首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipocytes from spontaneously hypertensive rats (SHR) are not as responsive to isoproterenol or dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) stimulation compared with Sprague-Dawley or Wistar-Kyoto rats. Lipolytic activity in adipocytes from trained normotensive rats was enhanced in response to 1 microM isoproterenol and 0.5 mM dibutyryl cAMP but not in adipocytes from trained SHR. Decreases in isoproterenol-stimulated (1 microM) cAMP accumulation were evident in adipocytes from trained normotensive rats but not in adipocytes from trained SHR. Basal and agonist-induced lipolysis in fat cells isolated from both normotensive rats and SHR immediately following a 60-min run was increased in both sedentary and trained rats. Adenylate cyclase activity in fat cell membranes was blunted in sedentary and trained SHR both in the absence and presence of 100 microM 5'-guanylyl imidophosphate. No apparent differences existed in antagonist affinity of binding sites for the antagonist dihydroalprenolol in normal rats or SHR. Evidence for a change in affinity of agonist isoproterenol might be indicated based on the enhanced potency of isoproterenol to stimulate lipolysis in trained normal rats. beta-Adrenergic receptor density and antagonist affinity were not different in normotensive rats and SHR in response to training. However, displacement of [3H]dihydroalprenolol in adipocytes from SHR required greater concentrations of isoproterenol compared with adipocytes from normotensive rats, further suggestive of increased agonist affinity of binding sites in normal rats. These data suggest a postreceptor lesion of the lipolytic pathway in adipocytes from spontaneously hypertensive rats, possibly at the guanine nucleotide regulatory protein level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
[3H]Dihydroalprenolol binding and adenylate cyclase activity in the myocardial membranes of Kyoto Wistar normotensive rats and spontaneously hypertensive rats were compared at various stages of postnatal development ranging from 2 to 36 weeks. Basal as well as agonist-stimulated myocardial adenylate cyclase activity was consistently decreased in spontaneously hypertensive rats as compared to normotensive rats as early as 2 weeks of age with significant differences (P < 0.05) observed after 6 weeks of age. When results were expressed as percent stimulation over the basal activity, only isoproterenol plus GTP-stimulated enzyme activity was reduced by 25--30% in spontaneously hypertensive rats, suggesting a specific loss of stimulation by isoproterenol in hypertensive animals. The number of [3H]dihydroalprenolol binding sites of KD for dihydroalprenolol binding were comparable between spontaneously hypertensive and normotensive rats at 3, 6 and 12 weeks of age. The competition of isoproterenol with [3H]dihydroalprenolol for the specific binding sites showed that the affinity of isoproterenol binding was decreased 3--4-fold in spontaneously hypertensive compared with normotensive rats. With postnatal development in age, basal as well as agonist-stimulated activities decreased progressively in both spontaneously hypertensive and normotensive rats. Similarly, the number of [3H]dihydroalprenolol binding sites decreased with the development in age, whereas affinity of dihydroalprenolol binding increased up to 12 weeks of age. These results therefore suggest that adenylate cyclase activity and the number of beta-adrenergic receptors in rat heart, decrease with age and that in hypertension, specific decrease in isoproterenol stimulation of cyclase appears at all stages of development.  相似文献   

3.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

4.
Basal adenylate cyclase activity was similar in plasma membranes prepared from the lungs of 12 week old spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). However, sensitivity to Gpp[NH]p, isoproterenol plus GTP or Gpp[NH]p was significantly greater in the SHR. Beta-receptor density measured by [3H]DHA binding was unaltered. The dissociation constant, Kd, revealed a significantly greater binding affinity of the radioligand in the SHR (6.23 +/- 0.45 nM) compared with the WKY (8.53 +/- 0.82 nM). Activity of Gs was assessed by complementing S49 cyc- acceptor membranes with lung cholate extract. Basal activity of the reconstituted system was decreased 43% in the SHR. However, sensitivity to NaF, Gpp[NH]p, and isoproterenol plus Gpp[NH]p was significantly elevated. These data suggest that desensitization of the adenylate cyclase complex is not a generalized response to chronic hypertension. A tissue specific increase in sympathetic drive appears to be responsible for the lowered concentration of cardiac beta-adrenoceptors in the SHR. In contrast, both indirect and direct evidence indicate an enhanced functional sensitivity of pulmonary Gs in the hypertensive rats.  相似文献   

