首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EPR spectra were obtained for the type 2 Cu2+ site in particulate methane monooxygenase (pMMO) from Methylomicrobium album BG8 grown on K15NO3 and 63Cu(NO3)2. The concentration of the type 2 Cu2+ signal was approximately 200 microM per 25 mg/ml protein in packed cells and membrane fractions, a concentration that is consistent with its attribution to pMMO, and the EPR parameters were consistent with electron paramagnetic resonance (EPR) parameters previously assigned to pMMO. The superhyperfine structure due to nitrogen is better resolved because I = 1/2 for 15N whereas I = 1 for 14N and A(15N)/A(14N) = 1.4. Under these conditions, superhyperfine structure is resolved in the g region of the X-band spectrum. At low microwave frequency (S-band) the resolution of the nitrogen superhyperfine structure improves. Signals are attributed to type 2 Cu2+ in which cupric ion is bound to four (less likely three) nitrogen donor atoms.  相似文献   

2.
Interaction of Cu(II) and Gly-His-Lys, a growth-modulating tripeptide from plasma, was investigated by 13C- and 1H-n.m.r. and e.p.r. spectroscopy. The n.m.r. line-broadening was interpreted in terms of major and minor species formed as a function of pH. The results indicate that the n.m.r. line-broadening is due to the presence of minor species in rapid exchange and not due to the major species in solution, which has a large tau M. It is concluded that the technique of 13C- and 1H-n.m.r. line broadening, caused by paramagnetic Cu(II) ion, should be undertaken with caution, since the method may not be useful for obtaining structural information on the major species. The e.p.r. spectra over a wide pH range are almost entirely due to similarly co-ordinating species. Starting at pH 5.5, the narrowest absorption near 340 mT shows superhyperfine structure, which comes out sharply in the pH region 6.0-9.6. The spectra in this pH range showed the seven lines of nitrogen superhyperfine splitting, indicating clearly the co-ordination of three nitrogen atoms to Cu(II). The e.p.r. parameters in the medium pH range, A parallel = 19.5 mT and g parallel = 2.21, fit well with the contention that Cu(II) is ligated to Gly-His-Lys through one oxygen atom and three nitrogen atoms in a square-planar configuration.  相似文献   

3.
Multifrequency electron paramagnetic resonance (EPR) spectra of the Cu(II) site in nitrous oxide reductase (N2OR) from Pseudomonas stutzeri confirm the assignment of the low field g value at 2.18 consistent with the seven line pattern observed at 9.31 GHz, 10 K. S-band spectra at 20 K are better resolved than the X-band spectra recorded at 10 K. The features observed at 2.4, 3.4, 9.31 and 35 GHz are explained by a mixed-valence [Cu(1.5)..Cu(1.5)] S = 1/2 species with the unpaired electron delocalized between two equivalent Cu nuclei. The resemblance of the N2OR S-band spectra to the spectra for the EPR-detectable Cu of cytochrome c oxidase suggests that the S-band spectrum for cytochrome c oxidase measured below 30 K may also contain hyperfine splittings from two approximately equivalent Cu nuclei.  相似文献   

4.
The interaction of pterin-dependent phenylalanine hydroxylase from Chromobacterium violaceum with the cofactor analogue 5-deaza-6-methyltetrahydropterin and the cofactor 6,7-dimethyltetrahydropterin (DMPH4) has been investigated by multifrequency electron spin resonance (ESR) spectroscopy. 5-Deaza-6-methyltetrahydropterin, which lacks the N-5 nitrogen present in the pyrazine ring of DMPH4, binds tightly to the cupric form of the enzyme; however, no changes are observed in the ESR parameters of the copper center. In contrast, the binding of DMPH4 (or 6-methyltetrahydropterin) shifts the ESR parameters (g and A) associated with the cupric enzyme. In addition, superhyperfine transitions were resolved and assigned to hyperfine splitting from nitrogen ligands. ESR spectra of the enzyme recorded in the presence of [5-14N]DMPH4 or [5-15N]DMPH4 were computer simulated and found to be consistent with pterin serving as a direct donor ligand to the copper center through the N-5 position.  相似文献   

5.
The antitumor agent 2-formylpyridine monothiosemicarbazonato copper(II) forms adducts with sulfur and nitrogen donor atoms from cat hemoglobin but only nitrogen donor atoms from human hemoglobin. Improved resolution of the mI = 1/2 lines in the g parallel region at S-band not only confirms the number of nitrogen donor atoms in the square planar configuration but provides evidence for strong coupling from a proton. Adduct formation results in an increase in the oxygen affinity of hemoglobin. Thus, it is suggested that allosteric enzyme inhibition may be a mechanism for the action of this agent.  相似文献   

