首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of activation of the cardiac calcium release channel/ryanodine receptor (RyR) by luminal Ca2+ was investigated in native canine cardiac RyRs incorporated into lipid bilayers in the presence of 0.01 microM to 2 mM Ca2+ (free) and 3 mM ATP (total) on the cytosolic (cis) side and 20 microM to 20 mM Ca2+ on the luminal (trans) side of the channel and with Cs+ as the charge carrier. Under conditions of low trans Ca2+ (20 microM), increasing cis Ca2+ from 0.1 to 10 microM caused a gradual increase in channel open probability (Po). Elevating cis Ca2+ above 100 microM resulted in a gradual decrease in Po. Elevating trans [Ca2+] enhanced channel activity (EC50 approximately 2.5 mM at 1 microM cis Ca2+) primarily by increasing the frequency of channel openings. The dependency of Po on trans [Ca2+] was similar at negative and positive holding potentials and was not influenced by high cytosolic concentrations of the fast Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N, N-tetraacetic acid. Elevated luminal Ca2+ enhanced the sensitivity of the channel to activating cytosolic Ca2+, and it essentially reversed the inhibition of the channel by high cytosolic Ca2+. Potentiation of Po by increased luminal Ca2+ occurred irrespective of whether the electrochemical gradient for Ca2+ supported a cytosolic-to-luminal or a luminal-to-cytosolic flow of Ca2+ through the channel. These results rule out the possibility that under our experimental conditions, luminal Ca2+ acts by interacting with the cytosolic activation site of the channel and suggest that the effects of luminal Ca2+ are mediated by distinct Ca2+-sensitive site(s) at the luminal face of the channel or associated protein.  相似文献   

2.
L Xu  G Meissner 《Biophysical journal》1998,75(5):2302-2312
The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channel's cytosolic Ca2+ activation and inactivation sites.  相似文献   

3.
The effects of ruthenium red (RR) on the skeletal and cardiac muscle ryanodine receptors (RyRs) were studied in vesicle-Ca(2+) flux, [(3)H]ryanodine binding, and single channel measurements. In vesicle-Ca(2+) flux measurements, RR was more effective in inhibiting RyRs at 0.2 microM than 20 microM free Ca(2+). [(3)H]Ryanodine binding measurements suggested noncompetitive interactions between RR inhibition and Ca(2+) regulatory sites of RyRs. In symmetric 0.25 M KCl with 10-20 microM cytosolic Ca(2+), cytosolic RR decreased single channel activities at positive and negative holding potentials. In close to fully activated skeletal (20 microM Ca(2+) + 2 mM ATP) and cardiac (200 microM Ca(2+)) RyRs, cytosolic RR induced a predominant subconductance at a positive but not negative holding potential. Lumenal RR induced a major subconductance in cardiac RyR at negative but not positive holding potentials and several subconductances in skeletal RyR. The RR-related subconductances of cardiac RyR showed a nonlinear voltage dependence, and more than one RR molecule appeared to be involved in their formation. Cytosolic and lumenal RR also induced subconductances in Ca(2+)-conducting skeletal and cardiac RyRs recorded at 0 mV holding potential. These results suggest that RR inhibits RyRs and induces subconductances by binding to cytosolic and lumenal sites of skeletal and cardiac RyRs.  相似文献   

4.
G D Smith 《Biophysical journal》1996,71(6):3064-3072
We derive an analytical steady-state solution for the Ca2+ profile near an open Ca2+ channel based on a transport equation which describes the buffered diffusion of Ca2+ in the presence of rapid stationary and mobile Ca2+ buffers (Wagner and Keizer, 1994). This steady-state rapid buffering approximation gives an upper bound on local Ca2+ elevations such as Ca2+ puffs or sparks when conditions for the validity of the rapid buffering approximation are met and is an alternative to approximations that assume that mobile buffers are unsaturable. This result also provides an analytical estimate of the cytosolic Ca2+ domain concentration ([Ca2+]d) near a channel pore and shows the dependence of [Ca2+]d on moderate concentrations of endogenous mobile buffer, Ca2+ indicator dye, and bulk cytosolic Ca2+. Assuming a simple relationship between [Ca2+]d and the lumenal depletion domain of an intracellular Ca2+ channel, lumenal and cytosolic Ca2+ profiles are matched to give an implicit analytical expression for the effect of bulk lumenal Ca2+ on [Ca2+]d.  相似文献   

