sedimentation analysis indicate that mutations in the IRM cause the aberrant targeting of Glut4 to large dispersed membrane vesicles that are not insulin responsive. Proteomic characterization of rapidly and slowly sedimenting membrane vesicles (RSVs and SSVs) that were highly enriched by immunoadsorption for either wild-type Glut4 or an IRM mutant revealed that the major vesicle fraction containing the mutant transporter (IRM-RSVs) possessed a relatively small and highly distinct protein population that was enriched for proteins associated with stress granules. We suggest that the IRM is critical for an early step in the sorting of Glut4 to insulin-responsive subcellular membrane compartments and that IRM mutants are miss-targeted to relatively large, amorphous membrane vesicles that may be involved in a degradation pathway for miss-targeted or miss-folded proteins or represent a transitional membrane compartment that Glut4 traverses en route to insulin responsive storage compartments.  相似文献   

13.
Lipid raft microdomains act as organizing centers for signal transduction. We report here that the exocyst complex, consisting of Exo70, Sec6, and Sec8, regulates the compartmentalization of Glut4-containing vesicles at lipid raft domains in adipocytes. Exo70 is recruited by the G protein TC10 after activation by insulin and brings with it Sec6 and Sec8. Knockdowns of these proteins block insulin-stimulated glucose uptake. Moreover, their targeting to lipid rafts is required for glucose uptake and Glut4 docking at the plasma membrane. The assembly of this complex also requires the PDZ domain protein SAP97, a member of the MAGUKs family, which binds to Sec8 upon its translocation to the lipid raft. Exocyst assembly at lipid rafts sets up targeting sites for Glut4 vesicles, which transiently associate with these microdomains upon stimulation of cells with insulin. These results suggest that the TC10/exocyst complex/SAP97 axis plays an important role in the tethering of Glut4 vesicles to the plasma membrane in adipocytes.  相似文献   

14.
The intracellularly stored GLUT4 glucose transporter is rapidly translocated to the cell surface upon insulin stimulation. Regulation of GLUT4 distribution is key for the maintenance of whole body glucose homeostasis. We find that GLUT4 is excluded from the plasma membrane of adipocytes by a dynamic retention/retrieval mechanism. Our kinetic studies indicate that GLUT4-containing vesicles continually bud and fuse with endosomes in the absence of insulin and that these GLUT4 vesicles are 5 times as likely to fuse with an endosome as with the plasma membrane. We hypothesize that this intracellular cycle of vesicle budding and fusion is an element of the active mechanism by which GLUT4 is retained. The GLUT4 trafficking pathway does not extensively overlap with that of furin, indicating that the trans-Golgi network, a compartment in which furin accumulates, is not a significant storage reservoir of GLUT4. An intact microtubule cytoskeleton is required for insulin-stimulated recruitment to the cell surface, although it is not required for the basal budding/fusion cycle. Nocodazole disruption of the microtubule cytoskeleton reduces the insulin-stimulated exocytosis of GLUT4, accounting for the reduced insulin-stimulated translocation of GLUT4 to the cell surface.  相似文献   

15.
Small glucose transporter 4 (Glut4)-containing vesicles represent the major insulin-responsive compartment in fat and skeletal muscle cells. The molecular mechanism of their biogenesis is not yet elucidated. Here, we studied the role of the newly discovered family of monomeric adaptor proteins, GGA (Golgi-localized, gamma-ear-containing, Arf-binding proteins), in the formation of small Glut4 vesicles and acquisition of insulin responsiveness in 3T3-L1 adipocytes. In these cells, all three GGA isoforms are expressed throughout the differentiation process. In particular, GGA2 is primarily present in trans-Golgi network and endosomes where it demonstrates a significant colocalization with the recycling pool of Glut4. Using the techniques of immunoadsorption as well as glutathione-S-transferase pull-down assay we found that Glut4 vesicles (but not Glut4 per se) interact with GGA via the Vps-27, Hrs, and STAM (VHS) domain. Moreover, a dominant negative GGA mutant inhibits formation of Glut4 vesicles in vitro. To study a possible role of GGA in Glut4 traffic in the living cell, we stably expressed a dominant negative GGA mutant in 3T3-L1 adipocytes. Formation of small insulin-responsive Glut4-containing vesicles and insulin-stimulated glucose uptake in these cells were markedly impaired. Thus, GGA adaptors participate in the formation of the insulin-responsive vesicular compartment from the intracellular donor membranes both in vivo and in vitro.  相似文献   