5.
[3H]Dihydroalprenolol, a potent beta-adrenergic antagonist, was used to identify the adenylate cyclase-coupled beta-adrenoceptors in isolated membranes of rat skeletal muscle. The receptor sites, as revealed by [3H]dihydroalprenolol binding, were predominantly localized in plasmalemmal fraction. That skeletal muscle fraction may also contain the plasmalemma of other intramuscular cells, especially that of blood vessels. Hence, the [3H]dihydroalprenolol binding observed in that fraction may be due partly to its binding to the plasmalemma of blood vessels. Small but consistent binding was also observed in sarcoplasmic reticulum and mitochondria. The level of [3H]dihydroalprenolol binding in different subcellular fractions closely correlated with the level of adenylate cyclase present in those fractions. The binding of [3H]dihydroalprenolol to plasmalemma exhibited saturation kinetics. The binding was rapid, reaching equilibrium within 5 min, and it was readily dissociable. From the kinetics of binding, association (K1) and dissociation (K2) rate constants of 2.21 . 10(7) M-1 . min-1 and 3.21 . 10(-1) min-1, respectively, were obtained. The dissociation constant (Kd) of 15 mM for [3H]dihydroalprenolol obtained from saturation binding data closely agreed with the Kd derived from the ratio of dissociation and association rate constants (K2/K1). Several beta-adrenergic agents known to be active on intact skeletal muscle also competed for [3H]dihydroalprenolol binding sites in isolated plasmalemma with essentially similar selectivity and stereospecificity. Catecholamines competed for [3H]dihydroalprenolol binding sites with a potency of isoproterenol greater than epinephrine greater than norepinephrine. A similar order of potency was noted for catecholamines in the activation of adenylate cyclase. Effects of catecholamines were stereospecific, (-)-isomers being more potent than (+)-isomers. Phenylephrine, an alpha-adrenergic agonist, showed no effect either on [3H]dihydroalprenolol binding or on adenylate cyclase. Known beta-adrenergic antagonists, propranolol and alprenolol, stereospecifically inhibited the [3H]dihydroalprenolol binding and the isoproterenol-stimulated adenylate cyclase. The Ki values for the antagonists determined from inhibition of [3H]dihydroalprenolol binding agreed closely with the Ki values obtained from the inhibition of adenylate cyclase. The data suggest that the binding of [3H]dihydroalprenolol in skeletal muscle membranes possess the characteristics of a substance binding to the beta-adrenergic receptor.  相似文献   

6.
The beta-adrenergic catecholamine isoproterenol produces a large, rapid, but often a transient, elevation in cellular content of cyclic AMP. We have used the S49 mouse lymphoma cell line, in which genetic variants with specific defects in the pathway of cyclic AMP generation and function have been isolated, to study the increase and subsequent decrease in cyclic AMP levels (termed refractoriness) following incubation of cells with isoproterenol. In wild type S49 cells, isoproterenol produces a peak response in the cellular content of cyclic AMP within 30 min, but the cyclic AMP level falls rapidly thereafter, approaching basal levels by 6 h. Neither inactivation of the drug nor secretion of a nonspecific inhibitor of adenylate cyclase appears to account for the refractoriness. Because isoproterenol refractory cells can still be stimulated by cholera toxin, refractoriness to isoproterenol does not represent a generalized decrease in cellular cyclic AMP response. Particulate preparations from refractory cells have a selective loss of isoproterenol-responsive adenylate cyclase activity, but their activation constants and stereoselectivity for (-)- and (+)-isoproterenol are unaltered. In addition, refractory cells have decreased specific binding of the beta-adrenergic antagonist [125I]iodohydroxybenzylpindolol. This decrease appears to represent a reduction in the number, but not the affinity, of beta-adrenergic receptor sites. Similar studies in an S49 clone that lacks the enzyme cyclic AMP-dependent protein kinase yield essentially identical findings. Because kinase-deficient cells do not induce the cyclic AMP-degrading enzyme phosphodiesterase after the cellular content of cyclic AMP is increased, induced of phosphodiesterase cannot account for refractoriness to isoproterenol. Cyclic AMP-dependent protein kinase does not appear to be required for either the decrease in beta-adrenergic receptors and isoproterenol-responsive adenylate cyclase, nor does it appear to be required for the development of refractoriness to isoproterenol. In contrast, an S49 clone lacking hormone-responsive adenylate cyclase activity but retaining beta-adrenergic receptors does not appear to lose receptors after being incubated with isoproterenol, either alone or together with dibutyryl cyclic AMP. Therefore, in this clone, receptor occupancy alone or in combination with elevated cyclic AMP levels is insufficient to cause refractoriness. Refractoriness thus appears to require intact adenylate cyclase. This suggests that adenylate cyclase may exert regulatory controls on beta-adrenergic receptors in addition to generation of cyclic AMP.  相似文献   