5.
The block of rabbit skeletal ryanodine receptors (RyR1) and dog heart RyR2 by cytosolic [Mg2+], and its reversal by agonists Ca2+, ATP and caffeine was studied in planar bilayers. Mg2+ effects were tested at submaximal activating [Ca2+] (5 microM). Approximately one third of the RyR1s had low open probability ("LA channels") in the absence of Mg2+. All other RyR1s displayed higher activity ("HA channels"). Cytosolic Mg2+ (1 mM) blocked individual RyR1 channels to varying degrees (32 to 100%). LA channels had residual P(o) <0.005 in 1 mM Mg2+ and reactivated poorly with [Ca2+] (100 microM), caffeine (5 mM), or ATP (4 mM; all at constant 1 mM Mg2+). HA channels had variable activity in Mg2+ and variable degree of recovery from Mg2+ block with Ca2+, caffeine or ATP application. Nearly all cardiac RyR2s displayed high activity in 5 microM [Ca2+]. They also had variable sensitivity to Mg2+. However, the RyR2s consistently recovered from Mg2+ block with 100 microM [Ca2+] or caffeine application, but not when ATP was added. Thus, at physiological [Mg2+], RyR2s behaved as relatively homogeneous Ca2+/caffeine-gated HA channels. In contrast, RyR1s displayed functional heterogeneity that arises from differential modulatory actions of Ca2+ and ATP. These differences between RyR1 and RyR2 function may reflect their respective roles in muscle physiology and excitation-contraction coupling.  相似文献   

6.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

7.
Using whole-cell patch-clamp technique and Fura-2 fluorescence measurement, the presence of ATP-activated ion channels and its dependence on intracellular Ca2+ concentration ([Ca2+]i) in the epithelial cells of the endolymphatic sac were investigated. In zero current-clamp configuration, the average resting membrane potential was -66.8+/-1.3 mV (n=18). Application of 30 microM ATP to the bath induced a rapid membrane depolarization by 43.1+/-2.4 mV (n=18). In voltage-clamp configuration, ATP-induced inward current at holding potential (VH) of -60 mV was 169.7+/-6.3 pA (n=18). The amplitude of ATP-induced currents increased in sigmoidal fashion over the concentration range between 0.3 and 300 microM with a Hill coefficient (n) of 1.2 and a dissociation constant (Kd) of 11.7 microM. The potency order of purinergic analogues in ATP-induced current, which was 2MeSATP>ATPgammas>/=ATP>alpha, beta-ATP>ADP=AMP>/=adenosine=UTP, was consistent with the properties of the P2Y receptor. The independence of the reversal potential of the ATP-induced current from Cl- concentration suggests that the current is carried by a cation channel. The relative ionic permeability ratio of the channel modulated by ATP for cations was Ca2+>Na+>Li+>Ba2+>Cs+=K+. ATP (10 microM) increased [Ca2+]i in an external Ca2+-free solution to a lesser degree than that in the external solution containing 1.13 mM CaCl2. ATP-induced increase in [Ca2+]i can be mimicked by application of ionomycin in a Ca2+-free solution. These results indicate that ATP increases [Ca2+]i through the P2Y receptor with a subsequent activation of the non-selective cation channel, and that these effects of ATP are dependent on [Ca2+]i and extracellular Ca2+.  相似文献   

8.
Cytosolic-free [Ca2+] was evaluated in freshly dissociated smooth muscle cells from mouse thoracic aorta by the ratio of Fura Red and Fluo 4 emitted fluorescence using confocal microscopy. The role of intercellular communication in forming and shaping ATP-elicited responses was demonstrated. Extracellular ATP (250 microM) elicited [Ca2+]i transient responses, sustained [Ca2+]i rise, periodic [Ca2+]i oscillations and aperiodic repetitive [Ca2+]i transients. Quantity of smooth muscle cells in the preparation responding to ATP with periodical [Ca2+]i oscillations depended on the density of isolated cells on the cover slip. ATP-elicited bursts of [Ca2+]i spikes in 66+/-7% of cells in dense and in 33+/-8.5% of cells in non-dense preparations. The number of cells responding to ATP with bursts of [Ca2+]i spikes decreased from 55+/-5% (n=84) to 14+/-3% (n=141) in dense preparations pretreated with carbenoxolone. Simultaneous measurement of [Ca2+]i and ion currents revealed a correlation between [Ca2+]i and current oscillations. ATP-elicited bursts of current spikes in 76% of cells regrouped in small clusters and in 9% of isolated cells. Clustered cells responding to ATP with current oscillations had higher membrane capacity than clustered cells with transient and sustained ATP-elicited responses. Lucifer Yellow (1% in 130 mM KCl) injected into one of clustered cells was transferred to the neighboring cell only when ATP-elicited oscillations. Fast application of carbenoxolone (100 microM) inhibited ATP (250 microM) elicited Ca2+-dependent current oscillations. Taken together these results suggest that the probability of ATP (250 microM) triggered cytosolic [Ca2+]i oscillations accompanied with K+ and Cl- current oscillations increased with the coupling of smooth muscle cells.  相似文献   

