首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
While studying the inhibition of telomerase activity in Chinese hamster V79 cells using polymerase chain reaction (PCR) based telomeric repeat amplification protocol (TRAP) assay, we had earlier observed that 7-deaza deoxy guanosine triphosphate (7-deaza dGTP) and oligonucleotide (TTAGGG)4 inhibited telomerase activity in vitro. In the present study, we report inhibition of telomerase activity by modified base 7-deaza deoxy adenosine triphosphate (7-deaza dATP) and phosphorothioate TTAGGG (PS-TTAGGG). Both the compounds inhibited telomerase activity in a concentration dependent manner; 8.5 microM of 7-deaza dATP and 0.1 microM of PS-TTAGGG being the concentration for 50% of the maximum inhibition. This observation supports our earlier hypothesis that incorporation of a modified nucleotide into telomere possibly interferes with the recognition of the telomerase and TTAGGG interferes with the RNA component of telomerase. We have further shown that treatment of cells with nicotinamide (NA) and benzamide (BA), well known inhibitors of poly (ADP-ribose) polymerase, reduced telomerase activity. We speculate that modification of the telomeric binding proteins or other components by poly (ADP-ribosyl)ation may be involved in such inhibition.  相似文献   

3.
4.
Telomerase, responsible for telomere synthesis, is expressed in approximately 90% of human tumor cells but seldom in normal somatic cells. In this study, inhibition by carbocyclic oxetanocin G triphosphate (C. OXT-GTP) and its analogues was investigated in order to clarify the susceptibility of telomerase to various nucleotide analogues. C. OXT-GTP competitively inhibited telomerase activity with respect to dGTP However, C. OXT-GTP had a potent inhibitory effect on DNA polymerase alpha. It was examined whether the nucleoside (C. OXT-G) was able to alter telomere length in cultured human HL60 cells. Contrary to expectation, long-term treatment with 10 microM C. OXT-G was found to cause telomere lengthening.  相似文献   

5.
6.
7.
8.
The telomere and telomerase have been suggested as targets for anticancer drug discovery. However, the mechanisms by which conventional anticancer drugs affect these targets are currently unclear. The novel topoisomerase II inhibitor, salvicine, suppresses telomerase activity in leukemia HL-60 cells. To further determine whether this activity of salvicine is specific to the hematological tumor and distinct from those of other conventional anticancer agents, we studied its effects on telomere and telomerase in a solid lung carcinoma cell line, A549. Differences in telomerase inhibition and telomere erosion were observed between salvcine and other anticancer agents. All anticancer agents (except adriamycin) induced shortening of the telomere, which was identified independent of replication, but only salvicine inhibited telomerase activity in A549 cells under conditions of high concentration and short-term exposure. At the low concentration and long-term exposure mode, all the tested anticancer agents shortened the telomere and inhibited telomerase activity in the same cell line. Notably, salvicine inhibited telomerase activity more severely than the other agents examined. Moreover, the compound inhibited telomerase activity in A549 cells indirectly in a concentration- and time-dependent manner. Salvicine did not affect the expression of hTERT, hTP1, and hTR mRNA in A549 cells following 4 h of exposure. Okadaic acid protected telomerase from inhibition by salvicine. These results indicate specificity of salvicine and diversity of anticancer agents in the mechanism of interference with telomerase and the telomere system. Our data should be helpful for designing the study in the development of agents acting on telomere and/or telomerase.  相似文献   

9.
10.
Telomerase, the ribonucleoprotein enzyme maintaining the telomeres of eukaryotic chromosomes, is active in most human cancers and in germline cells but, with few exceptions, not in normal human somatic tissues. Telomere maintenance is essential to the replicative potential of malignant cells and the inhibition of telomerase can lead to telomere shortening and cessation of unrestrained proliferation. We describe novel chemical compounds which selectively inhibit telomerase in vitro and in vivo. Treatment of cancer cells with these inhibitors leads to progressive telomere shortening, with no acute cytotoxicity, but a proliferation arrest after a characteristic lag period with hallmarks of senescence, including morphological, mitotic and chromosomal aberrations and altered patterns of gene expression. Telomerase inhibition and telomere shortening also result in a marked reduction of the tumorigenic potential of drug-treated tumour cells in a mouse xenograft model. This model was also used to demonstrate in vivo efficacy with no adverse side effects and uncomplicated oral administration of the inhibitor. These findings indicate that potent and selective, non-nucleosidic telomerase inhibitors can be designed as novel cancer treatment modalities.  相似文献   

11.
Telomerase is a ribonucleoprotein that adds 5'-d(TTAGGG)-3' hexameric repeats onto the 3' ends of chromosomes. High telomerase activity has been associated with immortal cells, transformed cells, mitogenic stimulation, and proliferative diseases. It is not clear what phenotype would be observed by transient inhibition of telomerase. Studies were designed to inhibit telomerase activity using a series of S-ODN telomere sequence motifs. The studies evaluated the length, hydrogen bonding, and sequence requirements of telomerase inhibition using the TRAP assay and a bioassay measuring cell viability following exposure to the compounds. In addition, we have also studied the role of the 3' end and secondary structure of telomere mimics on telomerase inhibition. Observations reveal that sensitivity to the S-ODNs may not require hybridization to an antisense target but required guanine nucleotides on the 3' end for cells in culture and telomerase inhibition in vitro. The importance of H bonding and the requirement for a free 3' end for the activity of these compounds has also been demonstrated. However, transient inhibition of telomerase is not cytotoxic to all immortal cells and is not sufficient to explain the mechanism of cytotoxicity of these short oligonucleotides.  相似文献   