7.
Estradiol administration (5 micrograms per day x 4 days) to ovariectomized rats resulted in a 60-70% increase in the maximal lipolytic response of their white adipocytes to isoproterenol, epinephrine, IBMX and forskolin. These altered lipolytic responses were accompanied by parallel changes in the intracellular cyclic AMP levels found in response to 1 mM IBMX alone (+ 106%) or combined with submaximal concentrations of isoproterenol (+205%), epinephrine (+190%) and forskolin (235%). Studies of the adenylate cyclase activity revealed an overall increase in the stimulatory responsiveness of the enzyme (+150 to +200%) after the estradiol-treatment, regardless of the stimulatory agents tested (GTP, GppNHp, fluoride, isoproterenol, ACTH, forskolin). Finally, the finding of a 2-fold enhancement of the Mn2+ (+/- GDP beta S)-stimulated adenylate cyclase activity after the estradiol-treatment strongly suggests that increased activity of the catalytic subunit of this enzyme is the likely mechanism whereby estrogens promote lipolysis in rat fat cells.  相似文献   

8.
Inotropic response to β-adrenergic stimulation of the myocardium is decreased in hypertension. A biochemical basis for this decrease was provided by the observation that the number of β-adrenergic receptors — as reflected in specific [3H]dihydroalprenolol binding — was diminished in the myocardium of spontaneously hypertensive rats without a change in the affinity of dihydroalprenolol for the binding sites or in the capacity of isoproterenol to displace dihydroalprenolol. The decline in β-adrenergic receptor numbers is not secondary to blood pressure elevation and may be related to increased sympathetic drive in spontaneously hypertensive rats.  相似文献   

9.
The binding of (±)-[3H]isoproterenol and (—)-[3H]dihydroalprenolol to intact turkey erythrocytes was studied using a rapid centrifugation technique. The binding of both ligands is rapid, dissociable, stereospecific and inhibited by (—)-propranolol. The total number of isoproterenol binding sites is 2800 sites/ cell. This consists of a low and high affinity site both of which show stereospecific binding. The high affinity isoproterenol site has a Kd of 15.5—19.5 nM and has 600 sites/cell. The low affinity isoproterenol site has a Kd of 195 nM and has 2200 sites/cell. The binding of (—)-[3H]dihydroalprenolol shows one type of site with a Kd of 7.8 nM and has 2500 sites/cell. The agonists epinephrine, norepinephrine, soterenol and p-hydroxyphenylisoproterenol which were tested by competition for binding showed a 6—25-fold greater affinity for the high affinity site determined by (±)-[3H]isoproterenol as compared to the (—)-[3H]dihydroalprenolol binding site. However, the antagonists propranolol, practolol and metrapolol showed similar affinities for the binding sites as determined by competition of binding of either labeled isoproterenol or dihydroalprenolol. These studies indicate that isoproterenol binding can recognize two independent stereospecific β-adrenergic receptors or can recognize two different conformational states of a single receptor. Provisional calculations are made on the turnover number of adenylate cyclase under physiological conditions using intact erythrocytes. The turnover number is 4000 molecules of cyclic AMP/10 min per high affinity receptor.  相似文献   

