首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vertical, lateral and longitudinal movement of zooplankton in a large river   总被引:1,自引:0,他引:1  
1. The spatial distribution and movement patterns of zooplankton in large rivers are little known compared with those in lake environments. We conducted a series of studies in the Ohio River (U.S.A.) during the low flow period to assess diel vertical (DVM), longitudinal and lateral movement of crustacean zooplankton. 2. The dominant large zooplankter, the copepod Eurytemora affinis, showed a consistent vertical migration pattern of daytime ascent and night‐time descent during all sampling periods – the reverse of the most common migratory pattern of zooplankton in lakes. The cladoceran Bosmina migrated in a similar way in two of the three sampling periods. Surveys taken longitudinally in the river showed similar trends for both taxa. 3. During the lateral surveys, E. affinis was significantly more abundant in the shallow littoral zone during the night than in the daytime. The combination of vertical and lateral movement patterns along with the diel distribution of zooplanktivorous fish suggest that these movements are a predator‐avoidance mechanism. 4. Sampling programmes in large rivers should consider that larger zooplankton such as E. affinis may not be randomly distributed in the river channel and behaviours such as diel vertical migration may be just as evident in river habitats as in lakes.  相似文献   

2.
浮游动物昼夜垂直迁移机理的主要假说及其研究进展   总被引:3,自引:0,他引:3  
刘顺会  孙松  韩博平 《生态科学》2008,27(6):515-521
对有关浮游动物昼夜垂直迁移(DVM)机理的实验、假说以及理论模型方面的研究进.展进行了综述。昼夜垂直迁移通常指常规迁移(傍晚上升,拂晓下降),其行为过程不仅影响浮游动物的垂直分布,而且也间接地影响其水平分布及生活史特征,对浮游动物在一定水域的种群维持和补充具有重要的意义。与垂直迁移机理有关的假说主要有光驱动假说、逃避捕食者假说、能量和资源利用假说等,其中逃避捕食者假说已得到大量的实验证实。其理论模型研究一般在两个时间尺度上进行,一个是短期的行为机制研究,另一个从长期的生活史策略的角度考虑。随着实验技术的进步和理论及建模工具的发展,这两个时间尺度的研究正逐渐统一到一个框架下进行。  相似文献   

3.
1. We present data with a high spatio‐temporal resolution from a 72‐h field survey in Bautzen Reservoir (Saxony, Germany). The aims of this survey were to observe hydrophysical processes during a period of unstable stratification in spring and investigate the effect of wind‐induced internal waves on the vertical distribution of zooplankton. 2. Wind velocities up to 10 m s−1 caused a strong downwelling event of warm water at the sampling site and led to the generation of internal waves with an amplitude of 4 m. 3. The zooplankton community, which was dominated by Daphnia galeata, inhabited epilimnetic waters. Downwelling enlarged the thickness of the epilimnetic layer and, hence, led to high zooplankton abundances down to relatively deep water strata indicating lateral transport of zooplankton. As a consequence, area‐specific zooplankton abundances increased considerably (max. fourfold) during downwelling. 4. We conclude that classical limnological field sampling, such as for monitoring purposes, can lead to severely biased estimates of zooplankton abundance due to the interfering effects of hydrophysical processes like internal waves. 5. Backscattering strengths measured by a simultaneously deployed Acoustic Doppler Current Profiler (600 kHz) were found to be correlated with estimated zooplankton abundances based on plankton samples.  相似文献   