9.
Purified bovine renal epithelial Na+ channels when reconstituted into planar lipid bilayers displayed a specific orientation when the membrane was clamped to -40 mV (cis-side) during incorporation. The trans-facing portion of the channel was extracellular (i.e., amiloride- sensitive), whereas the cis-facing side was intracellular (i.e., protein kinase A-sensitive). Single channels had a main state unitary conductance of 40 pS and displayed two subconductive states each of 12- 13 pS, or one of 12-13 pS and the second of 24-26 pS. Elevation of the [Na+] gradient from the trans-side increased single-channel open probability (Po) only when the cis-side was bathed with a solution containing low [Na+] (< 30 mM) and 10-100 microM [Ca2+]. Under these conditions, Po saturated with increasing [Na+]trans. Buffering of the cis compartment [Ca2+] to nearly zero (< 1 nM) with 10 mM EGTA increased the initial level of channel activity (Po = 0.12 +/- 0.02 vs 0.02 +/- 0.01 in control), but markedly reduced the influence of both cis- and trans-[Na+] on Po. Elevating [Ca2+]cis at constant [Na+] resulted in inhibition of channel activity with an apparent [KiCa2+] of 10-100 microM. Protein kinase C-induced phosphorylation shifted the dependence of channel Po on [Ca2+]cis to 1-3 microM at stationary [Na+]. The direct modulation of single-channel Po by Na+ and Ca2+ demonstrates that the gating of amiloride-sensitive Na2+ channels is indeed dependent upon the specific ionic environment surrounding the channels.  相似文献   

10.
The transient responses of sheep cardiac and rabbit skeletal ryanodine receptors (RyRs) to step changes in membrane potential and cytosolic [Ca2+] were measured. Both cardiac and skeletal RyRs have two voltage-dependent inactivation processes (tau approximately 1-3 s at +40 mV) that operate at opposite voltage extremes. Approximately one-half to two-thirds of RyRs inactivated when the bilayer voltage was stepped either way between positive and negative values. Inactivation was not detected (within 30 s) in RyRs with Po less than 0.2. Inactivation rates increased with intraburst open probability (Po) and in proportion to the probability of a long-lived, RyR open state (P(OL)) RyR inactivation depended on P(OL) and not on the particular activator (Ca2+ (microM), ATP, caffeine, and ryanodine), inhibitor (mM Ca2+ and Mg2+), or gating mode. The activity of one-half to two-thirds of RyRs declined (i.e., the RyRs inactivated) after [Ca2+] steps from subactivating (0.1 microM) to activating (1-100 microM) levels. This was due to the same inactivation mechanism responsible for inactivation after voltage steps. Both forms of inactivation had the same kinetics and similar dependencies on Po and voltage. Moreover, RyRs that failed to inactivate after voltage steps also did not inactivate after [Ca2+] steps. The inactivating response to [Ca2+] steps (0.1-1 microM) was not RyRs "adapting" to steady [Ca2+] after the step, because a subsequent step from 1 to 100 microM failed to reactivate RyRs.  相似文献   