10.
The pharmacology of (+/-)-hydroxybenzylisoproterenol with respect to stimulation of cyclic AMP accumulation by isolated rat fat cells and liver cells was examined. (+/-)-Hydroxybenzylisoproterenol was found to be a full agonist and twice as potent as (-)-isoproterenol in liver cells, and equipotent to (-)-isoproterenol in fat cells with regard to stimulating cyclic AMP accumulation. A study of the ability of this catecholamine to stimulate adenylate cyclase activity of broken-cell preparations revealed that (+/-)-hydroxybenzylisoproterenol was equipotent to (-)-isoproterenol in liver cell homogenates, while 3- to 4-fold more potent than (-)-isoproterenol in fat cell ghost membranes. (+/-)-Hydroxybenzylisoproterenol was also found to be as potent as (-)-isoproterenol in stimulating cyclase activity of S49 mouse lymphoma cell membranes. Competition studies of specific [125I]iodohydroxybenzylpindolol binding to liver cell membranes revealed a Kd of 10 nM for (+/-)-hydroxybenzylisoproterenol and 25 nM for (-)-isoproterenol binding to the liver beta-adrenergic receptor. Competition studies of specific (-)-[3H]dihydroalprenolol binding to fat cell membranes indicated a similar affinity of these sites for both (+/-)-hydroxybenzylisoproterenol and (-)-isoproterenol. The guanyl nucleotide Gpp(NH)p induced a shift in the curve for competition of (-)-[3H]dihydroalprenolol binding by (-)-isoproterenol to the right, but failed to do so when (+/-)-hydroxybenzylisoproterenol was the competing agonist. Properties of (+/-)-[3H]hydroxybenzylisoproterenol binding to fat cell or liver cell membranes were inconsistent with those expected of adenylate cyclase coupled beta-adrenergic receptors.  相似文献   

11.
The binding characteristics of the beta-adrenergic antagonist, [3H]dihydroalprenolol, to hamster white adipocyte membranes were studied. This binding occurred at two classes of sites, one having high affinity (Kd = 1.6 +/- 1.3 nM) but low capacity (32 +/- 17 fmol/mg membrane protein) and one having low affinity but high binding capacity. While the binding at the high-affinity sites was competitively and stereoselectively displaced by both beta-antagonists and beta-agonists, competition at the low-affinity sites occurred only with beta-antagonists and was non-stereoselective. Thus, the beta-agonist (-)-isoproterenol was further used to define nonspecific binding. Under these conditions, saturation studies showed a single class of high-affinity (Kd = 1.6 +/- 0.5 nM) binding sites with a binding capacity of 53 +/- 13 fmol/mg membrane protein (corresponding to 4000 +/- 980 sites per cell), and independent kinetic analysis provided a Kd value of 1.9 nM. Competition experiments showed that these binding sites had the characteristics of a beta 1-receptor subtype, yielding Kd values in good agreement with the Kact and the Ki values found for agonist-stimulation and for antagonist-inhibition of adenylate cyclase in membranes and of cyclic AMP accumulation and lipolysis in intact cells. Furthermore, the ability of beta-agonists to compete with this binding was severely depressed by p[NH]ppG. These results thus support the contention that the specific [3H]dihydroalprenolol binding sites defined as the binding displaceable by (-)-isoproterenol represent the physiologically relevant beta-adrenergic receptors of hamster white adipocytes. Finally, studies of the lipolytic response of these cells to (-)-norepinephrine showed that the inhibitory effect of the alpha 2-component of this catecholamine was apparent only when the effects of endogenous adenosine were suppressed, a result which argues against an important regulatory role for the alpha 2-receptors in the adrenergic control of lipolysis in hamster white adipocytes.  相似文献   