6.
alpha-lactalbumin has at least three distinct cation binding regions: a Ca(II)-Gd(III) site, a Cu(II)-Zn(II) site and a VO2+ site as observed from electron paramagnetic resonance (EPR) studies of complexes with the bovine protein. Gadolinium, which bound to the calcium site of the protein with a subnanomolar dissociation constant, yielded EPR spectra at 9.5 GHz (X-band) that exhibited features from g = 8 to g = 2. At 35 GHz (Q-band) the central fine structure transition (Ms = 1/2----Ms = -1/2) gave a well-defined powder pattern. The zero-field splitting was large, as reflected in the second-order splitting of the central fine structure transition of about 1 kG. There was also evidence for additional, low affinity binding site(s) for Gd(III). Addition of either Zn(II) or Al(III) did not affect the amplitudes or positions of the bound Gd(III) EPR spectrum. The Cu(II)-alpha-lactalbumin complex gave a typical axially symmetric spectrum (g parallel = 2.260, g perpendicular = 2.056, A parallel = 171 G) with a partially resolved superhyperfine interaction attributable to at least one directly coordinated nitrogen ligand. Addition of Cu(II) to Gd(III)-alpha-lactalbumin gave an EPR spectrum that was a superposition of signals from the individual Gd(III)- and Cu(II)-alpha-LA spectra. The absence of any magnetic interactions in the Gd(III)-Cu(II)-alpha-lactalbumin species indicated that the two cation sites were more than 10 A apart. On the other hand, addition of Zn(II) to Cu(II)-alpha-lactalbumin gave a set of EPR lines due to free or loosely bound Cu(II), confirming that the Cu(II) was displaced by zinc.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
EPR data are used to describe the conformation and identity of the atoms coordinated to Cu(II) in Cu(II)-bleomycin bound to oriented DNA fibers. The fibers were slowly drawn from viscous solutions of Cu(II)-bleomycin-DNA containing one Cu(II)-bleomycin to 200 basepairs. EPR measurements were made at room temperature and 90 K for different orientations of the external magnetic field with respect to the helical axes of the fibers. The g-values (g parallel = 2.21, g perpendicular = 2.04) and the hyperfine constant (A parallel = 175 G) are consistent with values expected for Cu(II) chelated to a square planar array of ligands. In the oriented fibers, the square planar arrays do not all have the same orientations with respect to the fiber axes. At room temperature the chelated ions have rotational freedom in which the normal to the planar array has almost complete freedom of rotation about axes perpendicular to the DNA fiber axes. The normal maintains an angle of 75 degrees with respect to the axis, in the plane of the basepair, about which it rotates. Nine superhyperfine peaks on the high field side of the EPR spectrum were partially resolved. The number and splitting (12 G) of these superhyperfine peaks indicate that four nitrogen atoms are chelated to Cu(II) in a square planar array. These data on Cu(II)-bleomycin bound to DNA give information on the orientation of the metal-containing portion of bleomycin which lies outside to double helix.  相似文献   

9.
Electron spin resonance spectra of the first Cu(II) complexes of human serum albumin, dog serum albumin, l-aspartyl-l-histidine N-methylamide and glycyl-glycyl-l-histidine N-methylamide have been studied using isotopically pure 65Cu in its chloride form. At 77° K, the esr spectra of Cu(II) complex of human serum albumin exhibited only one form of esr signal between pH 6.5 and 11. No intermediate forms were detected. The presence of an equally spaced nine-line superhyperfine structure with spacing ~15 G indicated considerable covalent bonding between Cu(II) and four nitrogen atoms derived from the protein. The esr spectrum form of Cu(II) bound to human serum albumin detected at neutral pH would be consistent with the participation of four nitrogens from the α-NH2 group, two peptide groups, and the imidazole group of a histidine residue. In contrast, the esr spectra of Cu(II)-dog serum albumin complex showed a transition from a low pH form to a high pH form as the pH was increased to 9.5. These spectral changes were found to be reversible upon lowering the pH. Ligand superhyperfine splittings in the low pH form of the esr signal of Cu(II)-dog albumin were not resolved. The distinct pH dependence of the esr signals observed in human and dog serum albumin complexes could be correlated to their respective optical spectra changes as a function of pH. At room temperature and in the pH range between 6 and 11, the esr spectra of Cu(II) complexes of l-aspartyl-l-alanyl-l-histidine N-methylamide and glycyl-glycyl-l-histidine N-methylamide exhibited a well-resolved nine-line superhyperfine structure indicating metal coordination with four equivalent nitrogen atoms of peptide.  相似文献   