11.
A Cl- channel with a small single-channel conductance (3 pS) was observed in cell-attached patches formed on the apical membrane of cells from the distal nephron cell line (A6) cultured on permeable supports. The current-voltage (I-V) relationship from cell-attached patches or inside-out patches with 1 microM cytosolic Ca2+ strongly rectified with no inward current at potentials more negative than ECl. However, the rectification decreased (i.e., inward current increased) when the cytosolic Ca2+ concentration ([Ca2+]i) was increased above 1 microM. If [Ca2+]i is increased to 800 microM, the I-V relationship became linear. Besides the change in the I-V relationship, an increase in [Ca2+]i also increases the open probability of the channel. Regardless of the recording condition, the channel has one open and one closed state. Both closing and opening rates were dependent on [Ca2+]i; an increase of [Ca2+]i decreased the closing rate and increased the opening rate. The Ca2+ dependence of transition rates at positive membrane potentials (cell interior with respect to external surface) were much larger than the dependence at negative intracellular potentials. The I-V relationship of chloride channels in inside-out patches from cells pretreated with insulin was linear even with 1 microM [Ca2+]i, while channel currents from cells under similar conditions but without insulin still strongly rectified. Alkaline phosphatase applied to the intracellular surface of inside-out patches altered the outward rectification of single channels in a manner qualitatively similar to that of insulin pretreatment. These observations suggest that phosphorylation/dephosphorylation of the channel modulates the sensitivity of the Cl- channel to cytosolic Ca2+ and that insulin produces its effect by promoting dephosphorylation of the channel.  相似文献   

12.
Redistribution of cytosolic free Ca2+ following Ca2+ influx into the cytoplasm was studied in single smooth muscle cells isolated from guinea-pig urinary bladder. Voltage-clamped cells were loaded with a low-affinity fluorophore Indo-1FF. A decay of free intracellular Ca2+ ([Ca2+]i) after the termination of the depolarizing pulse (1 s from -50 mV to +20 mV) was fitted with a single exponential and the effect of various substances on the time constant was compared. At a holding potential of +80 mV the [Ca2+]i decay was 1.56 times slower compared to that at -50 mV suggesting the presence of a voltage-dependent process redistributing Ca2+. In the presence of cyclopiazonic acid (CPA, 10 microM), an inhibitor of sarco(endo)plasmatic Ca2+ pump (SERCa), the [Ca2+]i decay was 3.93 times slower than that in the absence of the inhibitor. Introduction of a polycation Ruthenium Red (RR) (20 microM), an inhibitor of the mitochondrial Ca2+ uniporter, into a cell or collapsing a transmitochondrial H+ gradient with the protonophore CCCP (2 microM) slowed down the [Ca2+]i decay 6.05-fold and 9.78-fold, respectively. The apparent amplitude of [Ca2+]i increments was also increased by CCCP. Increasing H+ buffering power in the intracellular solution from 10 mM to 40 mM of HEPES greatly reduced the effect of CCCP on [Ca2+]i decay. A further increase in HEPES concentration to 100 mM eliminated the effects of CCCP both on the time course of [Ca2+]i decay and on the amplitude of [Ca2+]i increment. Perfusion of RR together with 100 mM HEPES into the cytoplasm was without effect on the decay time course of [Ca2+]i. The effect of CPA on [Ca2+]i decay was also reduced in cells loaded with 100 mM HEPES; the time constant in the presence of CPA was slowed down by a factor of 2.18. Application of 10 mM Na(+)-butyrate to the cells loaded with 10 mM HEPES resulted in a slowing down of [Ca2+]i decay: the time constant was increased by a factor of 5.84. Measurement of intracellular pH with SNARF-1 confirmed cytoplasmic acidification during application of Na(+)-butyrate and CCCP. It is concluded that the contribution of mitochondrial Ca2+ uptake to the rapid [Ca2+]i decay is much less than could be extrapolated from action of protonophores in these smooth muscle cells. The results also demonstrate the importance of intracellular pH for Ca2+ handling in the cytoplasm of smooth muscle cells.  相似文献   