12.
Cell cycle changes in the adenylate cyclase of C6 glioma cells   总被引:1,自引:1,他引:0       下载免费PDF全文
The adenylate cyclase of C6 glioma cell cultures was characterized for sensitivity to the beta-adrenergic agonist isoproterenol, as well as fluoride, and GTP as a function of the cell cycle. The mitotic phase of the cell cycle was emphasized because both the basal cellular cyclic AMP level and the intact C6 cell's capacity to accumulate cyclic AMP in response to isoproterenol decreased during mitosis. Basal and stimulated adenylate cyclase activities in mitotic cells were decreased relative to the enzyme activities in the G1, S, and G2 phases of the cell cycle. Analysis of the beta-adrenergic receptor using the radioligand(-)[3H]dihydroalprenolol showed that neither ligand affinity nor receptor density changed during the cell cycle, indicating that the reduced adenylate cyclase activity of the mitotic C6 cell was not caused by alterations in this hormone receptor. The reduction in the mitotic cell's basal adenylate cyclase activity was more prominent than the decrease in isoproterenol-, fluoride, or GTP-stimulated activities suggesting that the effectiveness of these enzymes activators (i.e., the efficiency of the coupling mechanism) was not attenuated during mitosis. These studies indicate that the intrinsic catalytic capacity (not the beta-adrenergic receptor or the coupling mechanism) of the C6 adenylate cyclase complex is reduced during mitosis and contributes to the mitotic cell's inability to accumulate and maintain the cyclic AMP concentration at the interphase level.  相似文献   

13.
It has been suggested that part of the increased beta-catecholamine responsiveness in hyperthyroid animals is due to a decrease in alpha-catecholamine action. The present results indicate that neither hyperthyroidism nor hypothyroidism altered the alpha 2-adrenergic inhibition of adenylate cyclase or the alpha 1-adrenergic stimulation of phosphatidylinositol turnover in adipocytes from the white adipose tissue of hamsters. No effect of hyperthyroidism was found on the Kd for binding of [3H]dihydroergocryptine or the number of binding sites in membranes prepared from hamster adipocyte tissue. The stimulation of cyclic AMP due to beta-catecholamines was enhanced in adipocytes from hyperthyroid hamsters, as was lipolysis. However, in adipocytes from hyperthyroid hamsters the maximal stimulation of cyclic AMP due to isoproterenol, ACTH or epinephrine plus yohimbine, as seen in the presence of adenosine deaminase and theophylline, was less than in adipocytes from euthyroid hamsters. The activation of adenylate cyclase by isoproterenol was the same in membranes from hyperthyroid as compared to those from euthyroid hamsters in the absence or presence of guanine nucleotides. These data suggest that thyroid status has little effect on alpha-catecholamine action by enhances the activation of lipolysis by beta-catecholamine agonists.  相似文献   

14.
K Kistler  J N Davis 《Life sciences》1980,26(13):1053-1059
The clonidine withdrawal syndrome was studied in the rat by measuring β-adrenergic responses as isoproterenol stimulated cyclic 3′, 5′-Adenosine monophosphate accumulation in brain slices and β-adrenergic membrane receptors as [3H] dihydroalprenolol binding. Supersensitivity of cyclic AMP accumulation was evident in brain-stems of clonidine-treated animals 18 and 24 hours after the last dose, but not in cerebral cortex. In addition there was no indication of changes in either number or affinity of beta-receptors in brainstem. The similarity of these findings to changes in adenylate cyclase activity seen during opiate withdrawal is intriguing.  相似文献   