4.
1. Structural complexity may stabilise predator–prey interactions and affect the outcome of trophic cascades by providing prey refuges. In deep lakes, vulnerable zooplankton move vertically to avoid fish predation. In contrast, submerged plants often provide a diel refuge against fish predation for large‐bodied zooplankton in shallow temperate lakes, with consequences for the whole ecosystem. 2. To test the extent to which macrophytes serve as refuges for zooplankton in temperate and subtropical lakes, we introduced artificial plant beds into the littoral area of five pairs of shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N). We used plants of different architecture (submerged and free‐floating) along a gradient of turbidity over which the lakes were paired. 3. We found remarkable differences in the structure (taxon‐richness at the genus level, composition and density) of the zooplankton communities in the littoral area between climate zones. Richer communities of larger‐bodied taxa (frequently including Daphnia spp.) occurred in the temperate lakes, whereas small‐bodied taxa characterised the subtropical lakes. More genera and a higher density of benthic/plant‐associated cladocerans also occurred in the temperate lakes. The density of all crustaceans, except calanoid copepods, was significantly higher in the temperate lakes (c. 5.5‐fold higher). 4. Fish and shrimps (genus Palaemonetes) seemed to exert a stronger predation pressure on zooplankton in the plant beds in the subtropical lakes, while the pelagic invertebrate Chaoborus sp. was slightly more abundant than in the temperate lakes. In contrast, plant‐associated predatory macroinvertebrates were eight times more abundant in the temperate than in the subtropical lakes. 5. The artificial submerged plants hosted significantly more cladocerans than the free‐floating plants, which were particularly avoided in the subtropical lakes. Patterns indicating diel horizontal migration were frequently observed for both overall zooplankton density and individual taxa in the temperate, but not the subtropical, lakes. In contrast, patterns of diel vertical migration prevailed for both the overall zooplankton and for most individual taxa in the subtropics, irrespective of water turbidity. 6. Higher fish predation probably shapes the general structure and dynamics of cladoceran communities in the subtropical lakes. Our results support the hypothesis that horizontal migration is less prevalent in the subtropics than in temperate lakes, and that no predator‐avoidance behaviour effectively counteracts predation pressure in the subtropics. Positive effects of aquatic plants on water transparency, via their acting as a refuge for zooplankton, may be generally weak or rare in warm lakes.  相似文献   

5.
We removed the surface-orienting aquatic insects from a fishless pond to determine their predation effects on zooplankton behavior and size structure. A second fishless pond served as the unmanipulated reference system in this two year study. In the reference pond and the treatment pond prior to manipulation, daphnids exhibited pronounced diel vertical migrations. Following the removal of surface-orienting aquatic insects from the treatment pond, daphnid migration changed to a reverse migration strategy that was significantly different from that observed in the reference system. Average daphnid body size increased significantly following predator removal in the treatment system. Our data indicate that predation by aquatic insect predators, such as notonectids and dytiscids, may affect daphnid migration behavior in fishless systems. Vertical migration by daphnids may allow coexistence with surface-orienting insects in ponds that are deep enough to provide a spatial refuge from these predators.  相似文献   

6.
SUMMARY 1. In oligotrophic lakes, phytoplankton and bacteria growing in the deep chlorophyll maximum in the cool metalimnion of lakes often dominate biomass and production, but the importance of this source of food for zooplankton is unknown.
2. During much of the day, Daphnia rosea in two mountain lakes inhabited deep chlorophyll layers where food availability was at least equal to that in the epilimnion.
3. To determine the importance of the two strata (epilimnion and metalimnion) for Daphnia , we used a cross-classified factorial experiment to measure how epilimnetic and metalimnetic food and temperature (10 and 16 °C) influenced survival, growth and reproduction.
4. Daphnia survived and grew better when fed seston from the epilimnion of one lake, although chlorophyll, particulate nitrogen and particulate carbon were 2–2.5 times greater in the metalimnion.
5. Temperature had no significant influence on Daphnia survival or growth. Similar results were obtained with food from the second lake, with Daphnia surviving and reproducing better when provided with epilimnetic, rather than metalimnetic food, although the quantities of chlorophyll and carbon in the two strata were similar.
6. Food quality, rather than quantity or temperature, appeared to be the most important determinant influencing survival, growth and reproduction, and the greater food quantity in the metalimnia was not used effectively by the Daphnia .  相似文献   