13.
The effects of glucose, diazoxide, K+, and tolbutamide on the activity of K+ channels, membrane potential, and cytoplasmic free Ca2+ concentration were investigated in beta-cells from the Uppsala colony of obese hyperglycemic mice. With [K+]e = [K+]i = 146 mM, it was demonstrated that the dominating channel at the resting potential is a K+ channel with a single-channel conductance of about 65 picosiemens and a reversal potential of about +70 mV (pipette potential). This channel is characterized by complex kinetics with openings grouped in bursts. The channel was completely inhibited by 20 mM glucose in intact cells or by intracellularly applied Mg-ATP (1 mM). The number of active channels was markedly reduced already by 5 mM glucose. However, the single channel current of the channels remaining active was unaffected, indicating no major depolarization. To evoke a substantial depolarization of the membrane and thereby action potentials, a total block in channel activity was necessary. This could be achieved either by increasing the concentration of glucose to 20 mM or by combining 5 mM glucose with 100 microM tolbutamide. In both cases, the effect was counteracted by the hyperglycemic sulfonamide diazoxide. The effects on single channel activity were paralleled by changes in membrane potential and cytoplasmic free Ca2+ concentration, also when the latter measurements were performed at room temperature. The transient increase in the number of active channels and the resulting hyperpolarization observed after raising the glucose concentration to 20 mM probably reflected a drop in cytoplasmic ATP concentration. It is suggested that ATP works as a key regulator of the beta-cell membrane potential and thereby the opening of voltage-activated Ca2+ channels.  相似文献   

14.
We have studied the effects of extracellular nucleotides on the cytosolic free calcium concentration [( Ca2+]i) in J774 macrophages using quin2 and indo-1 as indicator dyes. Micromolar quantities of ATP induced a biphasic increase in [Ca2+]i: a rapid and transient increase (peak I) which was due to mobilization of Ca2+ from intracellular stores and a second more sustained elevation (peak II) due to influx of extracellular Ca2+. The sustained peak II elevation had two components, a "low threshold" (1 microM ATP) response which saturated at 10-50 microM ATP and a "high threshold" response, apparent at [ATP] greater than 100 microM. The latter component was not seen with nucleotides other than ATP and correlated with an ATP-induced generalized increase in plasma membrane permeability. A variant J774 cell line was isolated which does not demonstrate this ATP-induced increase in plasma membrane permeability; nevertheless, it demonstrated both the release of Ca2+ from intracellular stores and the low threshold component of the Ca2+ influx across the plasma membrane in response to nucleoside di- and triphosphates. Several lines of evidence indicate that the fully ionized (i.e. free acid) forms of nucleoside di- and triphosphates were the ligands that mediated these increases in [Ca2+]i. These data show that extracellular nucleotides mediate Ca2+ fluxes by two distinct mechanisms in J774 cells. In one, the rise in [Ca2+]i is due to release of Ca2+ from intracellular stores and Ca2+ influx across the plasma membrane. This response is elicited preferentially by the free acid forms of purine and pyrimidine nucleoside di- and triphosphates. In the other, the rise in [Ca2+]i reflects a more generalized increase in plasma membrane permeability and is elicited by ATP4- only.  相似文献   

15.
1. We studied the effect of verapamil, nitrendipine, 3',4'-dichlorobenzamil (DCB) and Cd2+ on the increase in cytosolic free Ca2+ ([Ca2+]c) and the rate of O2-uptake induced by depolarization of isolated rat cardiac myocytes with veratridine. 2. The degree of inhibition by the several drugs tested on the increase in [Ca2+]c and respiration was dependent on extracellular Ca2+, pH and Na+. 3. Low verapamil and nitrendipine concentrations (2.5 microM) were fully effective in Ca2+ channel blockade, as indicated from experiments with isoproterenol and in a low-Na+ medium. 4. A complete inhibition of veratridine-induced increase in [Ca2+]c and O2-uptake was attained with higher Ca2+ blocker concentrations (25-30 microM), implying that these processes depend to a major extent on some other Ca2+ transport system, probably Na+/Ca2+ exchange.  相似文献   