16.
In adipocytes, insulin triggers the redistribution of Glut4 from intracellular compartments to the plasma membrane. Two models have been proposed to explain the effect of insulin on Glut4 localization. In the first, termed dynamic exchange, Glut4 continually cycles between the plasma membrane and intracellular compartments in basal cells, and the major effect of insulin is through changes in the exocytic and endocytic rate constants, k(ex) and k(en). In the second model, termed static retention, Glut4 is packaged in specialized storage vesicles (GSVs) in basal cells and does not traffic through the plasma membrane or endosomes. Insulin triggers GSV exocytosis, increasing the amount of Glut4 in the actively cycling pool. Using a flow cytometry-based assay, we found that Glut4 is regulated by both static and dynamic retention mechanisms. In basal cells, 75-80% of the Glut4 is packaged in noncycling GSVs. Insulin increased the amount of Glut4 in the actively cycling pool 4-5-fold. Insulin also increased k(ex) in the cycling pool 3-fold. After insulin withdrawal, Glut4 is rapidly cleared from the plasma membrane (t((1/2)) of 20 min) by rapid adjustments in k(ex) and k(en) and recycled into static compartments. Complete recovery of the static pool required more than 3 h, however. We conclude that in fully differentiated confluent adipocytes, both the dynamic and static retention mechanisms are important for the regulation of plasma membrane Glut4 content. However, cell culture conditions affect Glut4 trafficking. For example, replating after differentiation inhibited the static retention of Glut4, which may explain differences in previous reports.  相似文献   

17.
Cope DL  Lee S  Melvin DR  Gould GW 《FEBS letters》2000,481(3):261-265
The insulin-responsive glucose transporter, Glut4, exhibits a unique subcellular distribution such that in the absence of insulin >95% of the protein is stored within intracellular membranes. In response to insulin, Glut4 exhibits a large mobilisation to the plasma membrane. Studies of the amino acid motifs which regulate the unique trafficking of Glut4 have identified several key residues within the soluble cytoplasmic N- and C-terminal domains of Glut4. Of particular note is a Leu-498Leu-499 motif within the C-terminal domain that has been proposed to regulate both internalisation from the plasma membrane and sorting to an insulin-sensitive compartment. In this study, we have examined the role of the adjacent amino acids (Glu-491, Gln-492 and Glu-493) by their sequential replacement with Ala. Our results are consistent with the notion that Glu-491 and Glu-493 play an important role in the sub-endosomal trafficking of Glut4, as substitution of these residues with Ala results in increased levels of these proteins at the cell surface, reduced insulin-stimulated translocation and increased susceptibility to endosomal ablation. These residues, together with other identified sequences within the C-terminus of Glut4, are likely to be crucial targeting elements that regulate Glut4 subcellular distribution.  相似文献   