7.
Vertical migration is a geographically and taxonomically widespread behaviour among zooplankton that spans across diel and seasonal timescales. The shorter-term diel vertical migration (DVM) has a periodicity of up to 1 day and was first described by the French naturalist Georges Cuvier in 1817. In 1888, the German marine biologist Carl Chun described the longer-term seasonal vertical migration (SVM), which has a periodicity of ca. 1 year. The proximate control and adaptive significance of DVM have been extensively studied and are well understood. DVM is generally a behaviour controlled by ambient irradiance, which allows herbivorous zooplankton to feed in food-rich shallower waters during the night when light-dependent (visual) predation risk is minimal and take refuge in deeper, darker waters during daytime. However, DVMs of herbivorous zooplankton are followed by their predators, producing complex predator–prey patterns that may be traced across multiple trophic levels. In contrast to DVM, SVM research is relatively young and its causes and consequences are less well understood. During periods of seasonal environmental deterioration, SVM allows zooplankton to evacuate shallower waters seasonally and take refuge in deeper waters often in a state of dormancy. Both DVM and SVM play a significant role in the vertical transport of organic carbon to deeper waters (biological carbon sequestration), and hence in the buffering of global climate change. Although many animal migrations are expected to change under future climate scenarios, little is known about the potential implications of global climate change on zooplankton vertical migrations and its impact on the biological carbon sequestration process. Further, the combined influence of DVM and SVM in determining zooplankton fitness and maintenance of their horizontal (geographic) distributions is not well understood. The contrasting spatial (deep versus shallow) and temporal (diel versus seasonal) scales over which these two migrations occur lead to challenges in studying them at higher spatial, temporal and biological resolution and coverage. Extending the largely population-based vertical migration knowledge base to individual-based studies will be an important way forward. While tracking individual zooplankton in their natural habitats remains a major challenge, conducting trophic-scale, high-resolution, year-round studies that utilise emerging field sampling and observation techniques, molecular genetic tools and computational hardware and software will be the best solution to improve our understanding of zooplankton vertical migrations.  相似文献   

8.
Experiments measuring zooplankton filter-feeding rates using a 14C-labelled green alga were carred out in situ for the first time in three shallow sub-antarctic lakes. The number and biomass of zooplankton were high in samples from two lakes enriched by penguin and seal faeces, and low in samples from a peat-lined lava-lakelet not biotically enriched. A diel survey of the lava-lakelet over 48 h showed that no vertical migration or diel variation in filter-feeding rate occured in the strongly pigmented copepod Pseudoboeckella volucris Kiefer population, the most abundant entomostracan present. The unpigmented cladoceran Daphniopsis studeri Rühe had a high in situ filter-feeding rate, exhibited very marked vertical migration, and was primarily a nocturnal grazer.  相似文献   

9.
1. Data on the distributions of pelagic and benthic Chaoborus flavicans larvae were gathered in 1994 and tested for their agreement with the predator avoidance hypotheses. The development of all Chaoborus life stages, as well as the horizontal and vertical distribution in the four larval instars, was followed from May until October. We expected the largest larvae to dwell deeper by day, thus avoiding predation by visually foraging fish.
2. In agreement with this prediction body size increased with daytime depth, and this was true both between and within instars. The migration amplitude consequently increased with larval instar.
3. There was also evidence for horizontal migration, mainly in the third but also in the fourth instar.
4. Along a horizontal transect with increasing depth, locations with many benthic larvae had fewer pelagic larvae. Oxygen concentration was a good predictor of maximum benthic larval depth for most of the season but failed to predict their distribution in autumn.  相似文献   