16.
The factors regulating Ca2+ transport by isolated sarcoplasmic reticulum (SR) vesicles have been studied using the fluorescent indicator Fluo-3 to monitor extravesicular free [Ca2+]. ATP, in the presence of 5 mM oxalate, which clamps intravesicular [Ca2+] at approximately 10 microM, induced a rapid decline in Fluo-3 fluorescence to reach a limiting steady state level. This corresponds to a residual medium [Ca2+] of 100 to 200 nM, and has been defined as [Ca2+]lim, whilst thermodynamic considerations predict a level of less than 1 nM. This value is similar to that measured in intact muscle with Ca2+ fluophores, where it is presumed that sarcoplasmic free [Ca2+] is a balance between pump and leaks. Fluorescence of Fluo-3 at [Ca2+]lim was decreased 70% to 80% by histidine, imidazole and cysteine. The K0.5 value for histidine was 3 mM, suggesting that residual [Ca2+]lim fluorescence is due to Zn2+. The level of Zn2+ in preparations of SR vesicles, measured by atomic absorption, was 0.47+/-0.04 nmol/mg, corresponding to 0.1 mol per mol Ca-ATPase. This is in agreement with findings of Papp et al. (Arch. Biochem. Biophys., 243 (1985) 254-263). Histidine, 20 mM, included in the buffer, gave a corrected value for [Ca2+]lim of 49+/-1.8 nM, which is still higher than predicted on thermodynamic grounds. A possible 'pump/leak' mechanism was tested by the effects of varying active Ca2+ transport 1 to 2 orders with temperature and pH. [Ca2+]lim remained relatively constant under these conditions. Alternate substrates acetyl phosphate and p-NPP gave similar [Ca2+]lim levels even though the latter substrate supported transport 500-fold slower than with ATP. In fact, [Ca2+]lim was lower with 10 mM p-NPP than with 5 mM ATP. The magnitude of passive efflux from Ca-oxalate loaded SR during the steady state of [Ca2+]lim was estimated by the unidirectional flux of 45Ca2+, and directly, following depletion of ATP, by measuring release of 40Ca2+, and was 0.02% of Vmax. Constant infusion of CaCl2 at [Ca2+]lim resulted in a new steady state, in which active transport into SR vesicles balances the infusion rate. Varying infusion rates allows determination of [Ca2+]-dependence of transport in the absence of chelating agents. Parameters of non-linear regression were Vmax=853 nmol/min per mg, K0.5(Ca)=279 nM, and nH(Ca)=1.89. Since conditions employed in this study are similar to those in the sarcoplasm of relaxed muscle, it is suggested that histidine, added to media in studies of intracellular Ca2+ transients, and in the relaxed state, will minimise contribution of Zn2+ to fluophore fluorescence, since it occurs at levels predicted in this study to cause significant overestimation of cytoplasmic free [Ca2+] in the relaxed state. Similar precautions may apply to non-muscle cells as well. This study also suggests that [Ca2+]lim in the resting state is a characteristic feature of Ca2+ pump function, rather than a balance between active transport and passive leakage pathways.  相似文献   

17.
Jan CR  Tseng CJ  Chen WC 《Life sciences》2000,66(11):1053-1062
The effect of fendiline, a documented inhibitor of L-type Ca2+ channels and calmodulin, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated using fura-2 as a Ca2+ probe. Fendiline at 5-100 microM significantly increased [Ca2+]i concentration-dependently. The [Ca2+]i rise consisted of an initial rise and a slow decay. External Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM fendiline by reducing both the initial rise and the decay phase. This suggests that fendiline triggered external Ca2+ influx and internal Ca2+ release. In Ca(2+)-free medium, pretreatment with 50 microM fendiline nearly abolished the [Ca2+]i rise induced by 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor, and vice versa, pretreatment with thapsigargin prevented fendiline from releasing internal Ca2+. This indicates that the internal Ca2+ source for fendiline overlaps with that for thapsigargin. At a concentration of 50 microM, fendiline caused Mn2+ quench of fura-2 fluorescence at the 360 nm excitation wavelenghth, which was inhibited by 0.1 mM La3+ by 50%, implying that fendiline-induced Ca2+ influx has two components separable by La3+. Consistently, 0.1 mM La3+ pretreatment suppressed fendiline-induced [Ca2+]i rise, and adding La3+ during the rising phase immediately inhibited the signal. Addition of 3 mM Ca2+ increased [Ca2+]i after preincubation with 50-100 microM fendiline in Ca(2+)-free medium. However, 50-100 microM fendiline inhibited 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 inhibited 50 microM fendiline-induced internal Ca2+ release by 48%, but inhibition of phospholipase C with 2 microM U73122 or inhibition of phospholipase D with 0.1 mM propranolol had no effect. Collectively, we have found that fendiline increased [Ca2+]i in MDCK cells by releasing internal Ca2+ in a manner independent of inositol-1,4,5-trisphosphate (IP3), followed by external Ca2+ influx.  相似文献   

