首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Prior P  Roth BJ 《Biophysical journal》2008,95(4):2097-2102
Optical mapping experiments allow investigators to view the effects of electrical currents on the transmembrane potential, Vm, as a shock is applied to the heart. One important consideration is whether the optical signal accurately represents Vm. We have combined the bidomain equations along with the photon diffusion equation to study the excitation and emission of photons during optical mapping of cardiac tissue. Our results show that this bidomain/diffusion model predicts an optical signal that is much smaller than Vm near a stimulating electrode, a result consistent with experimental observations. Yet, this model, which incorporates the effect of lateral averaging, also reveals an optical signal that overestimates Vm at distances >1 mm away from the electrode. Although Vm falls off with distance r from the electrode as exp(−r/λ)/r, the optical signal decays as a simple exponential, exp(−r/λ). Moreover, regions of hyperpolarization adjacent to a cathode are emphasized in the optical signal compared to the region of depolarization under the cathode. Imaging methods utilizing optical mapping techniques will need to account for these distortions to accurately reconstruct Vm.  相似文献   

3.
4.
The role of phosphatases in signal transduction   总被引:10,自引:0,他引:10  
The importance of phosphatases in regulating the phosphorylation of proteins involved in cell signaling has been demonstrated by four recent discoveries. First, a new family of receptor-like transmembrane phosphotyrosine phosphatases, highly conserved throughout evolution, was shown to be distributed in a wide variety of tissues. Extensive heterogeneity in the extracellular regions of these molecules points to the existence of a wide diversity of ligands. These ligands are thought to mediate transduction of signals to the cell interior by means of the phosphatase activity occurring within the cytoplasmic domains of the receptor-like transmembrane phosphotyrosine phosphatases. Second, cell-permeable tumor promoters, such as okadaic acid, were shown to be potent phosphatase inhibitors that have multiple effects on signaling pathways. Third, the subunits of the type 2A phosphatase were found to associate with transforming antigens encoded by DNA tumor viruses, indicating a role for phosphatases in mediating abnormal proliferative events. Fourth, several cell-cycle mutants were found to encode phosphatases. This review focuses on the significance of the transmembrane phosphotyrosine phosphatases and on the possible ways in which intracellular phosphatases function in signaling pathways.  相似文献   

5.
6.
The equilibrium configurations for a two-locus multialle model of sex-linked meiotic drive are studied with regard to the recombination fraction:limit cycles can occur in the case of small recombination while stable equilibrium points associated with linkage equilibrium can exist for an intermediate range of recombination values depending on the equilibrium sex ratio, linkage disequilibrium at nearby equilibrium points taking turn with loser linkage. The evolutionary dynamics in two-locus sex-ratio distortion systems is enlightened: while equilibria with a sex ratio closer to 1/2 are more likely to be stable with respect to perturbations on the frequencies of sex-ratio distorters that are represented at equilibrium, such equilibria are also more vulnerable to the invasion of mutant distorters when there is some degree of linkage with the sex-determining locus. For X-linked multimodifier systems of sex-ratio distortion, differential fertilities and viabilities are incorporated and a maximum principle is suggested.  相似文献   

7.
Monte Carlo simulation of photon scattering, with and without abnormal tissue placed at various locations in the rectangular, semi-circular and semi-elliptical tissue models, has been carried out. The absorption coefficient of the tissue considered as abnormal is high and its scattering coefficient low compared to that of the control tissue. The placement of the abnormality at various locations within the models affects the transmission and surface emission of photons at various locations. The scattered photons originating from deeper layers make the maximum contribution at farther distances from the beam entry point. The contribution of various layers to photon scattering provides valuable data on variability of internal composition. Introduction.  相似文献   

8.
9.
10.
11.
12.
The signaling and transport systems of eucaryotic cells are tightly interconnected: intracellular transport along microtubules and microfilaments is required to position signaling-pathway components, while signaling molecules control activity of motor proteins and their interaction with tracks and cargoes. Recent data, however, give evidence that active transport is engaged in signaling as a means of signal transduction. This review focuses on this specific aspect of the interaction of two systems.  相似文献   

13.
14.
The effects of recombination on the equilibrium structures of two-locus systems of autosomal segregation distortion are studied. Exact conditions pertaining to the stability of polymorphic equilibria maintaining multiple distorters at the segregation-determination locus as well as their resistance to the invasion of mutant distorters are given. Evolutionary patterns of autosomal meiotic drive and the status of Mendelian segregation are reexamined.  相似文献   