10.
1. Return of large‐bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear‐water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear‐water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake, the zooplankton (primarily Daphnia) were mainly found in the pelagic area in spring, but from mid‐May they were particularly abundant in the APB and almost exclusively so in mid‐June and July, where they appeared in extremely high densities during day (up to 2600 ind. L−1). During night Daphnia densities were overall more equally distributed between the five habitats. Ceriodaphnia was proportionally more abundant in the APB during most of the season. Cyclopoids were more abundant in the high APB during day but were equally distributed between the five habitats during night. 4. In the turbid lake, however, no clear aggregation was observed in the APB for either of the pelagic genera (Daphnia and Bosmina). This may reflect a higher refuge effect in the open water due to the higher turbidity, reduced ability to orient to plant beds and a significantly higher fish density (mainly of roach, Rutilus rutilus, and perch, Perca fluviatilis) in the plant beds than in the clear lake. Chydorus was found in much higher proportions among the plants, while cyclopoids, particularly the pelagic Cyclops vicinus, dominated in the pelagic during day and in the pelagic and high density plants during night. 5. Our results suggest that water clarity is decisive for the habitat choice of large‐bodied zooplankton and that introduction of APB as a restoration measure to enhance zooplankton survival is only a useful tool when water clarity increases following loading reduction. Our results indicate that dense APB will be the most efficient.  相似文献   

11.
Ringelberg  Joop  Van Gool  Erik 《Hydrobiologia》2003,491(1-3):85-90
Although evolutionary ecologists agree that proximate and ultimate aspects are two sides of one coin, they are seldom interested in studies on physiological and behavioural mechanisms at the base of ecological phenomena. Nevertheless, these mechanisms are objects of selection and evolved to realise adaptive significances. This paper is a plea to bring both fields closer together, and, by means of an example of Diel Vertical Migration of Daphnia, some proximate and ultimate aspects are discussed. It is argued that light changes, not fish kairomone, is the primary cause for an individual to swim downwards at dawn and upwards at dusk. However, what is called a causal factor might differ when ecosystems or individuals are studied. In addition, causality in ecology is not simple, and has the character of a `set of necessary conditions'. To illustrate the importance of proximate analyses in DVM, two basic response mechanisms are discussed: Photobehaviour system 1 and 2. The physiological character of these systems leads to a fixed type of migration or to a phenotypically induced DVM, respectively. The adaptive significance of the first might be a reduction of the hazardous effects of UV radiation and of the second a lowering of mortality due to visually hunting predators.  相似文献   

12.
Tasmania has many polyhumic lakes with a wealth of phytoflagellates, especially chromophytes. Dystrophic coastal lagoons, such as Lake Garcia, are rich habitats of the Chrysophyta and Dinophyta, containing a number of new or rare species. In meromictic Lake Fidler and Sulphide Pool flagellates and prokaryotes are permanently zoned in a finely structured array astride the redoxcline. In the mixolimnetic waters phytoflagellates are zoned and probably perform regular migrations. Chaoborus larvae migrate daily. In monomictic, polyhumic Lake Chisholm there is probably a permanent zonation of flagellates and prokaryotes about the long-lasting thermocline, with diel migrations of other species in the epilimnion. With its numerous new or rare species Tasmania is a phytoflagellate haven.  相似文献   