10.
The spin-labeled bovine serum albumin and IgG were studied in search of an experimental approach for comparison of different models of rotational mobility of spin label. These models are: the model of isotropic motion of spin label together with the macromolecule (IM); the model of highly anisotropic motion of spin label (HAM); and the model of slow isotropic motion of label around the binding site (SIML). The experimental spectra were measured on a common X-band ESR spectrometer and on the unique 140 GHZ (lambda = 2 mm) ESR spectrometer under the same conditions. Theoretical spectra were computer-calculated according to Freed's theory. We have found, that the results of temperature-viscosity experiments in X-band are contradictory to the model of IM both for the BSA and IgG species. The models of HAM and SIML for the BSA give identical X-band spectra. The bovine serum albumin spectra in the 2 mm region strongly contradict to the assumptions of the HAM model. Also, the SIML model fails to describe the experimental spectra in terms of isotropic motion of the spin label around the binding site. X-band spectra of IgG can not be explained by the SIML model, while the same spectra in the 2 mm region can not be explained by the HAM model.  相似文献   

11.
We have measured the 14N superhyperfine frequencies for weakly coupled nitrogen in stellacyanin and in a model compound Cu(II)-diethylenetriamine-imidazole using a 3-pulse spin echo technique. By making computer simulations of the superhyperfine spectrum, we have been able to show that these frequencies result from the interaction of the remote protonated nitrogen of metal-bound imidazole with Cu(II).  相似文献   

12.
The electron paramagnetic resonance (EPR) spectra of type 1 copper(II) in 63Cu-enriched Coriolus versicolor laccase A (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) have been studied. The X-band EPR spectrum in type 2 copper-depleted [63Cu]laccase A exhibited well-resolved ligand superhyperfine structure in the g perpendicular region. This structure was assigned to an interaction with two nitrogens and two protons, an assignment which is consistent with a model in which the two nitrogens belong to two histidine ligands and the two protons are the methylene protons of a coordinating cysteine. It also requires the delocalization of a substantial amount of the type 1 copper(II) unpaired electron density onto the cysteine sulphur.  相似文献   

13.
The interaction of Cu(II) with di- and tripeptides each containing phenylalanine, tryptophan or histidine in the amino acid chain has been investigated by means of electron spin resonance (ESR) and optical absorption spectroscopy. Cu(II) complexes of dipeptides and tripeptides exhibit different magnetic and optical parameters. Dipeptide complexes have larger gparallel-values and smaller A parallel values than tripeptide complexes. When compared to dipeptide complexes, the d-d band of the central metal ion is blue shifted for tripeptide complexes. There are no significant difference in the behavior of Cu(II) peptide complexes containing phenylalanine or tryptophan. Complexes of histidine containing peptides, however, show modified spectra caused by the participation of the imidazole nitrogen in the coordination to Cu(II). The imidazole nitrogen seems to coordinate in-plane with other coordinating atoms or in an axial position depending on the kind of peptide.  相似文献   

14.
X-band (9.1 GHz) and S-band (3.4 GHz) electron paramagnetic resonance (EPR) spectra for particulate methane monooxygenase (pMMO) in whole cells from Methylococcus capsulatus (Bath) grown on (63)Cu and (15)N were obtained and compared with previously reported spectra for pMMO from Methylomicrobium album BG8. For both M. capsulatus (Bath) and M. album BG8, two nearly identical Cu(2+) EPR signals with resolved hyperfine coupling to four nitrogens are observed. The EPR parameters for pMMO from M. capsulatus (Bath) (g( parallel) = 2.244, A( parallel) = 185 G, and A(N) = 19 G for signal one; g( parallel) = 2.246, A( parallel) = 180 G, and A(N) = 19 G for signal two) and for pMMO from M. album BG8 (g( parallel) = 2.243, A( parallel) = 180 G, and A(N) = 18 G for signal one; g( parallel) = 2. 251, A( parallel) = 180 G, and A(N) = 18 G for signal two) are very similar and are characteristic of type 2 Cu(2+) in a square planar or square pyramidal geometry. In three-pulse electron spin echo envelope modulation (ESEEM) data for natural-abundance samples, nitrogen quadrupolar frequencies due to the distant nitrogens of coordinated histidine imidazoles were observed. The intensities of the quadrupolar combination bands indicate that there are three or four coordinated imidazoles, which implies that most, if not all, of the coordinated nitrogens detected in the continuous wave spectra are from histidine imidazoles.  相似文献   