15.
In many biomolecular interactions, changes in the assembly states and structural conformations of participants can act as a complementary reporter of binding to functional and thermodynamic assays. This structural information is captured by a number of structural biology and biophysical techniques that are viable either as primary screens in small-scale applications or as secondary screens to complement higher throughput methods. In particular, small-angle X-ray scattering (SAXS) reports the average distance distribution between all atoms after orientational averaging. Such information is important when for example investigating conformational changes involved in inhibitory and regulatory mechanisms where binding events do not necessarily cause functional changes. Thus, we summarise here the current and prospective capabilities of SAXS-based screening in the context of other methods that yield structural information. Broad guidelines are also provided to assist readers in preparing screening protocols that are tailored to available X-ray sources.  相似文献   

16.
We describe how Art Winfree's ideas about phase singularities can be used to understand the response of cardiac tissue with a random preexisting pattern of reentrant waves (fibrillation) to a large brief current stimulus. This discussion is organized around spatial dimension, beginning with a discussion of reentry on a periodic ring, followed by reentry in a two-dimensional planar domain (spiral waves), and ending with consideration of three-dimensional reentrant patterns (scroll waves). In all cases, we show how reentrant activity is changed by the application of a shock, describing conditions under which defibrillation is successful or not. Using topological arguments we draw the general conclusion that with a generic placement of stimulating electrodes, large-scale virtual electrodes do not give an adequate explanation for the mechanism of defibrillation.  相似文献   

17.
18.
Ventricular fibrillation (VF) is one of the most life threatening events. Although in humans VF is generally sustained (SVF) requiring artificial defibrillation, in various mammals and in some cases in humans VF terminates by itself, reverting spontaneously into sinus rhythm. Since VF is one of the main causes of sudden death, one of the important clinical problems today is if and how we can transform the fatal SVF into a self limited transient one (TVF).From electrophysiological studies carried out on anaesthetized open chest animals, we have found that TVF requires a high degree of intercellular coupling and synchronization.Cardiac myocytes are electrically coupled with adjacent cells. The intercellular coupling is a focus of low electrical resistance which allows rapid transmission of electrical impulses between cells. Any decrease in intercellular coupling decreases the ability of the heart for self defibrillation. The cell-to-cell coupling decreases with age, ischemia, VF and variations in physiological conditions probably due to an increase in intercellular resistance (Ri), widening in the internexal gaps, decrease in electrotonic space constant () etc. All of these factors are known to be affected by intracellular concentration of free Ca++ ([Ca++]).On the basis of studies carried out on various mammals at different ages, we hypothesized that the ability of the heart to defibrillate depends on the cardiac catecholamine level [CA], during VF. This hypothesis is supported by the facts, known from the literature, that increase in [CA] decreases intracellular free Ca++ concentration, decreases Ri and increases . By these effects, increase in [CA] enhances intercellular coupling and intercellular synchronization, and thereby, according to our hypothesis, leads to spontaneous ventricular defibrillation — TVF.During VF the sympathetic activity is enhanced but in some cases the [CA] does not reach the level needed for TVF. In order to help the heart in its effort to elevate the [CA] during VF, we proposed to treat these cases with drugs which inhibit the reuptake of [CA]. The facts that administration of [CA] reuptake inhibitors, before the induction of VF, and/or intracoronary infusion of adrenaline, during VF, transforms SVF into TVF, emphasized the validity of our hypothesis.  相似文献   

19.
20.
Mitochondria are intracellular organelles thought to have evolved from an alphaproteobacterium engulfed by the ancestor of the eukaryotic cell, an archeon, two billion years ago. Although mitochondria are frequently recognised as the “power plant” of the cell, the function of these organelles go beyond the simple generation of ATP. In fact, mounting evidence suggests that mitochondria are involved in several cellular processes, from regulation of cell death to signal transduction. Given this important role in cell physiology, mitochondrial dysfunction has been frequently associated with human diseases including cancer. Importantly, recent evidence suggests that mitochondrial function is directly regulated by oncogenes and tumour suppressors. However, the consequences of deregulation of mitochondrial function in tumour formation are still unclear. In this review, I propose that mitochondria play a pivotal role in shaping the oncogenic signalling cascade and that mitochondrial dysfunction, in some circumstances, is a required step for cancer transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号