13.
Many pelagic animal species in the marine environment and in lakes migrate to deeper water layers before sunrise and return around sunset. The amplitude of these diel vertical migrations (DVM) varies from several hundreds of metres in the oceans to approx. 5–20 m in lakes. DVM can be studied from a proximate and an ultimate point of view. A proximate analysis is intended to reveal the underlying behavioural mechanism and the factors that cause the daily displacements. The ultimate analysis deals with the adaptive significance of DVM and the driving forces that were responsible for the selection of the traits essential to the behavioural mechanism. The freshwater cladoceran Daphnia is the best studied species and results can be used to model migration behaviour in general. Phototaxis in Daphnia spp., which is defined as a light-oriented swimming towards (positive phototaxis) or away (negative phototaxis) from a light source, is considered the most important mechanism basic to DVM. A distinction has been made between primary phototaxis which occurs when light intensity is constant, and secondary phototaxis which is caused by changes in light intensity. Both types of reaction are superimposed on normal swimming. This swimming of Daphnia spp. consists of alternating upwards and downwards displacements over small distances. An internal oscillator seems to be at the base of these alternations. Primary phototaxis is the result of a dominance of either the upwards or the downwards oscillator phase, and the direction depends on internal and external factors: for example, fish-mediated chemicals or kairomones induce a downwards drift. Adverse environmental factors may produce a persistent primary phototaxis. Rare clones of D. magna have been found that show also persistent positive or negative primary phototaxis and interbreeding of the two types produces intermediate progeny: thus a genetic component seems to be involved. Also secondary phototaxis is superimposed on normal swimming: a continuous increase in light intensity amplifies the downwards oscillator phase and decreases the upwards phase. A threshold must be succeeded which depends on the rate and the duration of the relative change in light intensity. The relation between both is given by the stimulus strength versus stimulus duration curve. An absolute threshold or rheobase exists, defined as the minimum rate of change causing a response if continued for an infinitely long time. DVM in a lake takes place during a period of 1-5-2 h when light changes are higher than the rheobase threshold. Accelerations in the rate of relative increase in light intensity strongly enhance downwards swimming in Daphnia spp. and this enhancement increases with increasing fish kairomone and food concentration. This phenomenon may represent a ‘decision-making mechanism’ to realize the adaptive goal of DVM: at high fish predator densities, thus high kairomone concentrations, and sufficiently high food concentrations, DVM is profitable but not so at low concentrations. Body axis orientation in Daphnia spp. is controlled with regard to light-dark boundaries or contrasts. Under water, contrasts are present at the boundaries of the illuminated circular window which results from the maximum angle of refraction at 48–9° with the normal (Snell's window). Contrasts are fixed by the compound eye and appropriate turning of the body axis orients the daphnid in an upwards or an obliquely downwards direction. A predisposition for a positively or negatively phototactic orientation seems to be the result of a disturbed balance of the two oscillators governing normal swimming. Some investigators have tried to study DVM at a laboratory scale during a 24 h cycle. To imitate nature, properties of a natural water column, such as a large temperature gradient, were compressed into a few cm. With appropriate light intensity changes, vertical distributions looking like DVM were obtained. The results can be explained by phototactic reactions and the artificial nature of the compressed environmental factors but do not compare with DVM in the field. A mechanistic model of DVM based on phototaxis is presented. Both, primary and secondary phototaxis is considered an extension of normal swimming. Using the light intensity changes of dawn and the differential enhancement of kairomones and food concentrations, amplitudes of DVM could be simulated comparable to those in a lake. The most important adaptive significance of DVM is avoidance of visual predators such as juvenile fish. However, in the absence of fish kairomones, small-scale DVMs are often present, which were probably evolved for UV-protection, and are realized by not enhanced phototaxis. In addition, the ‘decision-making mechanism’ was probably evolved as based on the enhanced phototactic reaction to accelerations in the rate of relative changes in light intensity and the presence of fish kairomones.  相似文献   