15.
Paramagnetic probes of the domain structure of histidine-rich glycoprotein   总被引:1,自引:0,他引:1  
The interaction of Cu2+ and Fe3+-mesoporphyrin with histidine-rich glycoprotein (HRG) from rabbit serum was examined spectroscopically. The first equivalent of Cu2+ binds to HRG producing a type II electron paramagnetic resonance (EPR) spectrum with g[[ = 2.25, gm = 2.05, A[[ = 0.019 cm-1 (180 G), and superhyperfine along gm. These spectral parameters suggest moderately covalent coordination of Cu2+ to the protein by nitrogens. With increasing Cu2+ the superhyperfine disappears; however, the g and A values change only marginally. The increase in EPR signal amplitude throughout the addition of 1-15 equiv of Cu2+ is linear and thereafter maximizes, suggesting 18-22 equiv are bound. In contrast, changes in the circular dichroism spectrum at 280 nm appear sigmoidal and can be interpreted as the binding of Cu2+ to two structurally distinct regions of the protein. Evidence for two structurally distinct binding domains is found by comparing EPR spectra of Cu2+ complexes of HRG with spectra from complexes of two of its major proteolysis products (peptides). After binding 1 equiv of Cu2+, both the 30-kDa histidine-rich peptide and the native protein exhibit identical spectra including the pronounced superhyperfine. In contrast, the spectrum of the histidine-normal 45-kDa peptide with 1 equiv of Cu2+ bound lacks superhyperfine and parallels closely that of the native protein with 20 equiv bound. Finally, Fe3+-mesoporphyrin binds to HRG exhibiting both high-spin (g = 6.05) and low-spin (gz = 2.94, gy = 2.25, gx = 1.50) EPR resonances, and the latter imply bis(histidine) coordination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
TfdA is a non-heme iron enzyme which catalyzes the first step in the oxidative degradation of the widely used herbicide (2, 4-dichlorophenoxy)acetate (2,4-D). Like other alpha-keto acid-dependent enzymes, TfdA utilizes a mononuclear Fe(II) center to activate O(2) and oxidize substrate concomitant with the oxidative decarboxylation of alpha-ketoglutarate (alpha-KG). Spectroscopic analyses of various Cu(II)-substituted and Fe(II)-reconstituted TfdA complexes via electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), and UV-vis spectroscopies have greatly expanded our knowledge of the enzyme's active site. The metal center is coordinated to two histidine residues as indicated by the presence of a five-line pattern in the Cu(II) EPR signal, for which superhyperfine splitting is attributed to two equivalent nitrogen donor atoms from two imidazoles. Furthermore, a comparison of the ESEEM spectra obtained in H(2)O and D(2)O demonstrates that the metal maintains several solvent-accessible sites, a conclusion corroborated by the increase in multiplicity in the EPR superhyperfine splitting observed in the presence of imidazole. Addition of alpha-KG to the Cu-containing enzyme leads to displacement of an equatorial water on copper, as determined by ESEEM analysis. Subsequent addition of 2,4-D leads to the loss of a second water molecule, with retention of a third, axially bound water. In contrast to these results, in Fe(II)-reconstituted TfdA, the cosubstrate alpha-KG chelates to the metal via a C-1 carboxylate oxygen and the alpha-keto oxygen as revealed by characteristic absorption features in the optical spectrum of Fe-TfdA. This binding mode is maintained in the presence of substrate, although the addition of 2,4-D does alter the metal coordination environment, perhaps by creating an O(2)-binding site via solvent displacement. Indeed, loss of solvent to generate an open binding site upon the addition of substrate has also been suggested for the alpha-keto acid-dependent enzyme clavaminate synthase 2 [Zhou et al. (1998) J. Am. Chem. Soc. 120, 13539-13540]. Nitrosyl adducts of various Fe-TfdA complexes have also been investigated by optical and EPR spectroscopy. Of special interest is the tightly bound NO complex of Fe-TfdA.(alpha-KG).(2,4-D), which may represent an accurate model of the initial oxygen-bound species.  相似文献   