15.
Tetracaine and other local anesthetics exert multiple actions on the catecholamine-sensitive adenylate cyclase system of frog erythrocyte membranes. Tetracaine (0.2--20 mM) reduces the responsiveness of adenylate cyclase to (a) guanyl-5'-yl-imidodiphosphate and (b) isoproterenol in the presence of GTP or guanyl-5'-yl-imidodiphosphate. Local anesthetics did not affect (a) basal enzyme activity, and (b) enzyme responsiveness to NaF. Tetracaine inhibited stimulation of adenylate cyclase by guanyl-5'-yl-imidodiphosphate over the whole range of nucleotide concentrations. By contrast, inhibition by tetracaine of isoproterenol activity in the presence of GTP was significant only if GTP concentrations exceeded 10(-7) M. Tetracaine also competitively inhibited binding of both the antagonist [3H]dihydroalprenolol and the agonist [3H]hydroxybenzylisoproterenol to beta-adrenergic receptors. However, it was twice as potent in inhibiting [3H]hydroxybenzylisoproterenol as [3H]dihydroalprenolol binding. The greater potency for inhibition of agonist binding was due to the ability of the anesthetics to promote dissociation of the high-affinity nucleotide sensitive state of the beta-adrenergic receptor induced by agonists. Other local anesthetics mimicked the effects of tetracaine on adenylatecyclase and in dissociating high-affinity agonist-receptor complexes. The other of potency for both processes was dibucaine greater than tetracaine greater than bupivacaine greater than lidocaine which agrees with their relative potencies as local anesthetics. By contrast, a different order of potency was observed for competitive inhibition of [3H]dihydroalprenolol binding: dibucaine greater than tetracaine greater than greater than lidocaine greater than bupivacaine.  相似文献   

16.
Steroid hormones modulate the ability of cells to respond to hormones that act via cyclic AMP. In adipocytes of adrenalectomized rats, cyclic AMP accumulation and lipolysis in response to adrenaline are attenuated. However, the mechanism(s) of these effects are poorly understood. The effects of altered glucocorticoid status in vivo on the steady-state amounts of components of the hormone-sensitive adenylate cyclase were analysed in rat adipocytes. beta-Adrenergic receptors were analysed by using radioligand binding and immunoblotting with an anti-receptor antiserum. Neither the amount of radioligand binding nor the amount of beta-adrenergic-receptor peptide (Mr 67,000) was altered by adrenalectomy, whereas treatment of adrenalectomized rats with dexamethasone was found to increase both parameters by more than 25% with respect to the control. Forskolin-stimulated adenylated cyclase activity was unchanged in membranes isolated from adipocytes of adrenalectomized rats, but was decreased (50%) in those from dexamethasone-treated rats. The alpha-subunit of Gs was probed by using cholera-toxin-catalysed ADP-ribosylation. Immunoblotting was used to analyse the steady-state amounts of G-protein beta-subunits (beta-G35/36). Adrenalectomy was associated with decreases in the steady-state amounts of alpha-Gs (30%) and beta-G35/36 (50%). Dexamethasone treatment of adrenalectomized animals partially restored the lipolytic response of adipocytes to adrenaline and the amounts of alpha-Gs, increased the amounts of beta-G35/36 subunits from 50% to 150% of control values, increased beta-adrenergic receptors by more than 25% and decreased adenylate cyclase activity (50%). These results suggest that the steady-state amounts of components of hormone-sensitive adenylate cyclase are differentially regulated by glucocorticoids.  相似文献   

17.
The responsiveness of a growth-regulated rat 3Y1 cell line and five clones of 3Y1 cells transformed by the highly oncogenic human adenovirus type 12 to the catecholamine hormone (-)-isoproterenol was studied. The untransformed cells contained beta-adrenergic receptors characterized by specific binding of the beta-adrenergic receptor antagonist (-)-[3H]dihydroalprenolol, a 9- to 12-fold increase in cyclic AMP production in intact cells after incubation with 10 microM (-)-isoproterenol, and significantly increased adenylate cyclase (ATP pyrophosphatelyase [cyclizing], EC 4.6.1.1) activity in the presence of the hormone. In contrast, (-)-isoproterenol (10 to 100 microM) had no apparent effect on cyclic AMP production or the basal adenylate cyclase activity in the transformed cell lines. Binding studies revealed that untransformed cells contained approximately 19,400 beta-adrenergic receptor sites per cell. Three transformed cell clones tested showed a three- to fourfold loss of beta-adrenergic receptors.  相似文献   