14.
The seasonal succession of phytoplankton diversity, and the variations in the diel vertical distribution of phyto‐ and zooplankton were investigated in a small shallow pond (1.7 m water depth) in 2003. It was inferred that the water tended to stratify weakly in the daytime from February to June. In February and April, the green alga Golenkinia radiata Chodat dominated the phytoplankton assemblage. The cell density of G. radiata greatly decreased in April, when rotifers increased near the bottom. The vertical mixing was attenuated in June, large populations of the euglenoids (Lepocinclis salina Fritsch, Phacus acuminatus Stokes, Trachelomonas hispida (Perty) Stein et Deflandre) developed, and the cyanobacterium Aphanizomenon flos‐aquae var. klebahnii Elenk. appeared at low density. Euglenoids and A. flos‐aquae were mostly distributed in the bottom layer. In late September, when the water was mixed throughout the day, euglenoids and A. flos‐aquae were distributed evenly throughout the water column. The zooplankton (cyclopoid copepods and rotifers) densities in September were the lowest throughout the year. The vertical mixing increased in November, and the phytoplankton community was composed of A. flos‐aquae, P. acuminatus, T. hispida and the green alga Ankistrodesmus falcatus (Corda) Ralfs. In November, at the final stage of water bloom of A. flos‐aquae, its population density decreased with depth. The two euglenoids exhibited similar cell distributions at 0.8 m and 1.6 m during 1–3 November. A. falcatus was distributed evenly throughout the water column; however, when the vertical mixing lessened, the cells at the surface started to sink. Copepod nauplii and rotifers appeared at high densities in November. Seasonal variation in the phytoplankton community structure in the pond seemed to be related to the vertical mixing of the water. In addition, zooplankton, especially rotifers, might play an important role in initiating a spring clear‐water phase and in the bloom collapse of A. flos‐aquae.  相似文献   

15.
Adaptive phenotypic divergence of sympatric morphs in a single species may have significant evolutionary consequences. In the present study, phenotypic impacts of predator on zooplankton prey populations were compared in two northern Finnish lakes; one with an allopatric whitefish, Coregonus lavaretus (L.), population and the other with three sympatric whitefish populations. First, we examined whether there were phenotypic associations with specific niches in allopatric and sympatric whitefish. Second, trait utility (i.e. number of gillrakers) of allopatric and sympatric whitefish in utilizing a pelagic resource was explored by comparing predator avoidance of prey, prey size in environment, and prey size in predator diet. The allopatric living large sparsely rakered (LSR) whitefish morph, was a generalist using both pelagic and benthic niches. In contrast, sympatric living whitefish morphs were specialized: LSR whitefish was a littoral benthivore, small sparsely rakered whitefish was a profundal benthivore and densely rakered (DR) whitefish was a pelagic planktivore. In the lake with allopatric whitefish, zooplankton prey did not migrate vertically to avoid predation whereas, in the lake with sympatric whitefish, all important prey taxa migrated significantly. Trait utility was observed as significantly smaller size of prey in environment and predator diet in the lake with DR whitefish than in the lake with only LSR whitefish.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 561–572.  相似文献   

16.
夏季南黄海浮游动物的垂直分布与昼夜垂直移动   总被引:14,自引:0,他引:14  
左涛  王荣  王克  高尚武 《生态学报》2004,24(3):524-530
对 2 0 0 1年 8月南黄海青岛外海至济州岛断面 ,浮游动物的日垂直变化、断面垂直分布及其与海区水文特征的关系进行了研究。共鉴定浮游动物 40种。断面浮游动物的平均丰度为 13 62 ind/ m 3 ;种类丰富度与暖水种数呈正相关 ,分布趋势为测区东部高、西部低 ;优势种为中华哲水蚤 (Calanus sinicus)、小拟哲水蚤 (Paracalanus parvus)、拟长腹剑水蚤 (Oithona similis)、强壮箭虫 (Sagitta crassa)、近缘大眼剑水蚤 (Corycaeus affinis)。在不同水层 ,浮游动物丰度分布不同 ,随水深增加而减少 ,表层丰度最高 (3 2 2 1ind/ m3) ,温跃层和底层分别为 743 ind/ m3、43 8ind/ m3;种类组成也不相同 ,表层数量最多的种类为鸟喙尖头(Penilia avirostris)、温跃层及其以下水体为中华哲水蚤 ,其它主要种类亦表现不同水层取向。在连续观测站 ,根据浮游动物主要种类的昼夜垂直移动与温跃层关系 ,将之分为表层分布 ,近温跃层分布 ,底层分布及全水层分布 4种类型  相似文献   