17.
The N-terminal native sequence tripeptide of alpha-fetoprotein, L-threonyl-L-leucyl-L-histidine N-methylamide, was synthesized and its interaction with Cu(II) ions was investigated by potentiometric titration at 25 degrees C in 0.15 M-NaCl and by visible-absorption, e.p.r. and n.m.r. spectroscopy. Analyses of the results in the pH range 4-10 indicated the presence of multiple complex species in solution: MHL, MH-2L, MHL2, ML2 and MH-1L2, where M, H and L represent metal ion, proton and ligand anion respectively. Only the species MH-2L and MH-1L2 are present in significant amounts at physiological pH. The results of the visible-absorption spectroscopy are consistent with the findings of species distribution that MH-2L is the major complex species detected above physiological pH that has the spectral characteristics of lambda max. = 523 nm and epsilon max. = 98 M-1.cm-1. The nine superhyperfine lines in e.p.r. spectra of the major species MH-2L strongly support the co-ordination of four nitrogen atoms by Cu(II). Both 1H- and 13C-n.m.r. studies suggest that the species MH-2L is a square-planar complex. The results from the equilibrium-dialysis experiments showed that this peptide is able to compete with albumin for Cu(II) ions. At equimolar concentrations of albumin and the peptide, about 52% of the Cu(II) was bound to the peptide. The possibility that alpha-fetoprotein plays an important role as the Cu(II)-transport protein in fetal life is discussed.  相似文献   

18.
Zn2+ in native glyoxalase I from human erythrocytes can be replaced by Cu2+, giving an inactive enzyme. Cu2+ was demonstrated to compete with the activating metals Zn2+ and Mn2+, indicating a common binding site on the enzyme for these metal ions. The electron paramagnetic resonance (EPR) spectra of 63Cu(II) glyoxalase I at 77 K and of its complexes with glutathione and some glutathione derivatives are characteristic of Cu2+ in an elongated octahedral coordination (g parallel = 2.34, g perpendicular = 2.09, and A parallel = 14.2 mT). The low-field bands of the free enzyme are asymmetric and become symmetrical upon addition of glutathione or S-(p-bromobenzyl)glutathione but not S-(D-lactoyl)glutathione. The results indicate the existence of two conformations of Cu(II) glyoxalase I, in agreement with the effects caused by these compounds on the protein fluorescence. The copper hyperfine line at low field in the EPR spectrum of the S-(p-bromobenzyl)glutathione complex of 63Cu(II) glyoxalase I shows a triplet structure, indicative of coupling to one nitrogen ligand in the equatorial plane. Similar results were obtained with the glutathione complex. By addition of the spectrum of the S-(p-bromobenzyl)glutathione complex and a spectrum corresponding to two nitrogen ligands with two different coupling constants, a good fit was obtained for the low-field region of the asymmetric spectrum of free 63Cu(II) glyoxalase I. The first two spectra are assumed to correspond to two separate conformational states of the enzyme. The results demonstrate that at least one nitrogen ligand is involved in the binding of Cu2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Electron-nuclear double resonance (ENDOR) spectroscopy has been used to study ligand and copper hyperfine interactions in Cu(II) complexes of human transferrin. A nearly isotropic superhyperfine interaction of the Cu(II) spin with a single 14N nucleus was identified, and the principal values of its tensor were estimated. All principal values of the copper hyperfine tensor were also directly measured for the first time. Resonances from at least two exchangeable protons were observed, but their origin could not be ascertained. At physiological pH, and in the presence of bicarbonate, ENDOR spectra of the two metal-binding sites were virtually indistinguishable.  相似文献   

20.
Continuous-wave and pulsed electron paramagnetic resonance have been applied to the study of the Cu(II) site of the copper-resistance protein PcoC from Escherichia coli and certain variant forms. Electron spin echo envelope modulation (ESEEM) experiments confirm the presence of two histidine ligands, His1 and His92, at the Cu(II) site of wild-type PcoC, consistent with the available X-ray crystallographic data for the homolog CopC (67% sequence identity) from Pseudomonas syringae pv. tomato. The variants H1F and H92F each lack one of the histidine residues close to the Cu(II) site. The ESEEM data suggest that the surviving histidine residue remains as a ligand. The nA variant features an extra alanine residue at the N terminus, which demotes the His1 ligand to position 2. At least one of the two histidine residues is bound at the Cu(II) site in this form. Simulation of the (14)N superhyperfine structure in the continuous-wave spectra confirms the presence of at least three nitrogen-based ligands at the Cu(II) sites of the wild-type, H92F and nA forms, while the H1F variant has two nitrogen ligands. The spectra of wild-type form can be fitted adequately with a 3N or a 4N model. The former is consistent with the crystal structure of the CopC homolog, where His1 acts as a bidentate ligand. The latter raises the possibility of an additional unidentified nitrogen ligand. The markedly different spectra of the H1F and nA forms compared with the wild-type and H92F proteins further highlight the integral role of the N-terminal histidine residue in the high-affinity Cu(II) site of PcoC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号