18.
The effects of (-)isoproterenol (10(-6) M), dibutyryl cyclic AMP (10(-3) M), and the phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine (IBMX) (10(-4) M) on in vitro [3H]dopamine ([3H]DA) efflux and synthesis were studied in rat striatal slices continuously superfused with [3H]tyrosine. The beta-adrenoceptor agonist (-)isoproterenol induced an immediate and significant facilitation of [3H]DA efflux but did not alter [3H]DA synthesis as measured by [3H]H2O formation. In contrast, both dibutyryl cyclic AMP and IBMX enhanced [3H]DA synthesis as well as efflux. The presence of IBMX in the superfusing medium did not potentiate the augmentation of [3H]DA efflux caused by (-)isoproterenol. Additionally, the blockade of [3H]DA synthesis by alpha-methyl-p-tyrosine (10(-4) M) completely prevented the action of dibutyryl cyclic AMP on [3H]DA efflux. However, under similar conditions, (-)isoproterenol was still able to increase [3H]DA efflux. The results suggest that (-)isoproterenol can modify striatal DA release through a mechanism not involving cyclic AMP.  相似文献   

19.
Using purified rat ventricular myocytes and membranes prepared from them, we have previously found that alpha 1-adrenergic stimulation causes decreased cyclic AMP accumulation and decreased activation of cyclic AMP-dependent protein kinase. We have now analyzed the mechanism by which alpha 1 stimulation is linked to cyclic AMP metabolism. In an adenylate cyclase assay in which carbachol inhibits the stimulatory effect of norepinephrine, the addition of prazosin (alpha 1-antagonist) has no effect on the response to norepinephrine. In membranes prepared from myocytes treated with pertussis toxin, norepinephrine competes for alpha 1-receptors (assessed by [3H]prazosin binding) with two components, binding to the high affinity component being sensitive to exogenous GTP, exactly as in membranes prepared from control myocytes. In intact cells labeled with [3H]adenine in which carbachol antagonizes the norepinephrine response, prazosin enhances accumulation of [3H]cyclic AMP due to norepinephrine. Treatment of cells with pertussis toxin eliminates inhibition by carbachol but does not alter prazosin's capacity to enhance the norepinephrine response. Addition of phosphodiesterase inhibitors eliminates this effect of alpha 1 blockade. In [3H]adenine-labeled cells loaded with [3H]cyclic AMP by prior treatment with isoproterenol, alpha 1-adrenergic stimulation enhances disappearance of [3H]cyclic AMP. Measurements of cellular cyclic AMP give results similar to those obtained with the adenine labeling technic. We conclude that occupation of the myocyte alpha 1-receptor results in stimulation of cyclic AMP phosphodiesterase activity.  相似文献   

20.
The effect of acute and repeated desmethylimipramine (DMI) treatment on catecholamine-stimulated production of adenosine 3', 5'-monophosphate (cyclic AMP) in rat pineal gland was studied invivo. In rats exposed to continuous illumination, the administration of isoproterenol (2μmol/kg) to control animals produced a marked increase in the concentration of cyclic AMP in pineal gland. In contrast, norepinephrine (2μmol/kg) failed to increase the levels of cyclic AMP. After acute treatment with DMI (single injection, 38μmol/kg, i. p.), the isoproterenol-induced rise in cyclic AMP was not significantly different from that measured in control animals. However, acute DMI treatment did allow a significant elevation in the concentration of cyclic AMP in pineal gland in response to norepinephrine. In rats given nine injections of DMI (38μmol/kg, i.p., twice daily) neither isoproterenol nor norepinephrine caused a significant increase in the concentration of cyclic AMP in pineal glands. Although acute treatment with DMI had no significant effect on [3H] dihydroalprenolol binding, chronic treatment with DMI significantly reduced [3H] dihydroalprenolol binding in the pineal gland. The results of this study suggest that while a single administration of DMI can enhance adrenergic responses elicited by norepinephrine, chronic administration of DMI leads to compensatory decreases in receptor density and adrenergic responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号