18.
Many plant ion channels have been identified, but little is known about how these transporters are regulated. We have investigated the regulation of a slow vacuolar (SV) ion channel in the tonoplast of barley aleurone storage protein vacuoles (SPV) using the patch-clamp technique. SPV were isolated from barley aleurone protoplasts incubated with CaCl2 in the presence or absence of gibberellic acid (GA) or abscisic acid (ABA). A slowly activating, voltage-dependent ion channel was identified in the SPV membrane. Mean channel conductance was 26 pS when 100 mM KCl was on both sides of the membrane, and reversal potential measurements indicated that most of the current was carried by K+. Treatment of protoplasts with GA3 increased whole-vacuole current density compared to SPV isolated from ABA- or CaCl2-treated cells. The opening of the SV channel was sensitive to cytosolic free Ca2+ concentration ([Ca2+]i) between 600 nM and 100 [mu]M, with higher [Ca2+]i resulting in a greater probability of channel opening. SV channel activity was reduced greater than 90% by the calmodulin (CaM) inhibitors W7 and trifluoperazine, suggesting that Ca2+ activates endogenous CaM tightly associated with the membrane. Exogenous CaM partially reversed the inhibitory effects of W7 on SV channel opening. CaM also sensitized the SV channel to Ca2+. In the presence of ~3.5 [mu]M CaM, specific current increased by approximately threefold at 2.5 [mu]M Ca2+ and by more than 13-fold at 10 [mu]M Ca2+. Since [Ca2+]i and the level of CaM increase in barley aleurone cells following exposure to GA, we suggest that Ca2+ and CaM act as signal transduction elements mediating hormone-induced changes in ion channel activity.  相似文献   

19.
The effect of the antidepressant mirtazapine on cytosolic free Ca2+ concentration ([Ca2+]i) and viability has not been explored in any cell type. This study examined whether mirtazapine alters Ca2+ levels and causes cell death in osteoblast-like cells using MG63 human osteosarcoma cells as a model. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Mirtazapine at concentrations above 250 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 60% by removing extracellular Ca2+. The mirtazapine-induced Ca2+ influx was sensitive to blockade of nifedipine and verapamil. In Ca(2+)-free medium, after pretreatment with 1.5 mM mirtazapine, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 2 microM CCCP (a mitochondrial uncoupler), and 1 microM ionomycin failed to release more stored Ca2+; conversely, pretreatment with thapsigargin, CCCP and ionomycin abolished mirtazapine-induced Ca2+ release. Inhibition of phospholipase C with 2 microM U73122 did not change mirtazapine-induced [Ca2+]i, increase. Seal of Ca2+ movement across the plasma membrane with 50 microM extracellular La3+ enhanced 1 microM thapsigargin-induced [Ca2+]i increase, suggesting that Ca2+ efflux played a role in lowering thapsigargin-induced [Ca2+]i increase; however, the same La3+ treatment did not alter mirtazapine-induced [Ca2+]i increase. At concentrations of 500 microM and 1000 microM, mirtazapine killed 30% and 60% cells, respectively. The cytotoxicity was not reversed by chelating cytosolic Ca2+ with BAPTA. Collectively, in MG63 cells, mirtazapine induced a [Ca2+]i increase by causing Ca2+ release from stores and Ca2+ influx from extracellular space. Furthermore, mirtazapine caused cytotoxicity at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

20.
Patch-clamp whole-cell and single-channel current recordings were made from pig pancreatic acinar cells to test the effects of quinine, quinidine, Ba2+ and Ca2+. Voltage-clamp current recordings from single isolated cells showed that high external concentrations of Ba2+ or Ca2+ (88 mM) abolished the outward K+ currents normally associated with depolarizing voltage steps. Lower concentrations of Ca2+ only had small inhibitory effects whereas 11 mM Ba2+ almost blocked the K+ current. 5.5 mM Ba2+ reduced the outward K+ current to less than 30% of the control value. Both external quinine and quinidine (200-500 microM) markedly reduced whole-cell outward K+ currents. In single-channel current studies it was shown that external Ba2+ (1-5 mM) markedly reduced the probability of opening of high-conductance Ca2+ and voltage-activated K+ channels whereas internal Ba2+ (6 X 10(-6) to 3 X 10(-5) M) caused activation at negative membrane potentials and inhibition at positive potentials. Quinidine (200-400 microM) evoked rapid chopping of single K+ channel openings acting both from the outside and inside of the membrane and in this way markedly reduced the total current passing through the channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号