17.
ABSTRACT

Fish odor induces predator avoidance behaviors in zooplankton, like vertical migration, by making zooplankton more responsive to light. Odor cues that alter behavior in marine crustacean zooplankton in the laboratory include sulfated glycosaminoglycans (sGAGs) derived from fish body mucus. Few studies quantify these cues in estuarine/marine environments or assess whether laboratory studies reflect natural scenarios. We collected fish and water samples weekly in Broadkill River, Delaware, USA. We used field-collected water in colorimetric assays to determine the concentration of sGAG-equivalent molecules and in behavioral assays with a zooplankton model, brine shrimp (Artemia spp.) nauplii, which only descend in response to downwelling light after fish odor exposure. Fish quantity was positively related to sGAG-equivalents and zooplankton photosensitivity, indicated by descent responses at lower light levels and across a broad intensity range. Our results support that fish odor concentrations used in previous laboratory assays are consistent with levels found in an estuary.  相似文献   

18.
巢湖微囊藻和浮游甲壳动物昼夜垂直迁移的初步研究   总被引:1,自引:0,他引:1  
邓道贵  谢平  周琼  杨华 《生态科学》2006,25(1):8-12
2002年10月进行了巢湖微囊藻和几种优势浮游甲壳动物的昼夜垂直变化的研究,结果表明:微囊藻具有明显的昼夜垂直变化现象。白天上层水中的微囊藻密度显著高于下层水中,夜晚逐渐下沉使得下层水中的密度相对高于上层水。微囊藻与叶绿素a、水温、溶解氧和pH等均呈显著的正相关(p<0.01)。几种优势浮游甲壳动物的昼夜垂直迁移存在较大的差异。短尾秀体溞和角突网纹溞白天在下层水(1.5m和2.5m)中的密度较高,夜晚则倾向于在上层水(0m和0.5m)中活动。相反,卵形盘肠溞白天在上层水中密度较高,象鼻溞则在11:00和15:00时各水层中的密度显著高于夜晚。汤匙华哲水蚤和广布中剑水蚤白天倾向于在下层水中活动,夜晚则逐渐迁移到上层水中。许水蚤在夜晚和凌晨3:00时各水层中的密度显著高于白天。中华窄腹剑水蚤昼夜垂直变化不明显。微囊藻与短尾秀体溞密度呈显著的负相关,而与象鼻溞和卵形盘肠溞呈显著的正相关(p<0.01)。  相似文献   

19.
We examined the diel vertical migration (DVM) of zooplankton in three lakes of western New York; Lakes Conesus, Lime, and McCargo. In all three lakes, the dipteran predator Chaoborus was a more dramatic migrator than any of the cladocerans or copepods. In contrast, another invertebrate predator, Leptodora, seemed to have the least vertical dispersal. In Conesus Lake, following the evening ascent and upper-water night-positioning of Chaoborus flavicans, Daphnia pulicaria expanded its own vertical range of dispersal thereby decreasing its degree of overlap with Chaoborus. The vertical distribution of Diaptomus sicilis was mostly below that of Daphnia pulicaria, thus reducing possible competition for food resources. Poor oxygen conditions in the lower waters of Lakes Lime and McCargo restricted all zooplankton (except Chaoborus) to an epilimnetic zone where the regions of niche overlap and predation were narrowed. Such annually-induced restrictions on vertical dispersal are probably common features of numerous stratified lakes with hypolimnetic reducing conditions. No fixed pattern of vertical dispersal or migration is likely in lakes where stratification and non-stratification follow each other seasonally. Vertical migration does provide some flexibility in niche separation, but the potential for chaotic behavior in interacting predators and prey may confound simple explanations of DVM.  相似文献   

20.
The sound production and sound producing apparatus of two species of grasshoppers, A. lineatus Stål, 1878 and A. vitticollis Stål, 1878 (Orthoptera, Acrididae, Copiocerinae) have been studied. For both species oscillograms and other physical data on sounds are presented for the first time. The sound producing behavior is described and the stridulation apparatus mechanism is illustrated. In the case of A. vitticollis these data are the first known on its sound production and general acoustic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号