12.
13.
A novel telomerase-associated protein was isolated from porcine testis. The 115-kDa protein, purified with telomerase activity, was molecular cloned using human cDNA library, and identified as MOV10. The expression levels of both MOV10 mRNA and MOV10 protein in cancer cells were 2-3 times higher than that of the normal cells, and MOV10 mRNA was highly expressed in human testis and ovary. The anti-MOV10 antibody precipitated the telomerase activity from cancer cell extracts, and inhibited the telomerase activity in vitro. Sf9-expressed MOV10 protein bound to G-rich strand of both single- and double-stranded telomere-sequenced DNA, but not to single C-rich strand. ChIP assay showed the binding of MOV10 to telomere region in vivo. These data suggest that MOV10 is involved in the progression of telomerase-catalyzing reaction via the interaction of telomerase protein and telomere DNA.  相似文献   

14.
15.
16.
Telomerase and telomere maintenance are emerging targets for the treatment of human cancers. We report here on the targeting of the telomere-telomerase complex with a series of small molecules based on an acridine platform. A series of 3,6-bisamidoacridines with extended 9-anilino sidechains were designed and synthesised as potential telomeric G-quadruplex DNA (G4) interacting compounds. G4-stabilisation was assessed using a high-throughput FRET (fluorescence resonance energy transfer) assay and telomerase inhibition quantified by a modified TRAP (telomerase repeat amplification protocol) method. Within the series, the compounds showed significant G4-stabilising ability (Delta T(m) values of 25-36 degrees C at 1 microM concentration) and telomerase inhibition in the nanomolar region ((tel)EC(50) values of 80-318 nM). Furthermore, a direct correlation between the FRET and TRAP assays was observed, supporting the use of the rapid screening FRET assay for early assessment of potential G4-stabilising telomerase inhibitors.  相似文献   

17.
Telomerase, a ribonucleoprotein, synthesizes telomeric repeats (TTAGGG) onto the ends of chromosomes to maintain the constant length of the telomere DNA, and its activity is detectable in approximately 85%-90% of primary human cancers. Thus, it is postulated that human telomerase might be associated with malignant tumor development and could be a highly selective target for antitumor drug design. Antisense phosphorothioate oligonucleotides (S-ODN) were investigated for their abilities to inhibit telomerase activity in the HeLa cell line. The S-ODN were designed to be complementary to nucleotides within the RNA active site of telomerase. As a transfection reagent, FuGENE6 (Boehringer Mannheim, Mannheim, Germany) was used to enhance the cellular uptake of the oligonucleotides in cell cultures. The S-ODN encapsulated with FuGENE6 clearly inhibited telomerase activity in HeLa cells and showed sequence-specific inhibition. The encapsulated S-ODN-3 with a 19-nucleotide, (nt) chain length had inhibitory effects similar to those of the 21-mer and 23-mer S-ODN sequences (S-ODN-4 and 5), but the 15-mer and 17-mer S-ODN sequences (S-ODN-1 and 2) failed to satisfactorily prevent telomerase activity. However, apoptotic HeLa cell death was not associated with telomerase inhibition. Furthermore, the encapsulated S-ODN did not appear to be cytotoxic in terms of the cell growth rate. The oligonucleotides encapsulated with the transfection reagent had enhanced cellular uptake, and cytoplasmic and nuclear localizations were observed. However, weak fluorescent signals were observed within the cytoplasms of HeLa cells treated with the free S-ODN-3. Thus, the activities of the S-ODN were effectively enhanced by using the transfection reagent. The transfection reagent, FuGENE6, may thus be a potentially useful delivery vehicle for oligonucleotide-based therapeutics and transgenes and is appropriate for use in vitro and in vivo.  相似文献   

18.

Telomerase, responsible for telomere synthesis, is expressed in ~ 90% of human tumor cells but seldom in normal somatic cells. In this study, inhibition by carbocyclic oxetanocin G triphosphate (C.OXT-GTP) and its analogues was investigated in order to clarify the susceptibility of telomerase to various nucleotide analogues. C.OXT-GTP competitively inhibited telomerase activity with respect to dGTP. However, C.OXT-GTP had a potent inhibitory effect on DNA polymerase α. It was examined whether the nucleoside (C.OXT-G) was able to alter telomere length in cultured human HL60 cells. Contrary to expectation, long-term treatment with 10 μM C.OXT-G was found to cause telomere lengthening.  相似文献   

19.
20.
Telomere maintenance is essential for protecting chromosome ends. Aberrations in telomere length have been implicated in cancer and aging. Telomere elongation by human telomerase is inhibited in cis by the telomeric protein TRF1 and its associated proteins. However, the link between TRF1 and inhibition of telomerase elongation of telomeres remains elusive because TRF1 has no direct effect on telomerase activity. We have previously identified one Pin2/TRF1-interacting protein, PinX1, that has the unique property of directly binding and inhibiting telomerase catalytic activity (Zhou, X. Z., and Lu, K. P. (2001) Cell 107, 347-359). However, nothing is known about the role of the PinX1-TRF1 interaction in the regulation of telomere maintenance. By identifying functional domains and key amino acid residues in PinX1 and TRF1 responsible for the PinX1-TRF1 interaction, we show that the TRF homology domain of TRF1 interacts with a minimal 20-amino acid sequence of PinX1 via hydrophilic and hydrophobic interactions. Significantly, either disrupting this interaction by mutating the critical Leu-291 residue in PinX1 or knocking down endogenous TRF1 by RNAi abolishes the ability of PinX1 to localize to telomeres and to inhibit telomere elongation in cells even though neither has any effect on telomerase activity per se. Thus, the telomerase inhibitor PinX1 is recruited to telomeres by TRF1 and provides a critical link between TRF1 and telomerase inhibition to prevent telomere elongation and help maintain telomere homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号