18.
In isolated adipocytes, polymyxin B inhibited insulin-induced glucose incorporation into lipids in a dose-dependent manner, while polymyxin E, a structurally related antibiotic, was ineffective. To approach the mechanism of this effect, the subcellular distribution of the glucose transporter Glut 4 was investigated. Adipocytes were pretreated without or with polymyxin B before insulin stimulation, subcellular fractionation was performed and Glut 4 was detected by immunodetection. Incubation of adipocytes with polymyxin B prevented the insulin-induced appearance of Glut 4 in the plasma membranes, but did not prevent their decrease from the low-density microsomal fraction. A lower purity of the plasma membrane fractions, a detergent effect of polymyxin B on the membranes or an interference of the substance with the immunodetection of the Glut 4 molecules were excluded. These results suggest that polymyxin B was interfering with the Glut 4 translocation process stimulated by insulin in adipocytes. In a similar fashion, polymyxin B inhibited the insulin-induced increase in IGF II binding to adipocytes. This resulted from a blockade of the appearance of IGF II receptors in the plasma membranes. Since low-molecular-mass GTP-binding proteins have been implicated in the regulation of vesicular trafficking, we have used [alpha-32P]GTP binding to analyze such proteins in adipocyte fractions, after SDS/PAGE and transfer to nitrocellulose. Specific and distinct subsets of GTP-binding proteins were revealed in plasma membrane and low-density microsomal fractions of control adipocytes, whether they were stimulated or not with insulin. Polymyxin B treatment of adipocytes markedly modified the profile of the low-molecular-mass GTP-binding proteins in plasma membranes, but not in low-density microsomal fractions. Our results suggest that polymyxin B was interfering with the exocytotic process of the Glut 4 and IGF II receptor-containing vesicles, perhaps at the fusion step between vesicles and plasma membranes.  相似文献   

19.
Employing subcellular membrane fractionation methods it has been shown that insulin induces a 2-fold increase in the Glut 4 protein content in the plasma membrane of skeletal muscle from rats. Data based upon this technique are, however, impeded by poor plasma membrane recovery and cross-contamination with intracellular membrane vesicles. The present study was undertaken to compare the subcellular fractionation technique with the technique using [3H]ATB-BMPA exofacial photolabelling and immunoprecipitation of Glut 4 on soleus muscles from 3-week-old Wistar rats. Maximal insulin stimulation resulted in a 6-fold increase in 3-O-methylglucose uptake, and studies based on the subcellular fractionation method showed a 2-fold increase in Glut 4 content in the plasma membrane, whereas the exofacial photolabelling demonstrated a 6- to 7-fold rise in cell surface associated Glut 4 protein. Glucose transport activity was positively correlated with cell surface Glut 4 content as estimated by exofacial labelling. In conclusion: (1) the increase in glucose uptake in muscle after insulin exposure is caused by an augmented concentration of Glut 4 protein on the cell surface membrane, (2) at maximal insulin stimulation (20 mU/ml) approximately 40% of the muscle cell content of Glut 4 is at the cell surface, and (3) the exofacial labelling technique is more sensitive than the subcellular fractionation technique in measuring the amount of glucose transporters on muscle cell surface.  相似文献   

20.
Insulin-regulated aminopeptidase (IRAP) is an abundant cargo protein of Glut4 storage vesicles (GSVs) that traffics to and from the plasma membrane in response to insulin. We used the amino terminus cytoplasmic domain of IRAP, residues 1-109, as an affinity reagent to identify cytosolic proteins that might be involved in GSV trafficking. In this way, we identified p115, a peripheral membrane protein known to be involved in membrane trafficking. In murine adipocytes, we determined that p115 was localized to the perinuclear region by immunofluorescence and throughout the cell by fractionation. By immunofluorescence, p115 partially colocalizes with GLUT4 and IRAP in the perinuclear region of cultured fat cells. The amino terminus of p115 binds to IRAP and overexpression of a N-terminal construct results in its colocalization with GLUT4 throughout the cell. Insulin-stimulated GLUT4 translocation is completely inhibited under these conditions. Overexpression of p115 C-terminus has no significant effect on GLUT4 distribution and translocation. Finally, expression of the p115 N-terminus construct has no effect on the distribution and trafficking of GLUT1. These data suggest that p115 has an important and specific role in insulin-stimulated Glut4 translocation, probably by way of tethering insulin-sensitive Glut4 vesicles at an as yet unknown intracellular site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号